Academic literature on the topic 'MXene'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MXene.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "MXene"

1

Đerić, Jelena, and Marko Radović. "ELEKTRIČNI TRANSPORT U MXENE-CITOZAN NANOMEMBRANAMA." Zbornik radova Fakulteta tehničkih nauka u Novom Sadu 39, no. 01 (January 5, 2024): 149–52. http://dx.doi.org/10.24867/25rb01djeric.

Full text
Abstract:
Ovaj rad istražuje primenu MXena, dvodimenzionalnih (2D) nanomaterijala, na polikaprola-kton (PCL) membranama u svrhu prehrambene i medicinske tehnologije. MXeni su novi 2D materijali koji se sastoje od slojeva prelaznih metalnih karbida, nitrida ili karbonitrida. PCL je biokompatibilan, biorazgradiv poliester, pogodan za medicinsku primenu. Ispitivana su električna svojstva PCL-MXene membrana pre i posle tretmana kiseonikovom plazmom. Rezultati pokazuju povećanje provodnosti nakon nanošenja MXena, što nije slučaj prilikom tretmana plazmom. Ali je primećen uticaj tretmana na električna i mehanička svojstva nanokompo-zita.
APA, Harvard, Vancouver, ISO, and other styles
2

Pant, Bishweshwar, Mira Park, and Allison A. Kim. "MXene-Embedded Electrospun Polymeric Nanofibers for Biomedical Applications: Recent Advances." Micromachines 14, no. 7 (July 23, 2023): 1477. http://dx.doi.org/10.3390/mi14071477.

Full text
Abstract:
Recently MXenes has gained immense attention as a new and exciting class of two-dimensional material. Due to their unique layered microstructure, the presence of various functional groups at the surface, earth abundance, and attractive electrical, optical, and thermal properties, MXenes are considered promising candidates for various applications such as energy, environmental, and biomedical. The ease of dispersibility and metallic conductivity of MXene render them promising candidates for use as fillers in polymer nanocomposites. MXene–polymer nanocomposites simultaneously benefit from the attractive properties of MXenes and the flexibility and facile processability of polymers. However, the potentiality of MXene to modify the electrospun nanofibers has been less studied. Understanding the interactions between polymeric nanofibers and MXenes is important to widen their role in biomedical applications. This review explores diverse methods of MXene synthesis, discusses our current knowledge of the various biological characteristics of MXene, and the synthesis of MXene incorporated polymeric nanofibers and their utilization in biomedical applications. The information discussed in this review serves to guide the future development and application of MXene–polymer nanofibers in biomedical fields.
APA, Harvard, Vancouver, ISO, and other styles
3

Ali, Ashraf, Sanjit Manohar Majhi, Lamia A. Siddig, Abdul Hakeem Deshmukh, Hongli Wen, Naser N. Qamhieh, Yaser E. Greish, and Saleh T. Mahmoud. "Recent Advancements in MXene-Based Biosensors for Health and Environmental Applications—A Review." Biosensors 14, no. 10 (October 12, 2024): 497. http://dx.doi.org/10.3390/bios14100497.

Full text
Abstract:
Owing to their unique physicochemical properties, MXenes have emerged as promising materials for biosensing applications. This review paper comprehensively explores the recent advancements in MXene-based biosensors for health and environmental applications. This review begins with an introduction to MXenes and biosensors, outlining various types of biosensors including electrochemical, enzymatic, optical, and fluorescent-based systems. The synthesis methods and characteristics of MXenes are thoroughly discussed, highlighting the importance of these processes in tailoring MXenes for specific biosensing applications. Particular attention is given to the development of electrochemical MXene-based biosensors, which have shown remarkable sensitivity and selectivity in detecting various analytes. This review then delves into enzymatic MXene-based biosensors, exploring how the integration of MXenes with enzymes enhances sensor performance and expands the range of detectable biomarkers. Optical biosensors based on MXenes are examined, focusing on their mechanisms and applications in both healthcare and environmental monitoring. The potential of fluorescent-based MXene biosensors is also investigated, showcasing their utility in imaging and sensing applications. In addition, MXene-based potential wearable biosensors have been discussed along with the role of MXenes in volatile organic compound (VOC) detection for environmental applications. Finally, this paper concludes with a critical analysis of the current state of MXene-based biosensors and provides insights into future perspectives and challenges in this rapidly evolving field.
APA, Harvard, Vancouver, ISO, and other styles
4

Gu, Pengcheng, Dichen Xia, Yan Liu, Quan Chen, and Lingling Wang. "High Uranium Extraction by Polydopamine Functionalized MXene from Aqueous Solutions." E3S Web of Conferences 350 (2022): 03012. http://dx.doi.org/10.1051/e3sconf/202235003012.

