Dissertations / Theses on the topic 'Musical Instrument Recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 dissertations / theses for your research on the topic 'Musical Instrument Recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Malheiro, Frederico Alberto Santos de Carteado. "Automatic musical instrument recognition for multimedia indexing." Master's thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/6124.
Full textThe subject of automatic indexing of multimedia has been a target of numerous discussion and study. This interest is due to the exponential growth of multimedia content and the subsequent need to create methods that automatically catalogue this data. To fulfil this idea, several projects and areas of study have emerged. The most relevant of these are the MPEG-7 standard, which defines a standardized system for the representation and automatic extraction of information present in the content, and Music Information Retrieval (MIR), which gathers several paradigms and areas of study relating to music. The main approach to this indexing problem relies on analysing data to obtain and identify descriptors that can help define what we intend to recognize (as, for instance,musical instruments, voice, facial expressions, and so on), this then provides us with information we can use to index the data. This dissertation will focus on audio indexing in music, specifically regarding the recognition of musical instruments from recorded musical notes. Moreover, the developed system and techniques will also be tested for the recognition of ambient sounds (such as the sound of running water, cars driving by, and so on). Our approach will use non-negative matrix factorization to extract features from various types of sounds, these will then be used to train a classification algorithm that will be then capable of identifying new sounds.
Cros, Vila Laura. "Musical Instrument Recognition using the Scattering Transform." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283597.
Full textTack vare den tekniska utvecklingen i nätverk och signalbehandling kan vi få tillgång till en stor mängd musikaliskt innehåll. For att användare ska söka bland dessa stora kataloger måste de ha tillgång till musikrelaterad information utöver den rena digitala musikfilen. Eftersom den manuella annotationsprocessen skulle vara för dyr måste den automatiseras. En meningsfull beskrivning av musikstyckena kräver införlivande av information om instrumenten som finns i dem. I det här arbetet presenterar vi en metod for igenkänning av musikinstrument med hjälp av den scattering transform, som är en transformation som ger en översattnings-invariant representation, som är stabil för deformationer och bevarar högfrekvensinformation för klassicering. Vi studerar igenkännande i både enskilda instrument- och flera instrumentförhållanden. Vi jämför modellerna med den scattering transforms prestanda med de som använder andra standardfunktioner. Vi undersöker också effekterna av mangden traningsdata. Experimenten som utförs visar inte en tydlig överlagsen prestanda for någon av representationsföreställningarna jämfört med den andra. Fortfarande är den scattering transform värd att ta hänsyn till när man väljer ett sätt att extrahera funktioner om vi vill kunna karakterisera icke-stationära signalstrukturer.
Fuhrmann, Ferdinand. "Automatic musical instrument recognition from polyphonic music audio signals." Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/81328.
Full textIn this dissertation we present a method for the automatic recognition of musical instruments from music audio signal. Unlike most related approaches, our specific conception mostly avoids laboratory constraints on the method’s algorithmic design, its input data, or the targeted application context. To account for the complex nature of the input signal, we limit the basic process in the processing chain to the recognition of a single predominant musical instrument from a short audio fragment. We thereby prevent resolving the mixture and rather predict one source from the timbre of the sound. To compensate for this restriction we further incorporate information derived from a hierarchical music analysis; we first incorporate musical context to extract instrumental labels from the time-varying model decisions. Second, the method incorporates information regarding the piece’s formal aspects into the process. Finally, we include information from the collection level by exploiting associations between musical genres and instrumentations.
Sandrock, Trudie. "Multi-label feature selection with application to musical instrument recognition." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019/11071.
Full textENGLISH ABSTRACT: An area of data mining and statistics that is currently receiving considerable attention is the field of multi-label learning. Problems in this field are concerned with scenarios where each data case can be associated with a set of labels instead of only one. In this thesis, we review the field of multi-label learning and discuss the lack of suitable benchmark data available for evaluating multi-label algorithms. We propose a technique for simulating multi-label data, which allows good control over different data characteristics and which could be useful for conducting comparative studies in the multi-label field. We also discuss the explosion in data in recent years, and highlight the need for some form of dimension reduction in order to alleviate some of the challenges presented by working with large datasets. Feature (or variable) selection is one way of achieving dimension reduction, and after a brief discussion of different feature selection techniques, we propose a new technique for feature selection in a multi-label context, based on the concept of independent probes. This technique is empirically evaluated by using simulated multi-label data and it is shown to achieve classification accuracy with a reduced set of features similar to that achieved with a full set of features. The proposed technique for feature selection is then also applied to the field of music information retrieval (MIR), specifically the problem of musical instrument recognition. An overview of the field of MIR is given, with particular emphasis on the instrument recognition problem. The particular goal of (polyphonic) musical instrument recognition is to automatically identify the instruments playing simultaneously in an audio clip, which is not a simple task. We specifically consider the case of duets – in other words, where two instruments are playing simultaneously – and approach the problem as a multi-label classification one. In our empirical study, we illustrate the complexity of musical instrument data and again show that our proposed feature selection technique is effective in identifying relevant features and thereby reducing the complexity of the dataset without negatively impacting on performance.
