Academic literature on the topic 'Muscle-brain axis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Muscle-brain axis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Muscle-brain axis"
Sikiric, Predrag, Slaven Gojkovic, Ivan Krezic, Ivan Maria Smoday, Luka Kalogjera, Helena Zizek, Katarina Oroz, et al. "Stable Gastric Pentadecapeptide BPC 157 May Recover Brain–Gut Axis and Gut–Brain Axis Function." Pharmaceuticals 16, no. 5 (April 30, 2023): 676. http://dx.doi.org/10.3390/ph16050676.
Full textSanjay Kalra, Saurabh Arora, and Nitin Kapoor. "The Mood-Muscle Meta Bridge (Brain Muscle Axis)." Journal of the Pakistan Medical Association 74, no. 4 (February 11, 2024): 589–90. http://dx.doi.org/10.47391/jpma.24-16.
Full textBurtscher, Johannes, Grégoire P. Millet, Nicolas Place, Bengt Kayser, and Nadège Zanou. "The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection." International Journal of Molecular Sciences 22, no. 12 (June 17, 2021): 6479. http://dx.doi.org/10.3390/ijms22126479.
Full textArosio, Beatrice, Riccardo Calvani, Evelyn Ferri, Hélio José Coelho-Junior, Angelica Carandina, Federica Campanelli, Veronica Ghiglieri, Emanuele Marzetti, and Anna Picca. "Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle–Brain Axis." Nutrients 15, no. 8 (April 12, 2023): 1853. http://dx.doi.org/10.3390/nu15081853.
Full textPrzewłócka, Katarzyna, Daria Korewo-Labelle, Paweł Berezka, Mateusz Jakub Karnia, and Jan Jacek Kaczor. "Current Aspects of Selected Factors to Modulate Brain Health and Sports Performance in Athletes." Nutrients 16, no. 12 (June 12, 2024): 1842. http://dx.doi.org/10.3390/nu16121842.
Full textSaponaro, Federica, Andrea Bertolini, Riccardo Baragatti, Leonardo Galfo, Grazia Chiellini, Alessandro Saba, and Giuseppina D’Urso. "Myokines and Microbiota: New Perspectives in the Endocrine Muscle–Gut Axis." Nutrients 16, no. 23 (November 25, 2024): 4032. http://dx.doi.org/10.3390/nu16234032.
Full textLiu, Tingting, Haojie Wu, Jingwen Li, Chaoyang Zhu, and Jianshe Wei. "Unraveling the Bone–Brain Axis: A New Frontier in Parkinson’s Disease Research." International Journal of Molecular Sciences 25, no. 23 (November 29, 2024): 12842. http://dx.doi.org/10.3390/ijms252312842.
Full textCutuli, Debora, Davide Decandia, Giacomo Giacovazzo, and Roberto Coccurello. "Physical Exercise as Disease-Modifying Alternative against Alzheimer’s Disease: A Gut–Muscle–Brain Partnership." International Journal of Molecular Sciences 24, no. 19 (September 28, 2023): 14686. http://dx.doi.org/10.3390/ijms241914686.
Full textManti, Sara, Federica Xerra, Giulia Spoto, Ambra Butera, Eloisa Gitto, Gabriella Di Rosa, and Antonio Gennaro Nicotera. "Neurotrophins: Expression of Brain–Lung Axis Development." International Journal of Molecular Sciences 24, no. 8 (April 11, 2023): 7089. http://dx.doi.org/10.3390/ijms24087089.
Full textIgual Gil, Carla, Bethany M. Coull, Wenke Jonas, Rachel N. Lippert, Susanne Klaus, and Mario Ost. "Mitochondrial stress-induced GFRAL signaling controls diurnal food intake and anxiety-like behavior." Life Science Alliance 5, no. 11 (September 6, 2022): e202201495. http://dx.doi.org/10.26508/lsa.202201495.
Full textDissertations / Theses on the topic "Muscle-brain axis"
Cao, Jingxian. "Brain-Derived Neurotrophic Factor (BDNF) as a diagnostic and prognostic biomarker in anorexia nervosa." Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5290.
