Academic literature on the topic 'Muscular atrophy – Pathogenesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Muscular atrophy – Pathogenesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Muscular atrophy – Pathogenesis"
Ivanova, E. O., E. Yu Fedotov, and S. N. Illarioshkin. "Spinal and bulbar muscular atrophy as a multisystem disease with motor neuron and muscle involvement: literature review and a case report." Neuromuscular Diseases 10, no. 1 (June 3, 2020): 81–87. http://dx.doi.org/10.17650/2222-8721-2020-10-1-81-87.
Full textMerry, Diane E. "Molecular pathogenesis of spinal and bulbar muscular atrophy." Brain Research Bulletin 56, no. 3-4 (November 2001): 203–7. http://dx.doi.org/10.1016/s0361-9230(01)00594-9.
Full textKöstel, A. S., G. Bora-Tatar, and H. Erdem-Yurter. "Spinal muscular atrophy: oxidative stress modulating the pathogenesis?" New Biotechnology 27 (April 2010): S58. http://dx.doi.org/10.1016/j.nbt.2010.01.169.
Full textSimic, Goran. "Pathogenesis of proximal autosomal recessive spinal muscular atrophy." Acta Neuropathologica 116, no. 3 (July 16, 2008): 223–34. http://dx.doi.org/10.1007/s00401-008-0411-1.
Full textLefebvre, S., and C. Sarret. "Pathogenesis and therapeutic targets in spinal muscular atrophy (SMA)." Archives de Pédiatrie 27, no. 7 (December 2020): 7S3–7S8. http://dx.doi.org/10.1016/s0929-693x(20)30269-4.
Full textGrunseich, C., C. Rinaldi, and KH Fischbeck. "Spinal and bulbar muscular atrophy: pathogenesis and clinical management." Oral Diseases 20, no. 1 (May 9, 2013): 6–9. http://dx.doi.org/10.1111/odi.12121.
Full textLefebvre, Suzie, Deborah Bartholdi, Pierre Miniou, Arnold Munnich, and Judith Melki. "1-02-11 Spinal muscular atrophy: Etiology and pathogenesis." Journal of the Neurological Sciences 150 (September 1997): S6. http://dx.doi.org/10.1016/s0022-510x(97)84846-0.
Full textIto, Yasushi, Noriyuki Shibata, Kayoko Saito, Makio Kobayashi, and Makiko Osawa. "New insights into the pathogenesis of spinal muscular atrophy." Brain and Development 33, no. 4 (April 2011): 321–31. http://dx.doi.org/10.1016/j.braindev.2010.06.009.
Full textGavrichenko, A. V., A. I. Kulyakhtin, A. A. Yakovlev, M. G. Sokolova, A. G. Smochilin, V. S. Fedorova, and R. A. Gapeshin. "Spinal and bulbar muscular atrophy (Kennedy’s disease): case description." Scientific Notes of the Pavlov University 26, no. 3 (February 4, 2020): 86–93. http://dx.doi.org/10.24884/1607-4181-2019-26-3-86-93.
Full textKolisnyk, Dmitry, and Natalia Turchyna. "Spinal muscular atrophy – problems of pathogenesis and choice of treatment." ScienceRise: Medical Science, no. 7 (15) (July 31, 2017): 15–20. http://dx.doi.org/10.15587/2519-4798.2017.107795.
Full textDissertations / Theses on the topic "Muscular atrophy – Pathogenesis"
Mutsaers, Chantal. "Mechanisms of disease pathogenesis in Spinal Muscular Atrophy." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9774.
Full textTalbot, Kevin. "The molecular pathogenesis of autosomal recessive spinal muscular atrophy." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300137.
Full textDe, Tourreil Sunita. "Novel androgen receptor-protein interactions as possible contributors to the pathogenesis of spinal and bulbar muscular atrophy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0004/MQ44154.pdf.
Full textShorrock, Hannah Karen. "Understanding the role of UBA1 in the pathogenesis of spinal muscular atrophy." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/29595.
Full textPanet-Raymond, Valerie. "Molecular analysis of normal and mutant forms of the androgen receptor and their interactive properties." Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=30721.
Full textIn the first paper, we examine the role of an AR mutation in causing mild androgen insensitivity syndrome. We found that this mutation conferred reduced transactivation by AR through impaired interactions with the AR coactivator, TIF2, and impaired homodimerization.
