Academic literature on the topic 'Murray-Darling River'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Murray-Darling River.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Murray-Darling River"

1

Fülöp, R. H., A. T. Codilean, K. M. Wilcken, T. J. Cohen, D. Fink, A. M. Smith, B. Yang, et al. "Million-year lag times in a post-orogenic sediment conveyor." Science Advances 6, no. 25 (June 2020): eaaz8845. http://dx.doi.org/10.1126/sciadv.aaz8845.

Full text
Abstract:
Understanding how sediment transport and storage will delay, attenuate, and even erase the erosional signal of tectonic and climatic forcings has bearing on our ability to read and interpret the geologic record effectively. Here, we estimate sediment transit times in Australia’s largest river system, the Murray-Darling basin, by measuring downstream changes in cosmogenic 26Al/10Be/14C ratios in modern river sediment. Results show that the sediments have experienced multiple episodes of burial and reexposure, with cumulative lag times exceeding 1 Ma in the downstream reaches of the Murray and D
APA, Harvard, Vancouver, ISO, and other styles
2

Maini, N., A. Buchan, and S. Joseph. "Derivation of a salinity target for the Lower Murray Darling Valley." Water Science and Technology 48, no. 7 (October 1, 2003): 105–12. http://dx.doi.org/10.2166/wst.2003.0430.

Full text
Abstract:
The NSW Government commissioned catchment management boards (CMBs) to set the direction and process for catchment scale natural resource management. In the Lower Murray Darling, Rivers are highly regulated and water resources shared between three states. The Catchment Board only has jurisdiction over the northern bank of the Murray but salt and water enter the river from many locations upstream and along the area boundary. River salt and flow modelling has continually been improved to reflect and contribute to an increased understanding of salinity processes. The MDBC Salt Load study correlate
APA, Harvard, Vancouver, ISO, and other styles
3

Unmack, P. J., M. J. Young, B. Gruber, D. White, A. Kilian, X. Zhang, and A. Georges. "Phylogeography and species delimitation of Cherax destructor (Decapoda: Parastacidae) using genome-wide SNPs." Marine and Freshwater Research 70, no. 6 (2019): 857. http://dx.doi.org/10.1071/mf18347.

Full text
Abstract:
Cherax is a genus of 58 species of decapod crustaceans that are widespread across Australia and New Guinea. We use single-nucleotide polymorphisms (SNPs) to examine phylogeographic patterns in the most widespread species of Cherax, namely, C. destructor, and test the distinctiveness of one undescribed species, two C. destructor subspecies, previously proposed evolutionarily significant units, and management units. Both the phylogenetic analyses and the analysis of fixed allelic differences between populations support the current species-level taxonomy of C. setosus, C. depressus, C. dispar and
APA, Harvard, Vancouver, ISO, and other styles
4

Davie, Alec W., and Joe B. Pera. "The Fish Health Risk Indicator: linking water quality and river flow data with fish health to improve our predictive capacity around fish death events." Marine and Freshwater Research 73, no. 2 (2022): 193. http://dx.doi.org/10.1071/mf20360.

Full text
Abstract:
Severe drought conditions contributed to three mass fish mortality events in the Darling River near Menindee, part of the Murray–Darling Basin, Australia, during the summer of 2018–19. An independent assessment recommended the need for improved modelling approaches to identify when sections of rivers may be more susceptible to fish kill events. We present a geographic information system (GIS)-based tool that combines meteorological forecasts with river flow and algal biomass datasets to identify river reaches where additional stresses on fish health may produce an increased risk of mass fish d
APA, Harvard, Vancouver, ISO, and other styles
5

Pittock, Jamie, and C. Max Finlayson. "Australia's Murray - Darling Basin: freshwater ecosystem conservation options in an era of climate change." Marine and Freshwater Research 62, no. 3 (2011): 232. http://dx.doi.org/10.1071/mf09319.

Full text
Abstract:
River flows in the Murray–Darling Basin, as in many regions in the world, are vulnerable to climate change, anticipated to exacerbate current, substantial losses of freshwater biodiversity. Additional declines in water quantity and quality will have an adverse impact on existing freshwater ecosystems. We critique current river-management programs, including the proposed 2011 Basin Plan for Australia’s Murray–Darling Basin, focusing primarily on implementing environmental flows. River management programs generally ignore other important conservation and adaptation measures, such as strategicall
APA, Harvard, Vancouver, ISO, and other styles
6

Sheldon, Fran, and Keith F. Walker. "Spatial distribution of littoral invertebrates in the lower Murray - Darling River system, Australia." Marine and Freshwater Research 49, no. 2 (1998): 171. http://dx.doi.org/10.1071/mf96062.

