Journal articles on the topic 'Mutants de p53'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mutants de p53.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, GuoZhen, and Alan R. Fersht. "Propagation of aggregated p53: Cross-reaction and coaggregation vs. seeding." Proceedings of the National Academy of Sciences 112, no. 8 (2015): 2443–48. http://dx.doi.org/10.1073/pnas.1500262112.
Full textRaycroft, L., J. R. Schmidt, K. Yoas, M. M. Hao, and G. Lozano. "Analysis of p53 mutants for transcriptional activity." Molecular and Cellular Biology 11, no. 12 (1991): 6067–74. http://dx.doi.org/10.1128/mcb.11.12.6067.
Full textRaycroft, L., J. R. Schmidt, K. Yoas, M. M. Hao, and G. Lozano. "Analysis of p53 mutants for transcriptional activity." Molecular and Cellular Biology 11, no. 12 (1991): 6067–74. http://dx.doi.org/10.1128/mcb.11.12.6067-6074.1991.
Full textScian, Mariano J., Katherine E. R. Stagliano, Michelle A. E. Anderson та ін. "Tumor-Derived p53 Mutants Induce NF-κB2 Gene Expression". Molecular and Cellular Biology 25, № 22 (2005): 10097–110. http://dx.doi.org/10.1128/mcb.25.22.10097-10110.2005.
Full textOhiro, Yoichi, Anny Usheva, Shinichiro Kobayashi, et al. "Inhibition of Stress-Inducible Kinase Pathways by Tumorigenic Mutant p53." Molecular and Cellular Biology 23, no. 1 (2003): 322–34. http://dx.doi.org/10.1128/mcb.23.1.322-334.2003.
Full textHall, Callum, and Patricia A. J. Muller. "The Diverse Functions of Mutant 53, Its Family Members and Isoforms in Cancer." International Journal of Molecular Sciences 20, no. 24 (2019): 6188. http://dx.doi.org/10.3390/ijms20246188.
Full textRockwell, Nathan, Max Staller, Maria Cannella, Barak Cohen, and Joshua Rubin. "GENE-59. NOT ALL p53 MUTATIONS ARE CREATED EQUAL: A MURINE ASTROCYTE MODEL FOR HIGH-THROUGHPUT FUNCTIONAL ASSESSMENT OF p53 MISSENSE MUTATIONS." Neuro-Oncology 21, Supplement_6 (2019): vi110. http://dx.doi.org/10.1093/neuonc/noz175.461.
Full textShaulian, E., A. Zauberman, D. Ginsberg, and M. Oren. "Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding." Molecular and Cellular Biology 12, no. 12 (1992): 5581–92. http://dx.doi.org/10.1128/mcb.12.12.5581.
Full textShaulian, E., A. Zauberman, D. Ginsberg, and M. Oren. "Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding." Molecular and Cellular Biology 12, no. 12 (1992): 5581–92. http://dx.doi.org/10.1128/mcb.12.12.5581-5592.1992.
Full textMuller, Patricia A. J., Karen H. Vousden, and Jim C. Norman. "p53 and its mutants in tumor cell migration and invasion." Journal of Cell Biology 192, no. 2 (2011): 209–18. http://dx.doi.org/10.1083/jcb.201009059.
Full textGualberto, A., M. L. Hixon, T. S. Finco, N. D. Perkins, G. J. Nabel, and A. S. Baldwin. "A proliferative p53-responsive element mediates tumor necrosis factor alpha induction of the human immunodeficiency virus type 1 long terminal repeat." Molecular and Cellular Biology 15, no. 6 (1995): 3450–59. http://dx.doi.org/10.1128/mcb.15.6.3450.
Full textBarta, Julie A., Kristen Pauley, Andrew V. Kossenkov, and Steven B. McMahon. "The lung-enriched p53 mutants V157F and R158L/P regulate a gain of function transcriptome in lung cancer." Carcinogenesis 41, no. 1 (2019): 67–77. http://dx.doi.org/10.1093/carcin/bgz087.
Full textMerabet, Assia, Hellen Houlleberghs, Kate Maclagan, et al. "Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights." Biochemical Journal 427, no. 2 (2010): 225–36. http://dx.doi.org/10.1042/bj20091888.
