Academic literature on the topic 'Murnaghan hyperelastic material model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Murnaghan hyperelastic material model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Murnaghan hyperelastic material model"
Jemioło, Stanisław, and Aleksander Franus. "Numerical implementation of the Murnaghan material model in ABAQUS/Standard." MATEC Web of Conferences 196 (2018): 01042. http://dx.doi.org/10.1051/matecconf/201819601042.
Full textRushchitsky, J. J. "On the Constants of the Nonlinear Murnaghan’s Hyperelastic Material Model." International Applied Mechanics 52, no. 5 (September 2016): 508–19. http://dx.doi.org/10.1007/s10778-016-0771-5.
Full textYuan, Maodan, Anbang Dai, Lin Liao, Yan Chen, and Xuanrong Ji. "Numerical Study on Surface Roughness Measurement Based on Nonlinear Ultrasonics in Through-Transmission and Pulse-Echo Modes." Materials 14, no. 17 (August 26, 2021): 4855. http://dx.doi.org/10.3390/ma14174855.
Full textZhao, Chengwei, Sunia Tanweer, Jian Li, Min Lin, Xiang Zhang, and Yang Liu. "Nonlinear Guided Wave Tomography for Detection and Evaluation of Early-Life Material Degradation in Plates." Sensors 21, no. 16 (August 16, 2021): 5498. http://dx.doi.org/10.3390/s21165498.
Full textJemiolo, Stanislaw, Aleksander Franus, and Wlodzimierz Domanski. "Attempt to Assess the Scope of Applicability of a Hyperelastic Murnaghan’s Material Model in the Case of Elastomers." IOP Conference Series: Materials Science and Engineering 661 (November 20, 2019): 012040. http://dx.doi.org/10.1088/1757-899x/661/1/012040.
Full textMajor, Izabela, and Maciej Major. "Application of the Perturbation Method for Determination of Eigenvalues and Eigenvectors for the Assumed Static Strain." Civil and Environmental Engineering 10, no. 2 (December 1, 2014): 111–20. http://dx.doi.org/10.2478/cee-2014-0020.
Full textСоколова, Марина Юрьевна, and Юрий Владимирович Астапов. "Elastic waves in the Hencky-Murnaghan material." Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, no. 3(45) (December 29, 2020): 108–20. http://dx.doi.org/10.37972/chgpu.2020.26.33.011.
Full textСоколова, Марина Юрьевна, and Юрий Владимирович Астапов. "Elastic waves in the Hencky-Murnaghan material." Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, no. 3(45) (December 29, 2020): 108–20. http://dx.doi.org/10.37972/chgpu.2020.26.33.011.
Full textRugsaj, Ravivat, and Chakrit Suvanjumrat. "Finite Element Analysis of Hyperelastic Material Model for Non-Pneumatic Tire." Key Engineering Materials 775 (August 2018): 554–59. http://dx.doi.org/10.4028/www.scientific.net/kem.775.554.
Full textSumelka, Wojciech, and George Z. Voyiadjis. "A hyperelastic fractional damage material model with memory." International Journal of Solids and Structures 124 (October 2017): 151–60. http://dx.doi.org/10.1016/j.ijsolstr.2017.06.024.
Full textDissertations / Theses on the topic "Murnaghan hyperelastic material model"
Chlebek, David. "Simulation of ultrasonic time of flight in bolted joints." Thesis, KTH, Hållfasthetslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298342.
Full textUltraljudsmätning av klämklraften i skruvförband är en väldigt noggrann metod eftersom att metoden inte påverkas av friktion eller andra faktorer som innebär svårigheter för vanliga metoder. Ultraljudsmetoden fungerar genom att skicka in en ultraljudsvåg i skruven som reflekteras i botten och återvänder tillbaka till sensorn. Skillnaden i tiden för ekot att återvända kan relateras till förlängningen av skruven och därmed klämkraften. Det är viktigt att ta hänsyn till den akustoelastiska effekten, som är fenomenet där ljudhastigheten av en våg i en solid förändras med spänningstillståndet. Målet med det här arbetet är att implementera en hyperelastisk Murnaghan modell som tar hänsyn till den akustoelastiska effekten med FEM simuleringar. Ett experiment har också genomförts för att validera beräkningsmodellen. Tidsfördröjningen som en funktion av förspänningskraften togs fram för ett M8 och M10 provobjekt. Murnaghans hyperelastiska materialmodell implementerades genom att skapa ett användar material skriven i programmeringsspråket Fortran för den explicita lösaren Radioss. Hypermesh användes för att ställa upp FEM simuleringen. Materialmodellen har visat ett väntat beteende med en ökad ljudhastighet med tryckspänningar och minskad ljudhastighet med dragspänningar. Beräkningsmodellen visade en god överenstämmelse med resultatet från experimentet.
TRIPATHY, SAKYASINGH. "EXTRACTION OF NON-LINEAR MATERIAL PROPERTIES OF BIO-GELS USING ATOMIC FORCE MICROSCOPY." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1123381089.
Full textHu, Lianxin. "Micromechanics of granular materials : Modeling anisotropy by a hyperelastic-plastic model." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI133.