Full text
Abstract:
The abundance and richness of macroinvertebrates in the lower Murray and Darling rivers were examined at a macroscale (rivers), mesoscale (billabongs, backwaters, channel) and microscale (vegetation, snags, substrata). In the Darling, insects dominated (85% of taxa, 81% of individuals); the richest taxa were Diptera (26 taxa) and Coleoptera (15 taxa) and the most abundant were Hemiptera (47%) and Diptera (35%). In the Murray, insects again dominated (84% of taxa, 52% of individuals), particularly Diptera (22 taxa), Coleoptera (12 taxa) and Hemiptera (9 taxa), but there were more crustaceans (9
APA, Harvard, Vancouver, ISO, and other styles
7

Draper, Clara, and Graham Mills. "The Atmospheric Water Balance over the Semiarid Murray–Darling River Basin." Journal of Hydrometeorology 9, no. 3 (June 1, 2008): 521–34. http://dx.doi.org/10.1175/2007jhm889.1.

Full text
Abstract:
Abstract The atmospheric water balance over the semiarid Murray–Darling River basin in southeast Australia is analyzed based on a consecutive series of 3- to 24-h NWP forecasts from the Australian Bureau of Meteorology’s Limited Area Prediction System (LAPS). Investigation of the LAPS atmospheric water balance, including comparison of the forecast precipitation to analyzed rain gauge observations, indicates that the LAPS forecasts capture the general qualitative features of the water balance. The key features of the atmospheric water balance over the Murray–Darling Basin are small atmospheric
APA, Harvard, Vancouver, ISO, and other styles
8

Pigram, John J. "Towards Upstream-Downstream HydrosolidarityAustralia's Murray-Darling River Basin." Water International 25, no. 2 (June 2000): 222–26. http://dx.doi.org/10.1080/02508060008686822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Quiggin, John. "Environmental economics and the Murray–Darling river system." Australian Journal of Agricultural and Resource Economics 45, no. 1 (March 2001): 67–94. http://dx.doi.org/10.1111/1467-8489.00134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gehrke, Peter C., and John H. Harris. "Large-scale patterns in species richness and composition of temperate riverine fish communities, south-eastern Australia." Marine and Freshwater Research 51, no. 2 (2000): 165. http://dx.doi.org/10.1071/mf99061.

Full text
Abstract:
Riverine fish in New South Wales were studied to examine longitudinal trends in species richness and to identify fish communities on a large spatial scale. Five replicate rivers of four types (montane, slopes, regulated lowland and unregulated lowland) were selected from North Coast, South Coast, Murray and Darling regions. Fishwere sampled during summer and winter in two consecutive years with standardized gear that maximized the range of species caught. The composition of fish communities varied among regions and river types, with little temporal variation. Distinct regional communities conv
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Murray-Darling River"

1

Williams, Mark Donald. "Salinity tolerance of small fishes from the Murray-Darling river system /." Title page, contents and conclusions only, 1987. http://web4.library.adelaide.edu.au/theses/09SB/09sbw725.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boys, Craig Ashley, and n/a. "Fish-Habitat Associations in a Large Dryland River of the Murray-Darling Basin, Australia." University of Canberra. Resource, Environmental & Heritage Sciences, 2007. http://erl.canberra.edu.au./public/adt-AUC20070807.112943.

Full text
Abstract:
Many aspects concerning the association of riverine fish with in-channel habitat remain poorly understood, greatly hindering the ability of researchers and managers to address declines in fish assemblages. Recent insights gained from landscape ecology suggest that small, uni-scalar approaches are unlikely to effectively determine those factors that influence riverine structure and function and mediate fish-habitat associations. There appears to be merit in using multiple-scale designs built upon a geomorphologically-derived hierarchy to bridge small, intermediate and large spatial scales in la
APA, Harvard, Vancouver, ISO, and other styles
3

Jian, Jun. "Predictability of Current and Future Multi-River discharges: Ganges, Brahmaputra, Yangtze, Blue Nile, and Murray-Darling Rivers." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19777.

Full text
Abstract:
Thesis (Ph.D)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2008.<br>Committee Chair: Judith Curry; Committee Chair: Peter J Webster; Committee Member: Marc Stieglitz; Committee Member: Robert Black; Committee Member: Rong Fu.
APA, Harvard, Vancouver, ISO, and other styles
4

Baumgartner, Lee Jason, and n/a. "Effects of weirs on fish movements in the Murray-Darling Basin." University of Canberra. Resource, Environmental & Heritage Sciences, 2005. http://erl.canberra.edu.au./public/adt-AUC20051129.142046.