Full textDi Como, Charles J., Christian Gaiddon, and Carol Prives. "p73 Function Is Inhibited by Tumor-Derived p53 Mutants in Mammalian Cells." Molecular and Cellular Biology 19, no. 2 (1999): 1438–49. http://dx.doi.org/10.1128/mcb.19.2.1438.
Full textChan, Wan Mui, Wai Yi Siu, Anita Lau, and Randy Y. C. Poon. "How Many Mutant p53 Molecules Are Needed To Inactivate a Tetramer?" Molecular and Cellular Biology 24, no. 8 (2004): 3536–51. http://dx.doi.org/10.1128/mcb.24.8.3536-3551.2004.
Full textLudes-Meyers, J. H., M. A. Subler, C. V. Shivakumar, et al. "Transcriptional activation of the human epidermal growth factor receptor promoter by human p53." Molecular and Cellular Biology 16, no. 11 (1996): 6009–19. http://dx.doi.org/10.1128/mcb.16.11.6009.
Full textAurelio, Oscar N., Xiao-Tang Kong, Swati Gupta, and Eric J. Stanbridge. "p53 Mutants Have Selective Dominant-Negative Effects on Apoptosis but Not Growth Arrest in Human Cancer Cell Lines." Molecular and Cellular Biology 20, no. 3 (2000): 770–78. http://dx.doi.org/10.1128/mcb.20.3.770-778.2000.
Full textDe Souza, Cristabelle, Jill Madden, Devin C. Koestler, et al. "Effect of the p53 P72R Polymorphism on Mutant TP53 Allele Selection in Human Cancer." JNCI: Journal of the National Cancer Institute 113, no. 9 (2021): 1246–57. http://dx.doi.org/10.1093/jnci/djab019.
Full textLeBrasseur, Nicole. "Big bones in p53 mutants." Journal of Cell Biology 172, no. 1 (2005): 2. http://dx.doi.org/10.1083/jcb1721iti2.
Full textGummlich, Linda. "ATO stabilizes structural p53 mutants." Nature Reviews Cancer 21, no. 3 (2021): 141. http://dx.doi.org/10.1038/s41568-021-00337-1.
Full textVasilevskaya, Irina, Jennifer McCann, Christopher McNair, Neermala Poudel Neupane, Peter Gallagher, and Karen E. Knudsen. "Significance of distinct specifically enriched missense TP53 mutations in prostate cancer." Journal of Clinical Oncology 38, no. 6_suppl (2020): 377. http://dx.doi.org/10.1200/jco.2020.38.6_suppl.377.
Full textParon, I., C. D’Ambrosio, A. Scaloni, et al. "A differential proteomic approach to identify proteins associated with thyroid cell transformation." Journal of Molecular Endocrinology 34, no. 1 (2005): 199–207. http://dx.doi.org/10.1677/jme.1.01618.
Full textDonninger, Howard, Anke Binder, Lothar Bohm, and M. Iqbal Parker. "Differential effects of novel tumour-derived p53 mutations on the transformation of NIH-3T3 cells." Biological Chemistry 389, no. 1 (2008): 57–67. http://dx.doi.org/10.1515/bc.2008.010.
Full textGaiddon, C., M. Lokshin, J. Ahn, T. Zhang, and C. Prives. "A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain." Molecular and Cellular Biology 21, no. 5 (2001): 1874–87. http://dx.doi.org/10.1128/mcb.21.5.1874-1887.2001.
Full textOdell, Adam F., Luke R. Odell, Jon M. Askham, Hiba Alogheli, Sreenivasan Ponnambalam, and Monica Hollstein. "A Novel p53 Mutant Found in Iatrogenic Urothelial Cancers Is Dysfunctional and Can Be Rescued by a Second-site Global Suppressor Mutation." Journal of Biological Chemistry 288, no. 23 (2013): 16704–14. http://dx.doi.org/10.1074/jbc.m112.443168.
Full textVikhanskaya, F., M. K. Lee, M. Mazzoletti, M. Broggini, and K. Sabapathy. "Cancer-derived p53 mutants suppress p53-target gene expression--potential mechanism for gain of function of mutant p53." Nucleic Acids Research 35, no. 6 (2007): 2093–104. http://dx.doi.org/10.1093/nar/gkm099.