In the second paper, we investigate the role of the AR polyGln expansion mutation in SBMA pathogenesis. Recent evidence has implicated proteolytic degradation of polyGln-expanded proteins and their subsequent intracellular aggregation in polyGn-expanded disease pathogenesis. We examined the role and composition of aggregates using fluorescently-tagged AR and found that proteolysis need not be a prerequisite for aggregation and that aggregation is not necessary for poly-Gln-induced cellular toxicity.
Finally, we characterize the novel heterodimerization of AR and ERalpha. We determined that this direct interaction has functional implications for the transactivational properties of both receptors.
Beauchemin, Annie. "Cytochrome c oxidase subunit Vb interacts with human androgen receptor : a potential mechanism for neuronotoxicity in spinobulbar muscular atrophy." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33377.
Full textOur goal was to confirm and further characterize the interaction between hAR and cytochrome c oxidase subunit Vb (COXVb), a nuclear-encoded mitochondrial protein. We had previously isolated COXVb as an AR-interacting protein in a yeast two-hybrid search to identify candidates that interact with normal and polyGln-expanded AR. Using the mammalian two-hybrid system, we confirm that COXVb interacts with normal and mutant AR and demonstrate that the COXVb-normal AR interaction is stimulated by heat shock protein 70 (Hsp70). Also, BFP-tagged AR specifically co-localizes with cytoplasmic aggregates formed by GFP-labelled polyGln-expanded AR in androgen-treated cells.
Mitochondrial dysfunction may precede neuropathological findings in polyGln-expanded disorders and may thus represent an early event in neuronotoxicity. Interaction of COXVb and hAR, with subsequent sequestration of COXVb, may provide a mechanism for putative mitochondrial dysfunction in SBMA.
Szunyogová, Eva. "Understanding the pathogenesis of spinal muscular atrophy by determining the role of survival motor neuron protein in early development." Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=237002.
Full textBowerman, Melissa. "Identification of Novel Roles for the Survival Motor Neuron (Smn) Protein: Implications on Spinal Muscular Atrophy (SMA) Pathogenesis and Therapy." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22727.
Full textArumugam, Saravanan. "A Study on the Role of NF-kB Signaling Pathway Members in Regulating Survival Motor Neuron Protein level and in the Pathogenesis of Spinal Muscular Atrophy." Doctoral thesis, Universitat de Lleida, 2017. http://hdl.handle.net/10803/400607.
Full textLa Atrofia Muscular Espinal (SMA) es un trastorno neuromuscular causado por la mutación o deleción del gen SMN1, el cual codifica para la proteína que se expresa ubicuamente SMN (del inglés Survival Motor Neuron). La AME se caracteriza por atrofia muscular y degeneración de las motoneuronas de la médula espinal (MN). Los eventos moleculares detrás de la vulnerabilidad selectiva de las MN con niveles bajos de la proteína SMN se desconocen. La vía del factor nuclear-kB (NF-kB) ha sido implicada recientemente en la supervivencia de las MNs, así como en trastornos neurodegenerativos. Los factores de transcripción NF-kB regulan genes relacionados con varios procesos celulares. En este trabajo hemos analizado la capacidad de los miembros de la vía del NF-κB de regular la proteína SMN y su posible rol en la patogénesis del AME. La activación de la vía del NF-κB está asociada a la fosforilación de IKKα / IKKβ y la translocación nuclear del factor RelA/ p50 (vía canónica) o la fosforilación del homodímero de IKKα y la translocación nuclear del factor RelB / p52 (vía no canónica). Hemos realizado la inhibición de diferentes miembros de estas vías (tanto la canónica como la no canónica) usando la metodología de shRNA, y la transducción mediante el uso de lentivirus, en cultivos primarios de MN embrionarias aisladas de ratón. Hemos demostrado que una reducción selectiva del factor RelA provoca una reducción de la proteína SMN, mientras que una reducción del factor RelB no tiene ningún efecto en los niveles de la SMN. En nuestro modelo celular, la reducción de las proteínas IKKα o IKKβ mostró efectos opuestos sobre la proteína Smn. Mediante la técnica de PCR, hemos observado que la transducción de las MN con el shIKKβ provoca un aumento de los niveles de mRNA de SMN, mientras que la transducción con el shIKKα o el shRelA no cambian los niveles de RNA de SMN. El doble knockdown de IKKα e IKKβ en las MN muestra una reducción de SMN. El knockdown selectivo de IKKα o IKKβ presenta una reducción de la fosforilación del RelA, esta fosforilación permite la liberación de su inhibidor en el citosol y facilita la translocación nuclear. La proteína CREB, uno de los factores de transcripción conocidos para SMN, disminuye con la transducción de las MN con shIKKα o con IKKα e IKKβ a la vez, así como con shRelA. Ahora bien, las motoneuronas transducidas con shIKKβ muestran una reducción de la fosforilación de RelA pero un aumento de los niveles de la proteína CREB. La transducción de las MN con el shCREB disminuyó los niveles de la proteína SMN apoyando el papel regulador de CREB sobre SMN.