Full text
Abstract:
Dams and weirs are widely implicated in large-scale declines in both the range and abundance of aquatic fauna. Although many factors are involved, such declines are commonly attributed to the prevention or reduction of migration, reductions in available habitat, alteration of natural flow regimes and changes to physicochemical characteristics. In Australia, studies into the ecological effects of these impacts are limited, and have concentrated mainly on species of recreational and commercial importance. Subsequently, the adverse effects of dams and weirs, and suitable methods of mitigation, re
APA, Harvard, Vancouver, ISO, and other styles
5

Francis, Cathy, and n/a. "A multi-scale investigation into the effects of permanent inundation on the flood pulse, in ephemeral floodplain wetlands of the River Murray." University of Canberra. Health, Design & Science, 2005. http://erl.canberra.edu.au./public/adt-AUC20061128.153926.

Full text
Abstract:
Using a multi-scale experimental approach, the research undertaken in this thesis investigated the role of the flood pulse in ephemeral floodplain wetlands of the River Murray, in order to better understand the impact of river regulation (and permanent inundation) on these wetlands. An ecosystem-based experiment was conducted on the River Murray floodplain, to compare changes in nutrient availability and phytoplankton productivity in three ephemeral wetlands (over a drying/reflooding cycle) with three permanently inundated wetlands. In the ephemeral wetlands, both drying and re-flooding phases
APA, Harvard, Vancouver, ISO, and other styles
6

Dwyer, Brian James. "Aspects of governance and public participation in remediation of the Murray-Darling Basin /." View thesis, 2004. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20060517.130206/index.html.

Full text
Abstract:
Thesis (Ph.D.) -- University of Western Sydney, 2004.<br>"A thesis submitted for the degree of Doctor of Philosophy of the University of Western Sydney, Sydney, January 2004." Includes bibliography : leaves 359 - 369.
APA, Harvard, Vancouver, ISO, and other styles
7

Sharpe, Clayton P. "Spawning and Recruitment Ecology of Golden Perch (Macquaria ambigua Richardson 1845) in the Murray and Darling Rivers." Thesis, Griffith University, 2011. http://hdl.handle.net/10072/366211.

Full text
Abstract:
The golden perch (Macquaria ambigua Richardson 1845) is an iconic freshwater fish native to Australia’s Murray-Darling Basin. Like many other native fishes, golden perch have suffered declines in abundance and range since European settlement as a result of overfishing, habitat destruction, and dams that impede migration and regulate flows of the Murray-Darling river system. For more than four decades it has been widely considered that flow pulses and floods are proximate stimuli for spawning, and that floods enhance recruitment to sustain golden perch populations. It has, however, been shown r
APA, Harvard, Vancouver, ISO, and other styles
8

Job, Thomas Anthony. "A systemic investigation of coastal acid sulfate soil acidification in the River Murray Estuary, South Australia." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23474.

Full text
Abstract:
Extensive coastal acid sulfate soil (CASS) oxidation was observed in the River Murray Estuary (RME), South Australia, during an extreme drought (the Millennium Drought, 1996–2010). CASS oxidation causes significant surface water and porewater acidity, and the mobilisation of toxicants, negatively impacting proximal ecosystems and infrastructure. In this thesis I argue that the Millennium Drought acidification event provides a test case globally for how meteorological drought triggers extreme CASS oxidation, and how other variables can exacerbate the issue. I therefore present a systemic invest
APA, Harvard, Vancouver, ISO, and other styles
9

Clerke, Robert Bruce. "The ecology of the cane toad, Bufo marinus, on the Darling Downs of Southern Queensland and the prospects of further range expansion within the Murray-Darling River Catchment." Thesis, Queensland University of Technology, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nguyen, Duy. "An Investigation Of The Effect Of Meanders On Thermally Stratified Riverine Flow." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29567.

Full text
Abstract:
This thesis describes the influences of meander geometrics on thermally stratified open-channel flow. Results of this study contribute toward a greater understanding of the physical characteristics of flow in riverine environments. The presence of thermal stratification due to short-wave solar heating from above inhibits mixing, resulting in oxygen stratification and accumulation of contaminants and nutrients - conditions that have been found to cause long-term damage to the ecosystems. Reduced flow rates can also lead to acute damage events such as cyanobacterial outbreaks and mass fish kill
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Murray-Darling River"

1

Hammer, Chris. The river: A journey through the Murray-Darling Basin. Carlton, Vic: Melbourne University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cry me a river: One man's journey down the Murray Darling with a kayak on wheels. Mullumbimby, N.S.W: Ebono Institute, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Posselt, Steve. Cry me a river: One man's journey down the Murray Darling with a kayak on wheels. Mullumbimby, N.S.W: Ebono Institute, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parsons, Ronald H. Ships of the inland rivers: An outline history and details of all known paddle ships, barges and other vessels trading on the Murray-Darling system. Gumeracha, S.A: Gould Books, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hart, Barry, Nick Bond, Neil Byron, Carmel Pollino, and Michael Stewardson. Murray-Darling River System, Australia. Elsevier, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Murray-Darling River System, Australia. Elsevier, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saintilan, Neil, and Ian Overton, eds. Ecosystem Response Modelling in the Murray-Darling Basin. CSIRO Publishing, 2010. http://dx.doi.org/10.1071/9780643100213.