AFRIKAANSE OPSOMMING: ‘n Area van dataontginning en statistiek wat tans baie aandag ontvang, is die veld van multi-etiket leerteorie. Probleme in hierdie veld beskou scenarios waar elke datageval met ‘n stel etikette geassosieer kan word, instede van slegs een. In hierdie skripsie gee ons ‘n oorsig oor die veld van multi-etiket leerteorie en bespreek die gebrek aan geskikte standaard datastelle beskikbaar vir die evaluering van multi-etiket algoritmes. Ons stel ‘n tegniek vir die simulasie van multi-etiket data voor, wat goeie kontrole oor verskillende data eienskappe bied en wat nuttig kan wees om vergelykende studies in die multi-etiket veld uit te voer. Ons bespreek ook die onlangse ontploffing in data, en beklemtoon die behoefte aan ‘n vorm van dimensie reduksie om sommige van die uitdagings wat deur sulke groot datastelle gestel word die hoof te bied. Veranderlike seleksie is een manier van dimensie reduksie, en na ‘n vlugtige bespreking van verskillende veranderlike seleksie tegnieke, stel ons ‘n nuwe tegniek vir veranderlike seleksie in ‘n multi-etiket konteks voor, gebaseer op die konsep van onafhanklike soek-veranderlikes. Hierdie tegniek word empiries ge-evalueer deur die gebruik van gesimuleerde multi-etiket data en daar word gewys dat dieselfde klassifikasie akkuraatheid behaal kan word met ‘n verminderde stel veranderlikes as met die volle stel veranderlikes. Die voorgestelde tegniek vir veranderlike seleksie word ook toegepas in die veld van musiek dataontginning, spesifiek die probleem van die herkenning van musiekinstrumente. ‘n Oorsig van die musiek dataontginning veld word gegee, met spesifieke klem op die herkenning van musiekinstrumente. Die spesifieke doel van (polifoniese) musiekinstrument-herkenning is om instrumente te identifiseer wat saam in ‘n oudiosnit speel. Ons oorweeg spesifiek die geval van duette – met ander woorde, waar twee instrumente saam speel – en hanteer die probleem as ‘n multi-etiket klassifikasie een. In ons empiriese studie illustreer ons die kompleksiteit van musiekinstrumentdata en wys weereens dat ons voorgestelde veranderlike seleksie tegniek effektief daarin slaag om relevante veranderlikes te identifiseer en sodoende die kompleksiteit van die datastel te verminder sonder ‘n negatiewe impak op klassifikasie akkuraatheid.
Cox, Bethany G. "The Effects of Musical Instrument Gender on Spoken Word Recognition." Cleveland State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=csu1624382611571213.
Full textKitahara, Tetsuro. "Computational musical instrument recognition and its application to content-based music information retrieval." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/135955.
Full textFreddi, Jacopo. "Metodi di Machine Learning applicati alla classificazione degli strumenti musicali." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13225/.
Full textNyströmer, Carl. "Musical Instrument Activity Detection using Self-Supervised Learning and Domain Adaptation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280810.
Full textI och med de ständigt växande media- och musikkatalogerna krävs verktyg för att söka och navigera i dessa. För mer komplexa sökförfrågningar så behövs det metadata, men att manuellt annotera de enorma mängderna av ny data är omöjligt. I denna uppsats undersöks automatisk annotering utav instrumentsaktivitet inom musik, med ett fokus på bristen av annoterad data för modellerna för instrumentaktivitetsigenkänning. Två metoder för att komma runt bristen på data föreslås och undersöks. Den första metoden bygger på självövervakad inlärning baserad på automatisk annotering och slumpartad mixning av olika instrumentspår. Den andra metoden använder domänadaption genom att träna modeller på samplade MIDI-filer för detektering av instrument i inspelad musik. Metoden med självövervakning gav bättre resultat än baseline och pekar på att djupinlärningsmodeller kan lära sig instrumentigenkänning trots att ljudmixarna saknar musikalisk struktur. Domänadaptionsmodellerna som endast var tränade på samplad MIDI-data presterade sämre än baseline, men att använda MIDI-data tillsammans med data från inspelad musik gav förbättrade resultat. En hybridmodell som kombinerade både självövervakad inlärning och domänadaption genom att använda både samplad MIDI-data och inspelad musik gav de bästa resultaten totalt.