Full text
Abstract:
MXenes were outstanding materials for aqueous environment remediation, MXenes with a high capacity for radionuclides uranium (U(VI)) remains a challenge. In this study, a noval polydopamine functionalized MXene (defined as MXene@PDA) was successfully synthesised and evaluated for the aggregation towards U(VI) from wastewater. Versatile PDA owing functional groups provided more sites to capture contaminant ions. The mechanism research with MXene@PDA was explored by batch experiments toghther with the XPS analyses. The results revealed MXene@PDA with abundant functional groups exhibited superior elimination ability (90.4 mg/g) at pH = 5.0. The mechanism of U(VI) on MXene@PDA was primarily ascribed to the surface complexation force between the UO22+ and -OH, NH2 groups. The PDA modification of MXene materials are proved to be excellent materials for the extraction of radionuclides in the aqueous solution.
APA, Harvard, Vancouver, ISO, and other styles
5

Hu, Shukai. "Mxenes applications in different metal ion batteries." Applied and Computational Engineering 3, no. 1 (May 25, 2023): 336–40. http://dx.doi.org/10.54254/2755-2721/3/20230537.

Full text
Abstract:
Mxenes, with unique two-dimensional structures, possess excellent electrical conductivity and low diffusion barriers, which are potential materials used in different metal ion batteries. Herein this paper focuses on synthesising MXenes applications through a literature review method. In relevant analysis, Mxenes can be Constructed in Ultrathin Layered with TiN in Heterostructure to Facilitate the Favorable Catalytic Capability of LithiumSulfur Batteries. For Potassium-Ion Batteries, MXene coated in Carbon to form a Three-Dimensional MXene/Iron Selenide Ball with CoreShell Structure shows a high reversible capacity with significant cycle stability. Ti3C2Tx MXene Electrolyte Additive prevents zinc ion batteries from Zinc Dendrite Deposition. Lastly, customizing the MXene nitrogen terminals for Na-Ion Batteries facilitates fast charging and stable cycling even when the temperature is low.
APA, Harvard, Vancouver, ISO, and other styles
6

Du, Cheng-Feng, Xiangyuan Zhao, Zijiao Wang, Hong Yu, and Qian Ye. "Recent Advanced on the MXene–Organic Hybrids: Design, Synthesis, and Their Applications." Nanomaterials 11, no. 1 (January 11, 2021): 166. http://dx.doi.org/10.3390/nano11010166.

Full text
Abstract:
With increasing research interest in the field of flexible electronics and wearable devices, intensive efforts have been paid to the development of novel inorganic-organic hybrid materials. As a newly developed two-dimensional (2D) material family, MXenes present many advantages compared with other 2D analogs, especially the variable surface terminal groups, thus the infinite possibility for the regulation of surface physicochemical properties. However, there is still less attention paid to the interfacial compatibility of the MXene-organic hybrids. To this end, this review will briefly summarize the recent progress on MXene-organic hybrids, offers a deeper understanding of the interaction and collaborative mechanism between the MXenes and organic component. After the discussion of the structure and surface characters of MXenes, strategies towards MXene-organic hybrids are introduced based on the interfacial interactions. Based on different application scenarios, the advantages of MXene-organic hybrids in constructing flexible devices are then discussed. The challenges and outlook on MXene-organic hybrids are also presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Du, Cheng-Feng, Xiangyuan Zhao, Zijiao Wang, Hong Yu, and Qian Ye. "Recent Advanced on the MXene–Organic Hybrids: Design, Synthesis, and Their Applications." Nanomaterials 11, no. 1 (January 11, 2021): 166. http://dx.doi.org/10.3390/nano11010166.