Full text
Abstract:
Ecosystem Response Modelling in the Murray-Darling Basin provides an overview of the status of science in support of water management in Australia’s largest and most economically important river catchment, and brings together the leading ecologists working in the rivers and wetlands of the Basin. It introduces the issues in ecosystem response modelling and how this area of science can support environmental watering decisions.&#x0D; The declining ecological condition of the internationally significant wetlands of the Murray-Darling Basin has been a prominent issue in Australia for many years. S
APA, Harvard, Vancouver, ISO, and other styles
8

Simons, Margaret. Cry Me a River: The Tragedy of the Murray-Darling Basin. Black Inc., 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Anjali, Bhat, and World Bank, eds. Institutional and policy analysis of river basin management: The Murray Darling River Basin, Australia. [Washington, D.C: World Bank, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bhat, Anjali, William Blomquist, Ariel Dinar, and Brian Haisman. Institutional and Policy Analysis of River Basin Management: The Murray Darling River Basin, Australia. The World Bank, 2005. http://dx.doi.org/10.1596/1813-9450-3527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Murray-Darling River"

1

Pittock, Jamie. "Murray–Darling River Basin (Australia)." In The Wetland Book, 1–11. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6173-5_102-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pittock, Jamie. "Murray-Darling River Basin (Australia)." In The Wetland Book, 1887–96. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-4001-3_102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walker, K. F., R. J. Shiel, and P. L. Cadwallader. "The Murray-Darling River system." In The Ecology of River Systems, 631–94. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-017-3290-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thomas, Rachael F., and Joanne F. Ocock. "Macquarie Marshes: Murray-Darling River Basin (Australia)." In The Wetland Book, 1–12. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6173-5_209-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gell, Peter. "The Coorong: Murray-Darling River Basin (Australia)." In The Wetland Book, 1–11. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-6173-5_210-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thomas, Rachael F., and Joanne F. Ocock. "Macquarie Marshes: Murray-Darling River Basin (Australia)." In The Wetland Book, 1897–908. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-4001-3_209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gell, Peter. "The Coorong: Murray-Darling River Basin (Australia)." In The Wetland Book, 1909–19. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-4001-3_210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Overton, Ian C., and Tanya M. Doody. "The River Murray-Darling Basin: Ecosystem Response to Drought and Climate Change." In Drought in Arid and Semi-Arid Regions, 217–34. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6636-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brears, Robert C. "The Green Economy and the Water-Energy-Food Nexus in the Murray-Darling River Basin." In The Green Economy and the Water-Energy-Food Nexus, 311–47. London: Palgrave Macmillan UK, 2017. http://dx.doi.org/10.1057/978-1-137-58365-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carmody, Emma. "The Unwinding of Water Reform in the Murray-Darling Basin: A Cautionary Tale for Transboundary River Systems." In Reforming Water Law and Governance, 35–55. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8977-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Murray-Darling River"

1

Marohasy, J., and J. Abbot. "Deconstructing the native fish strategy for Australia’s Murray Darling catchment." In RIVER BASIN MANAGEMENT 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/rbm130281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Doody, T., and I. Overton. "Environmental management of riparian tree health in the Murray-Darling Basin, Australia." In RIVER BASIN MANAGEMENT 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/rm090181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abbot, J., and J. Marohasy. "Forecasting of monthly rainfall in the Murray Darling Basin, Australia: Miles as a case study." In RIVER BASIN MANAGEMENT 2015. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/rm150141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Jianqin, Yaowu Ren, and Liu Jie. "Research on Water Management Institution Comparison between the Yellow River Basin and Murray-Darling Basin in Australia." In 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM). IEEE, 2011. http://dx.doi.org/10.1109/cdciem.2011.158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Yu. "From decentralized autonomy to central governance: case of Murray-Darling River Basin and its implication for the governance of Tai Lake Basin." In 2009 International Conference on Management Science and Engineering (ICMSE). IEEE, 2009. http://dx.doi.org/10.1109/icmse.2009.5317664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!