Kaminskyj, Ian. "Automatic recognition of musical instruments using isolated monophonic sounds." Monash University, Dept. of Electrical and Computer Systems Engineering, 2004. http://arrow.monash.edu.au/hdl/1959.1/5212.
Full textCAROTA, MASSIMO. "Neural network approach to problems of static/dynamic classification." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/580.
Full textHUANG, PAI-HSIANG, and 黃百祥. "Musical instrument recognition using wavelet transform feature." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/85964105466324474051.
Full text中華大學
資訊工程學系碩士班
102
In this paper, wavelet transform based feature are extracted for automatic musical instrument recognition. The wavelet transform methods are proposed for feature extraction. First, one-dimension wavelet transform is used to decompose an imput signal into several subbands represented different frequency ranges. Then, the average energy and energy standard deviation are extracted from each subband as one-dimension wavelet transform features. The second method transforms the input music signal into a spectrogram and viewing it as a two-dimension image. Two-dimension wavelet transform is then used to decompose the spectrogram image into different subbands. The average energy and energy standard deviation are then extracted from each subbands and regarded as two-dimension wavelet transform features. Finally, nearest neighbor classification is used to recognize different musical instrumental sounds. The Euclidean distance is employed to calculate the distance between the testing data and each training data. In the experiments, the Iowa database and RWC database in which eight musical instruments including alto saxphone, bass, cello, flute, oboe, trumpet, viola, and violin are used to evaluated the recognition results. One-dimension wavelet transform features achieve the best recognition accuracy of 90% for Iowa database, and the best recognition accuracy of 83.16% for RWC database. In addition, We combine one-dimension wavelet transform features with two-dimension wavelet transform features. The best recognition accuracy of 98.31% for Iowa database, and the best recognition accuracy of 86.64% for RWC database.
Cheng, Xin-Hung, and 陳昕宏. "Automatic musical instrument recognition using modulation spectral analysis." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/45379565388568585057.
Full text中華大學
資訊工程學系碩士班
102
In this paper, modulation spectral analysis is applied for automatic musical instruments recognition. First we apply modulation spectral analysis on subband energy, subband average energy, subband energy standard deviation, extended subband energy, extended subband average energy, and extended subband energy standard deviation to extract variant modulation spectral features, Two-dimensional mel frequency cepstral coefficients is also employed to extract features from the musical signals. Linear discriminant analysis is exploited to increase the recognition accuracy at a lower dimensional feature vector space. Finally, the Eucidean distance is applied to estimate the distance between test note and each train note. In our experiments, eight instrumental classes including alto saxphone, bass, cello, flute, oboe, trumpet, violin, and viola were used to evaluate the performance. The proposed modulation spectral analysis of extended subband energy standard deviation feature achieve the highest recognition accuracy of 92.79%.
CHEN, SHU-HUA, and 陳淑華. "Extraction of Discrete Wavelet Packet Transform Features for Musical Instrument Recognition." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/d4gwck.
Full text中華大學
資訊工程學系碩士班
103
In this paper, analysis of music signal using discrete wavelet packet transform (DWPT) is employed for musical instrument recognition. First, one-dimension DWPT is applied to decompose an input music signal into several subbands. Then, discriminative features were extracted from each subband. The features are average subband energy (SE), subband energy standard deviation (SSTD) and temporal subband average energy (TSE). Finally, we used the Euclidean distance to calculate the distance between the feature vector of testing data and each training data for musical instrument classification. In our experiments, eight kinds of musical instruments, including alto saxphone, bass, cello, flute, oboe, trumpet, viola, and violin, were used to evaluate the recognition rate. In the Iowa database, when using five level DWPT and combining SE, SSTD, and TSE, we can achieve the best recognition rate of 95.95%. In the RWC database, when using six level DWPT and combining SE, SSTD, and TSE, we can achieve the best recognition rate of 87.85%.
Krishna, A. G. "Improved GMM-Based Classification Of Music Instrument Sounds." Thesis, 2006. http://hdl.handle.net/2005/435.
Full textRosner, Aldona. "Multi-instrumental automatic recognition of musical genres." Rozprawa doktorska, 2015. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=28312.
Full textRosner, Aldona. "Multi-instrumental automatic recognition of musical genres." Rozprawa doktorska, 2015. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=28312.
Full textMoore, Robert. "Computer recognition of musical instruments : an examination of within class classification." Thesis, 2007. https://vuir.vu.edu.au/1574/.
Full textMoore, Robert. "Computer recognition of musical instruments : an examination of within class classification." 2007. http://eprints.vu.edu.au/1574/1/RobMoore_PhD_thesis.pdf.
Full textCastel-branco, Gonçalo Ferreira Ferrão. "Identificação de Instrumentos Musicais em Música Polifónica." Master's thesis, 2019. http://hdl.handle.net/10316/88140.