Full text
Abstract:
With increasing research interest in the field of flexible electronics and wearable devices, intensive efforts have been paid to the development of novel inorganic-organic hybrid materials. As a newly developed two-dimensional (2D) material family, MXenes present many advantages compared with other 2D analogs, especially the variable surface terminal groups, thus the infinite possibility for the regulation of surface physicochemical properties. However, there is still less attention paid to the interfacial compatibility of the MXene-organic hybrids. To this end, this review will briefly summarize the recent progress on MXene-organic hybrids, offers a deeper understanding of the interaction and collaborative mechanism between the MXenes and organic component. After the discussion of the structure and surface characters of MXenes, strategies towards MXene-organic hybrids are introduced based on the interfacial interactions. Based on different application scenarios, the advantages of MXene-organic hybrids in constructing flexible devices are then discussed. The challenges and outlook on MXene-organic hybrids are also presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Nahirniak, Svitlana, and Bilge Saruhan. "MXene Heterostructures as Perspective Materials for Gas Sensing Applications." Sensors 22, no. 3 (January 27, 2022): 972. http://dx.doi.org/10.3390/s22030972.

Full text
Abstract:
This paper provides a summary of the recent developments with promising 2D MXene-related materials and gives an outlook for further research on gas sensor applications. The current synthesis routes that are provided in the literature are summarized, and the main properties of MXene compounds have been highlighted. Particular attention has been paid to safe and non-hazardous synthesis approaches for MXene production as 2D materials. The work so far on sensing properties of pure MXenes and MXene-based heterostructures has been considered. Significant improvement of the MXenes sensing performances not only relies on 2D production but also on the formation of MXene heterostructures with other 2D materials, such as graphene, and with metal oxides layers. Despite the limited number of research papers published in this area, recommendations on new strategies to advance MXene heterostructures and composites for gas sensing applications can be driven.
APA, Harvard, Vancouver, ISO, and other styles
9

Ji, Chenchen, Haonan Cui, Hongyu Mi, and Shengchun Yang. "Applications of 2D MXenes for Electrochemical Energy Conversion and Storage." Energies 14, no. 23 (December 6, 2021): 8183. http://dx.doi.org/10.3390/en14238183.

Full text
Abstract:
As newly emerged 2D layered transition metal carbides or carbonitrides, MXenes have attracted growing attention in energy conversion and storage applications due to their exceptional high electronic conductivity, ample functional groups (e.g., -OH, -F, -O), desirable hydrophilicity, and superior dispersibility in aqueous solutions. The significant advantages of MXenes enable them to be intriguing structural units to engineer advanced MXene-based nanocomposites for electrochemical storage devices with remarkable performances. Herein, this review summarizes the current advances of MXene-based materials for energy storage (e.g., supercapacitors, lithium ion batteries, and zinc ion storage devices), in which the fabrication routes and the special functions of MXenes for electrode materials, conductive matrix, surface modification, heteroatom doping, crumpling, and protective layer to prevent dendrite growth are highlighted. Additionally, given that MXene are versatile for self-assembling into specific configuration with geometric flexibility, great efforts about methodologies (e.g., vacuum filtration, mask-assisted filtration, screen printing, extrusion printing technique, and directly writing) of patterned MXene-based composite film or MXene-based conductive ink for fabricating more types of energy storage device were also discussed. Finally, the existing challenges and prospects of MXene-based materials and growing trend for further energy storage devices are also presented.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Xiaohua, Feitian Ran, Fan Yang, Jun Long, and Lu Shao. "Advances in MXene Films: Synthesis, Assembly, and Applications." Transactions of Tianjin University 27, no. 3 (March 7, 2021): 217–47. http://dx.doi.org/10.1007/s12209-021-00282-y.

Full text
Abstract:
AbstractA growing family of two-dimensional (2D) transition metal carbides or nitrides, known as MXenes, have received increasing attention because of their unique properties, such as metallic conductivity and good hydrophilicity. The studies on MXenes have been widely pursued, given the composition diversity of the parent MAX phases. This review focuses on MXene films, an important form of MXene-based materials for practical applications. We summarized the synthesis methods of MXenes, focusing on emerging synthesis strategies and reaction mechanisms. The advanced assembly technologies of MXene films, including vacuum-assisted filtration, spin-coating methods, and several other approaches, were then highlighted. Finally, recent progress in the applications of MXene films in electrochemical energy storage, membrane separation, electromagnetic shielding fields, and burgeoning areas, as well as the correlation between compositions, architecture, and performance, was discussed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "MXene"

1

GENTILE, ANTONIO. "MXene-based materials for alkaline-ion batteries: synthesis, properties, applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/382748.