Full textIn order to model the behavior of geometarials under complex loadings, several researches have done numerous experimental works and established relative constitutive models for decades. An important feature of granular materials is that the relationship between stress and strain especially in elastic domain is not linear, unlike the responses of typical metal or rubber. It has been also found that the stress-strain response of granular materials shows the characteristics of cross-anisotropy, as well as the non-linearities. Besides, the stress-induced anisotropy occurs expectedly during the process of disturbance on soils, for example, the loads or displacements. In this work, a new model which is a combination of Houlsby hyperelastic model and elastoplastic Plasol model was proposed. This new model took into account the non-linear response of stress and strain in both elastic and plastic domain, and the anisotropic elasticity was also well considered. Moreover, the overflow problem of plastic strain in plastic part was calibrated by a proper integration algorithm. Later, new model was verified by using numerical method and compared with laboratory experiments in axisymmetric triaxial conditions. The comparison results showed a good simulation effect of new model which just used one single set of parameters for a specific soil in different confining pressure situations. Then the analysis of new model internal variable, i.e., pressure exponent, illustrated that the value of pressure exponent which corresponds to the degree of anisotropy had an obvious effect on the stress-strain response. Moreover, this kind of effect is also affected by the density and drainage condition of samples. Basing on new model, a safety factor which refers to the second-order work criterion was adopted and tested in axisymmetric model and actual slope model. It showed that the negative value or dramatic decreasing of global normalized second-order work occurs accompanying with a local or global failure with a burst of kinetic energy. This feature of second-order work can also be affected by the variable pressure exponent. At last, new model was also compared with an elastoplastic model which considers both anisotropic elastic and anisotropic dilatancy, i.e., modified SANISAND model. Both advantages and disadvantages were illustrated in the comparison results
Little, Judith Paige. "Finite Element Modelling Of Anular Lesions in the Lumbar Intervertebral Disc." Queensland University of Technology, 2004. http://eprints.qut.edu.au/15952/.
Full textSilva, Renato de Sousa e. "Estudo do comportamento dinâmico de membranas retangulares hiperelásticas." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4809.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-10-28T14:29:10Z (GMT) No. of bitstreams: 2 Dissertação - Renato de Sousa e Silva - 2015.pdf: 7212801 bytes, checksum: 41d5a93b0ae749a6418b871cd4fea683 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-10-28T14:29:10Z (GMT). No. of bitstreams: 2 Dissertação - Renato de Sousa e Silva - 2015.pdf: 7212801 bytes, checksum: 41d5a93b0ae749a6418b871cd4fea683 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-06-12
Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG
Structural elements with large deformation capacity as hyperelastic membranes are gaining prominence in several engineering branches and have applications in biomechanics, thus the study of the dynamic behavior of hyperelastic structures is very important to minimize effects as the loss of the stability and undesirable vibrations. In this paper the elasticity theory for large deformations in the development of membrane theory, in order to investigate the linear and nonlinear dynamic behavior of hyperelastic membrane is used. A rectangular membrane composed of an elastomeric material, isotropic, homogeneous, incompressible and consisting of neo-Hookeano, Mooney-Rivlin and Yeoh models is considered. To model the membrane, the energy and work of external forces are used together with the application of the Hamilton on the Lagrange function. The Galerkin method is applied to obtain a discretized system of nonlinear Partial Differential Equations (PDE) and the Runge-Kutta method of 4th order is used to obtain its time response. Finally, the Brute Force and Continuation methods are applied to investigate the nonlinear dynamic behavior of the membrane. A parametric analysis is carried out looking to evaluate the influence of the material, geometry and initial tensions on the natural frequencies of the membrane. It is noted that increasing the size of a tensioned membrane, it is also increased the natural frequency for a given amplitude, and increasing the strength of a pre-tensioned membrane, the smaller the value of the frequency in relation to a range. Small differences are perceived in the behavior of the membrane for the three constitutive models of material, which are calibrated to represent the same material. Moreover, the main bifurcations of the analyzed membranes are of cyclic bending type, known as saddle-node bifurcation.
Elementos estruturais com grande capacidade de deformação como membranas hiperelásticas vêm ganhando destaque em diversas áreas da engenharia e têm várias aplicações na biomecânica, assim, o estudo do comportamento dinâmico de estruturas hiperelásticas é de grande importância visando minimizar os efeitos, como à perda de estabilidade e vibrações indesejáveis. No presente trabalho é utilizada a teoria da elasticidade para grandes deformações no desenvolvimento da teoria de membranas com o objetivo de investigar o comportamento dinâmico linear e não linear de membranas hiperelásticas. Considera-se a membrana retangular composta por um material elastomérico, isotrópico, homogêneo, incompressível e descrito pelos modelos constitutivos de neo-Hookeano, Mooney-Rivlin e Yeoh. Para obter as equações de equilíbrio estático e dinâmico da estrutura são utilizadas as energias e trabalhos atuantes, bem como o princípio de Hamilton aplicado na função de Lagrange. O Método de Galerkin é utilizado para discretizar as Equações Diferenciais Parciais (EDP) em um sistema de Equações Diferenciais Ordinárias (EDO). Para resolver esse sistema, utiliza-se o Método de Runge-Kutta de quarta ordem e utiliza-se o Método da Força Bruta e o Método da Continuação para investigar o comportamento dinâmico da membrana. É realizada uma análise paramétrica visando avaliar a influência do material e da geometria da membrana nas frequências naturais e nas tensões inicias. Constata-se que as bifurcações das membranas analisadas são do tipo Dobra Cíclica, conhecida como Nó-Sela. Além de verificar que quanto menor o nível de tração, maior será a não linearidade da curva de frequênciaamplitude da membrana e que há leves divergências no comportamento da membrana em relação aos três modelos constitutivos do material adotados.