Full textA identificação de instrumentos musicais continua um desafio por resolver na área de investigação em música, geralmente referida como Music Information Retreival (MIR). Este problema, fundamental para campos como a pesquisa por áudio, reconhecimento de género musical, recomendação de musica, ou a identificação de plágio, será abordado tendo em conta diversos métodos.A seguinte dissertação de mestrado apresenta um sistema de identificação de instrumentos que tem por base uma pequena parte da base de dados AudioSet com sons de instrumentos e que propõe o reconhecimento de áudio com base em imagens, neste caso espetogramas de mel, que representam o som que se pretende classificar.O OpenMic-2018 (OM18) é uma base de dados (BD) que surge no seguimento do AudioSet e com os mesmos ideais, mas direcionada para 20 classes de instrumentos musicais. Esta base de dados, publicada recentemente, conta ainda com poucos trabalhos que a abordem. Tentar-se-á superar os resultados já apresentados tanto através de abordagens originais como através de abordagens publicadas para o AudioSet. Trabalhos muito recentes utilizam modelos de atenção para classificar os exemplares do AudioSet e revelaram resultados muito positivos, pelo que também serão tidos em conta ao longo do projeto para a BD OM18.No âmbito do presente trabalho foi criada uma nova base de dados, \textbf{PureMic}, que tem por base as duas bases de dados já referenciadas. Esta é uma base de dados cujos exemplares são mais precisos e escolhidos de forma rigorosa, para poder contribuir para o classificador em tempo real e para uma melhoria das etiquetas do OM18, base de dados que ainda tem alguma falta de informação nesse aspeto.A seguinte dissertação faz então um resumo das abordagens a ser consideradas nomeadamente a implementação de redes neuronais convolucionais, muito utilizadas nesta área. Serão utilizadas as três bases de dados já referidas que providenciarão uma grande e suficiente quantidade de dados devidamente identificados.
Musical instruments recognition remains an unsolved challenge in Music Information Retreival (MIR). This problem, wich is fundamental for fields such as audio research, music genre recognition or music recommendation will be addressed with a variety of methods.This Master's dissertation presents an instrument identification system that is based on a small portion of AudioSet dataset with 20 musical instrument classes. This dataset proposes the recognition of audio events based on image inputs wich are log mel spectograms of sound events.OpenMic-2018 (OM18) is a dataset that extends the reach of AudioSet but targeted to only 20 classes of musical instruments. There are several publications arround AudioSet research. Since OpenMic its similar to AudioSet, some methods used in AudioSet will be aplied in OM18.In the context of this work, a new dataset was created, based on the two datasets already referenced. This is a dataset whose audio clips are more accurate and rigorously chosen to be able to contribute to the real-time classifier and to the improvement of OM18 labels.The following dissertation summarizes the approaches to be considered namely the implementation a convolutional neural netwrodk, widely used in this area. AudioSet, OpenMic-2018 and PureMic, will proveide a large and sufficiente amount of properly identified data. As AudioSet and OpenMic are Weakly Labeled Datasets (WLD), PureMic, a Strongly Labeled Dataset (SLD) will contribute to reduce the size of the other datasets but increase the quality of the labels.
Tu, Chiu-Chuan, and 杜秋娟. "Noisy Speech Detection and Musical Instruments Recognition by Wavelet Transform Analysis with Soft Computing Approach." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/48072580981931588785.
Full text國立中興大學
電機工程學系所
101
This thesis applies wavelet features and soft computing-based classifiers to speech detection and musical instruments recognition problems. For speech detection, this thesis uses Haar wavelet energy and entropy (HWEE) as detection features. The Haar wavelet energy (HWE) is derived by using the robust band that shows the most significant difference between speech and nonspeech segments at different noise levels. Similarly, the wavelet energy entropy (WEE) is computed by selecting the two wavelet energy bands of which entropy shows the most significant speech/nonspeech difference. The HWEE features are fed as inputs to a recurrent self-evolving interval type-2 fuzzy neural network (RSEIT2FNN) for classification. The RSEIT2FNN is used because it uses type-2 fuzzy sets, which are more robust to noise than type-1 fuzzy sets. The recurrent structure in the RSEIT2FNN helps to remember the context information of a test frame. The HWEE-based RSEIT2FNN detection was applied to speech detection in different noisy environments with different noise levels. The most critical technology of musical instrument recognition is the extraction of musical instrument features, especially those distinguishing ones. To this end, this thesis proposes the incorporation of HWE and wavelet packet decomposition energy features into traditional audio features to improve recognition rate. For classifier design, this thesis proposes a divide-and-conquer support vector machine (SVM) classification technique. This technique efficiently captures the context information in audio signals with high-dimensional features for recognition improvement. Experimental results on the recognition of ten musical instruments show the effectiveness of the proposed recognition approach.