Full textButera, Giovanna, Jessica Brandi, Chiara Cavallini, et al. "The Mutant p53-Driven Secretome Has Oncogenic Functions in Pancreatic Ductal Adenocarcinoma Cells." Biomolecules 10, no. 6 (2020): 884. http://dx.doi.org/10.3390/biom10060884.
Full textAmelio, Ivano, Mara Mancini, Varvara Petrova, et al. "p53 mutants cooperate with HIF-1 in transcriptional regulation of extracellular matrix components to promote tumor progression." Proceedings of the National Academy of Sciences 115, no. 46 (2018): E10869—E10878. http://dx.doi.org/10.1073/pnas.1808314115.
Full textWhitesell, Luke, Patrick D. Sutphin, Elizabeth J. Pulcini, Jesse D. Martinez, and Paul H. Cook. "The Physical Association of Multiple Molecular Chaperone Proteins with Mutant p53 Is Altered by Geldanamycin, an hsp90-Binding Agent." Molecular and Cellular Biology 18, no. 3 (1998): 1517–24. http://dx.doi.org/10.1128/mcb.18.3.1517.
Full textMilner, J., E. A. Medcalf, and A. C. Cook. "Tumor suppressor p53: analysis of wild-type and mutant p53 complexes." Molecular and Cellular Biology 11, no. 1 (1991): 12–19. http://dx.doi.org/10.1128/mcb.11.1.12.
Full textMilner, J., E. A. Medcalf, and A. C. Cook. "Tumor suppressor p53: analysis of wild-type and mutant p53 complexes." Molecular and Cellular Biology 11, no. 1 (1991): 12–19. http://dx.doi.org/10.1128/mcb.11.1.12-19.1991.
Full textShetty, Gunapala, Shan H. Shao, and Connie C. Y. Weng. "p53-Dependent Apoptosis in the Inhibition of Spermatogonial Differentiation in Juvenile Spermatogonial Depletion (Utp14bjsd) Mice." Endocrinology 149, no. 6 (2008): 2773–81. http://dx.doi.org/10.1210/en.2007-1338.
Full textLiu, Yun, Jason J. Chen, Qingshen Gao, et al. "Multiple Functions of Human Papillomavirus Type 16 E6 Contribute to the Immortalization of Mammary Epithelial Cells." Journal of Virology 73, no. 9 (1999): 7297–307. http://dx.doi.org/10.1128/jvi.73.9.7297-7307.1999.
Full textLudwig, R. L., S. Bates, and K. H. Vousden. "Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function." Molecular and Cellular Biology 16, no. 9 (1996): 4952–60. http://dx.doi.org/10.1128/mcb.16.9.4952.
Full textBabikir, Husam, Rayhaneh Afjei, Ramasamy Paulmurugan, and Tarik Massoud. "EXTH-30. PRECEDING p53 STABILIZATION USING DOXORUBICIN AUGMENTS PRIMA-1-MEDIATED p53 REFOLDING AND INCREASED CELLULAR APOPTOSIS: EVALUATION OF A SEQUENTIAL COMBINATION THERAPY AGAINST GLIOBLASTOMA." Neuro-Oncology 21, Supplement_6 (2019): vi88. http://dx.doi.org/10.1093/neuonc/noz175.362.
Full textKamada, Rui, Takao Nomura, Carl W. Anderson, and Kazuyasu Sakaguchi. "Cancer-associated p53 Tetramerization Domain Mutants." Journal of Biological Chemistry 286, no. 1 (2010): 252–58. http://dx.doi.org/10.1074/jbc.m110.174698.
Full textPochampally, Radhika, Changgong Li, Wenge Lu, et al. "Temperature-Sensitive Mutants of p53 Homologs." Biochemical and Biophysical Research Communications 279, no. 3 (2000): 1001–10. http://dx.doi.org/10.1006/bbrc.2000.4056.
Full textSobhani, Navid, Alberto D’Angelo, Xu Wang, Ken H. Young, Daniele Generali, and Yong Li. "Mutant p53 as an Antigen in Cancer Immunotherapy." International Journal of Molecular Sciences 21, no. 11 (2020): 4087. http://dx.doi.org/10.3390/ijms21114087.