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutation or loss in SMN1 gene, encoding the ubiquitously expressed Survival Motor Neuron (SMN) protein. SMA is characterized by muscle atrophy, and spinal cord motoneurons (MNs) degeneration. The molecular events behind the selective vulnerability of these MNs to low level of SMN protein are still unknown. The nuclear factor-κB (NF-κB) pathway has recently been emerged having a vital role related to MN survival, and in neurodegenerative disorders. The NF-κB transcription factors regulate genes related to several cellular processes. In the present work, we have analyzed the ability of NF-κB pathway members to regulate Smn and their possible role in SMA pathogenesis. The NF-κB pathway activation is associated with IKKα/IKKβ phosphorylation, and RelA/p50 nuclear translocation (canonical) or IKKα homodimer phosphorylation, and RelB/p52 nuclear translocation (non-canonical). The inhibition of different protein members of both canonical, and non-canonical pathways using shRNA lentiviral transduction methodology in a primary culture of isolated embryonic spinal cord MNs reveals that the selective reduction of RelA induced the reduction of Smn whereas RelB protein reduction had no effect on Smn. In our culture system, reduction of IKKα or IKKβ proteins showed opposite effects on Smn. RT-PCR studies indicate that the shIKKβ-transduced MNs showed increased Smn mRNA levels, whereas it was not observed changes in Smn mRNA in the case of shIKKα- or shRelA-transduced MNs. The double knock-down of IKKα and IKKβ in MNs showed Smn reduction. The knockdown of IKKα and/or IKKβ showed a decrease in RelA phosphorylation, where the phosphorylation of RelA enable RelA/p50 release from its inhibitor in the cytoplasm and facilitates their nuclear translocation. Also, the CREB, one of the transcription factors for Smn was decreased in shIKKα, or in shIKKα- plus IKKβ-transduced MNs, and as well as in shRelA-transduced MNs. But, the shIKKβ MNs exhibited reduced p-RelA but increased CREB level. The shCREB-transduced MNs decreased Smn level, authenticating the regulatory role of CREB on Smn. We observed a reduction in IKKα, IKKβ and p-RelA levels in shSmn-tranduced MNs, and in MNs from a severe type SMA mouse model. Our results show the ability of NF-κB canonical pathway to regulate Smn level and, conversely, this pathway is also altered in Smn-deficient MNs. Together, these observations suggest that the NF-κB pathway has a role in SMA pathogenesis, and could be a therapeutic target for SMA.
Books on the topic "Muscular atrophy – Pathogenesis"
Arnold, W. David, and Arthur H. M. Burghes. In Vitro and In Vivo Models of Spinal Muscular Atrophy. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0035.
Full textBook chapters on the topic "Muscular atrophy – Pathogenesis"
Deguise, M. O., T. N. Patitucci, A. D. Ebert, C. L. Lorson, and R. Kothary. "Contributions of Different Cell Types to Spinal Muscular Atrophy Pathogenesis." In Spinal Muscular Atrophy, 167–81. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803685-3.00010-0.
Full textSo, B. R., Z. Zhang, and G. Dreyfuss. "The Function of Survival Motor Neuron Complex and Its Role in Spinal Muscular Atrophy Pathogenesis." In Spinal Muscular Atrophy, 99–111. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803685-3.00006-9.
Full textSuka Aryana, IGP. "Clinical Relations of Sarcopenia." In Background and Management of Muscular Atrophy. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.93408.
Full text