Full textAnorexia nervosa (AN) is a multifaceted eating disorder marked by severe caloric restriction, extreme weight loss, and distorted body image. This thesis investigates the role of brain-derived neurotrophic factor (BDNF) in AN through the lens of neurobiological, metabolic, and psychological factors. Using a chronic animal model, the research examines how BDNF signaling intersects with reward and cognitive circuits, as well as its implications for the muscle-brain axis and the role of other neurotrophins in AN. Chapter 1 delves into the neurobiological and metabolic dimensions of AN. It focuses on how BDNF signaling dynamics are affected by chronic restriction, refeeding, and binge behaviors, specifically within brain structures associated with reward and cognitive circuits. Utilizing a chronic animal model, this chapter explores alterations in BDNF signaling across key brain regions, including the dorsal striatum (DS), prefrontal cortex (PFC), nucleus accumbens (NAc), and ventral tegmental area (VTA). It examines how these changes impact reward processing, cognitive functions, and overall metabolic homeostasis in the context of AN. The chapter also addresses the broader implications of these findings for understanding the neurobiological underpinnings of the disorder and its treatment. Chapter 2 investigates the dynamics of BDNF signaling and its relationship with genes implicated in the muscle-brain axis. This chapter examines how BDNF interacts with both rapid and slow muscle fibers and explores the connections between muscle and key brain regions, including the hippocampus and hypothalamus. The research highlights how these interactions influence neurobiological and metabolic processes in AN. By elucidating the role of BDNF in muscle-brain communication, this chapter contributes to a deeper understanding of the physiological mechanisms underlying AN and their potential implications for treatment strategies. Chapter 3 explores the role of other neurotrophins, specifically NTF3, NTF5, and NGF, in brain regions associated with AN. This chapter investigates how these neurotrophins are regulated and their impact on AN-related brain structures. By examining the expression and function of NTF3, NTF5, and NGF, the research provides insights into their contributions to the neurobiological processes underlying AN
Books on the topic "Muscle-brain axis"
Straub, Rainer H. Neuroendocrine system. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0022.
Full textStraub, Rainer H. Neuroendocrine system. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199642489.003.0022_update_002.
Full textStraub, Rainer H. Neuroendocrine system. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199642489.003.0022_update_003.
Full textKleiner, Susan M., and Maggie Greenwood-Robinson. The New Power Eating. Human Kinetics, 2019. http://dx.doi.org/10.5040/9781718214101.
Full textBook chapters on the topic "Muscle-brain axis"
Daneshzand, Mohammad, Lucia I. Navarro de Lara, Qinglei Meng, Sergey Makarov, Işıl Uluç, Jyrki Ahveninen, Tommi Raij, and Aapo Nummenmaa. "Experimental Verification of a Computational Real-Time Neuronavigation System for Multichannel Transcranial Magnetic Stimulation." In Brain and Human Body Modelling 2021, 61–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15451-5_4.
Full textSchlegel, Petr, Michal Novotny, Blanka Klimova, and Martin Valis. "“Muscle-Gut-Brain Axis”: Can Physical Activity Help Patients with Alzheimer’s Disease Due to Microbiome Modulation?" In Advances in Alzheimer’s Disease. IOS Press, 2022. http://dx.doi.org/10.3233/aiad220006.
Full textStraub, Rainer H. "Neuroendocrine system and chronic autoimmune rheumatic diseases." In Oxford Textbook of Rheumatology, 162–71. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0022_update_004.
Full textA. Ochola, Lucy, and Eric M. Guantai. "Prevention of Hyperglycemia." In Metformin - Pharmacology and Drug Interactions. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99342.
Full textAtkinson, Martin E. "Introduction and surface anatomy." In Anatomy for Dental Students. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199234462.003.0029.
Full textConference papers on the topic "Muscle-brain axis"
Pasha, Y., S. Taylor-Robinson, R. Leech, I. Ribeiro, N. Cook, M. Crossey, and H. Marcinkowski. "PWE-091 L-ornithine L-aspartate in minimal hepatic encephalopathy: possible effects on the brain-muscle axis?" In British Society of Gastroenterology, Annual General Meeting, 4–7 June 2018, Abstracts. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2018. http://dx.doi.org/10.1136/gutjnl-2018-bsgabstracts.233.
Full textReports on the topic "Muscle-brain axis"
Funkenstein, Bruria, and Shaojun (Jim) Du. Interactions Between the GH-IGF axis and Myostatin in Regulating Muscle Growth in Sparus aurata. United States Department of Agriculture, March 2009. http://dx.doi.org/10.32747/2009.7696530.bard.
Full textFunkenstein, Bruria, and Cunming Duan. GH-IGF Axis in Sparus aurata: Possible Applications to Genetic Selection. United States Department of Agriculture, November 2000. http://dx.doi.org/10.32747/2000.7580665.bard.
Full text