Full textShivakumar, C. V., D. R. Brown, S. Deb, and S. P. Deb. "Wild-type human p53 transactivates the human proliferating cell nuclear antigen promoter." Molecular and Cellular Biology 15, no. 12 (1995): 6785–93. http://dx.doi.org/10.1128/mcb.15.12.6785.
Full textHann, Byron, and Allan Balmain. "Replication of an E1B 55-Kilodalton Protein-Deficient Adenovirus (ONYX-015) Is Restored by Gain-of-Function Rather than Loss-of-Function p53 Mutants." Journal of Virology 77, no. 21 (2003): 11588–95. http://dx.doi.org/10.1128/jvi.77.21.11588-11595.2003.
Full textBrosh, Ran, and Varda Rotter. "When mutants gain new powers: news from the mutant p53 field." Nature Reviews Cancer 9, no. 10 (2009): 701–13. http://dx.doi.org/10.1038/nrc2693.
Full textCandelaria, Nicholes, Achuth Padmanabhan, Rainer Lanz, Kwong Wong, and JoAnne S. Richards. "P53 Gain-of-Function Mutants and Steroids in Ovarian Cancer Cell Metastasis." Journal of the Endocrine Society 5, Supplement_1 (2021): A770—A771. http://dx.doi.org/10.1210/jendso/bvab048.1567.
Full textPospisilova, Sarka, Jitka Malcikova, Jiri Damborsky, et al. "Role of p53 Gene Mutation Type in B-CLL Prognosis." Blood 108, no. 11 (2006): 4324. http://dx.doi.org/10.1182/blood.v108.11.4324.4324.
Full textWallentine, Brad D., Ying Wang, Vira Tretyachenko-Ladokhina, Martha Tan, Donald F. Senear, and Hartmut Luecke. "Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue." Acta Crystallographica Section D Biological Crystallography 69, no. 10 (2013): 2146–56. http://dx.doi.org/10.1107/s0907444913020830.
Full textLi, Hui, Jinglin Zhang, Joanna Hung Man Tong, et al. "Targeting the Oncogenic p53 Mutants in Colorectal Cancer and Other Solid Tumors." International Journal of Molecular Sciences 20, no. 23 (2019): 5999. http://dx.doi.org/10.3390/ijms20235999.
Full textFukumoto, Kota, Mamiko Sakata-Yanagimoto, Manabu Fujisawa, et al. "VAV1 Mutations Contributes to the Development of T-Cell Malignancies in Mice." Blood 134, Supplement_1 (2019): 300. http://dx.doi.org/10.1182/blood-2019-124591.
Full textDe Souza, Cristabelle, Jill A. Madden, Dennis Minn, et al. "The P72R Polymorphism in R248Q/W p53 Mutants Modifies the Mutant Effect on Epithelial to Mesenchymal Transition Phenotype and Cell Invasion via CXCL1 Expression." International Journal of Molecular Sciences 21, no. 21 (2020): 8025. http://dx.doi.org/10.3390/ijms21218025.
Full textZHANG, Xian, Roger J. A. GRAND, Christopher J. McCABE, Jayne A. FRANKLYN, Phillip H. GALLIMORE та Andrew S. TURNELL. "Transcriptional regulation of the human glycoprotein hormone common α subunit gene by cAMP-response-element-binding protein (CREB)-binding protein (CBP)/p300 and p53". Biochemical Journal 368, № 1 (2002): 191–201. http://dx.doi.org/10.1042/bj20020634.
Full textSidi, Samuel, Andreas T. Hagen, Richard Kennedy, et al. "Modifier Genetics in Zebrafish Identify Chk1 and an Associated Survival Pathway as Targets for Pharmacotherapy of MDS/AML with P53 Mutations." Blood 108, no. 11 (2006): 1432. http://dx.doi.org/10.1182/blood.v108.11.1432.1432.
Full textBillant, Olivier, Gaëlle Friocourt, Pierre Roux, and Cécile Voisset. "p53, A Victim of the Prion Fashion." Cancers 13, no. 2 (2021): 269. http://dx.doi.org/10.3390/cancers13020269.
Full text