Uhrig, Matthias Pascal. "Numerical simulation of nonlinear Rayleigh wave beams evaluating diffraction, attenuation and reflection effects in non-contact measurements." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54368.
Full textSalisbury, Christopher. "On the Deformation Mechanics of Hyperelastic Porous Materials." Thesis, 2011. http://hdl.handle.net/10012/5858.
Full textBurela, Ramesh Gupta. "Asymptotically Correct Dimensional Reduction of Nonlinear Material Models." Thesis, 2011. http://etd.iisc.ernet.in/2005/3909.
Full textKhare, Siddharth M. "Micro-Newton Force Measurement and Actuation : Applied to Genetic Model Organisms." Thesis, 2016. http://etd.iisc.ernet.in/2005/3811.
Full textZhao, Ruogang. "The Development and Application of Tools to Study the Multiscale Biomechanics of the Aortic Valve." Thesis, 2012. http://hdl.handle.net/1807/33866.
Full textBook chapters on the topic "Murnaghan hyperelastic material model"
Wong, Ken C. L., Linwei Wang, and Pengcheng Shi. "Active Model with Orthotropic Hyperelastic Material for Cardiac Image Analysis." In Functional Imaging and Modeling of the Heart, 229–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01932-6_25.
Full textŁagan, Sylwia, and Aneta Liber-Kneć. "The Influence of Stretch Range on the Hyperelastic Material Model Parameters for Pig’s Skin with Consideration of Specimen Taken Direction." In Innovations in Biomedical Engineering, 253–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15472-1_27.
Full textLimbert, G., and M. Taylor. "An explicit three-dimensional finite element model of an incompressible transversely isotropic hyperelastic material." In Computational Fluid and Solid Mechanics, 319–22. Elsevier, 2001. http://dx.doi.org/10.1016/b978-008043944-0/50640-5.
Full textConference papers on the topic "Murnaghan hyperelastic material model"
Jerábek, R., and L. Écsi. "ALTERNATIVE STRAIN-RATE DEPENDENT HYPERELASTIC-PLASTIC MATERIAL MODEL." In Engineering Mechanics 2020. Institute of Thermomechanics of the Czech Academy of Sciences, Prague, 2020. http://dx.doi.org/10.21495/5896-3-242.
Full textCarbary, Larry D., Jon H. Kimberlain, and John C. Oliva. "Hyperelastic Material Model Selection of Structural Silicone Sealants for Use in Finite Element Modeling." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67589.
Full textLuo, Yi, Zhengyi Han, Xianzhang Lei, Mingyu Zhou, Hanyu Ye, Haitian Wang, and Yanzhuo Liu. "Techniques for designing prefabricated cable accessories based on hyperelastic material model." In 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2018. http://dx.doi.org/10.1109/icpadm.2018.8401204.
Full textHomison, Chris, and Lisa Mauck Weiland. "Coupled Transport/Hyperelastic Model for High Nastic Materials." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79387.
Full textLuo, Yun-Mei, Luc Chevalier, and Eric Monteiro. "An anisotropic visco-hyperelastic model for PET behavior under ISBM process conditions." In ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming. Author(s), 2016. http://dx.doi.org/10.1063/1.4963407.
Full textBreslavsky, Ivan, Marco Amabili, and Mathias Legrand. "Large Amplitude Vibrations of Thin Hyperelastic Plates: Neo-Hookean Model." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62253.
Full textPham, Trung, Christopher Hoyle, Yue Zhang, and Tam Nguyen. "Topology Optimization of Hyperelastic Continua." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59776.
Full textMesa Vargas, Diego Fernando, Agustín Vidal-Lesso, and Jorge Arturo Alfaro Ayala. "A Material Model Fitting for Recycled Polyethylene Terephthalate Implemented in the Finite Element Modelling." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88305.
Full textO’Connell, Grace D., Heather L. Guerin, and Dawn M. Elliott. "An Anisotropic Hyperelastic Model Applied to Nondegenerate and Degenerate Annulus Fibrosus." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192890.
Full textFreeman, Eric, and Lisa Weiland. "Parametric Studies of a Coupled Transport/Hyperelastic Model for High Energy Density Nastic Materials." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43072.
Full textReports on the topic "Murnaghan hyperelastic material model"
Zywicz, E. The Development of DYNA3D Material Model 67 - Hyperelastic Elastomeric Foam With Viscoelasticity. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1179428.
Full text