Full text
Abstract:
La produzione sempre maggiore di dispositivi portatili e auto elettriche chiede al mercato di produrre dispositivi efficienti in grado di poter accumulare l’energia elettrica. Per questo tipo di tecnologie in cui la miniaturizzazione del dispositivo è essenziale, le batterie litio ione (LIBs) sono diventate il mezzo di accumulare energia. La ricerca su queste batterie è focalizzata ad ottenere dispositivi sempre più performanti con materiali elettrodici ad alte capacità gravimetriche e volumetriche. Accanto all’aspetto tecnologico, legato alla ottimizzazione dei materiali, vi è anche quello dell’approvvigionamento dei componenti attivi della batteria, tra tutti il litio. La problematica attualmente è affrontata studiando batterie con altri metalli alcalini (Na e K). Di questi dispositivi non esistono però materiali già standardizzati malgrado la ricerca, specialmente sulle batterie sodio ione (SIB), sia partita solo qualche anno più tardi rispetto quella delle LIB; per cui queste tecnologie oggi sono destinate ad affiancare quelle delle LIB per sopperire all’enorme richiesta di mercato di batterie per i veicoli del futuro. L’obbiettivo del presente lavoro è stato quello di sviluppare materiali anodici a base di MXene per ottenere efficienti anodi per batterie sodio e litio ione. I MXenes sono una famiglia di carburi di metalli di transizione con una struttura 2D che sembrerebbe promettente per l’intercalazione di diversi ioni grazie ad una grande flessibilità ed adattabilità strutturale nei confronti del tipo di ione intercalante. L’intercalazione degli ioni avviene con un meccanismo pseudocapacitivo per cui i materiali hanno capacità limitate, ma hanno grande stabilità elettrochimica su migliaia di cicli ed efficienze coulombiche prossime al 100%. La produzione di questo materiale avviene per etching in HF di un precursore chiamato MAX phase. Questo è il metodo più facile e veloce per ottenere il materiale in scala di laboratorio ma presenta numerose criticità quando i volumi vengono rapportati su scala industriale. Una gran parte del lavoro è stata dedicata allo studio della tecnica sintetica per ottenere MXenes per SIB riducendo o sostituendo HF nella sintesi chimica. I materiali sono stati caratterizzati con varie tecniche di caratterizzazioni strutturali, morfologiche ed elettrochimiche. Data la struttura 2D, che ricorda quella del grafene, un uso frequente in letteratura è quello della realizzazioni di nanocompositi per SIB e LIB, al fine di produrre materiali ad alta capacità, come richiesto nel mercato delle batterie. Sono stati quindi ottenuti dei nanocompositi a base di antimonio-MXene e ossido di stagno-MXene testati rispettivamente in SIB e LIB. Antimonio e ossido di stagno sono due materiale dalla elevata capacità teorica, quando usati come anodi in batterie, ma allo stesso tempo sono estremamente fragili e tendono a polverizzarsi nei processi di carica e scarica. Il MXene è servito da buffer per limitare o evitare la frattura e distacco delle leghe dalla superficie elettrodica
The ever-increasing production of portable devices and electric cars asks to the market to produce efficient devices that can store electrical energy. For these types of technologies, where device miniaturization is essential, lithium-ion batteries (LIBs) have become leaders as energy storage systems. The research on the lithium-ion batteries is focused to obtain more performing devices with high gravimetric and volumetric capacities of the electrode materials. In addition to the technological aspect, related to the optimization of materials, there is the supply chain of active components of the battery to consider, starting from lithium. At the moment, the problem is tackled by studying batteries with other alkaline metal ions, i.e. Na+ and K+. However, there are no standardized active materials for these devices, especially on sodium-ion batteries (SIBs), started only a few years later than that of LIBs; therefore, today these technologies are intended to support the LIBs in order to satisfy the enormous market demand of the batteries for the future vehicles. The goal of this work was to develop MXene-based anode materials to obtain efficient anodes for sodium and lithium-ion batteries. MXenes are a family of inorganic transition metal carbides, nitrides, and carbonitrides with a 2D structure that would seem promising for the intercalation of different ions due to a great flexibility and adaptability towards several intercalating ions. The ion intercalations occur by a pseudocapacitive mechanism whereby the materials have limited capacity, but they have great electrochemical stability over thousands of cycles and coulombic efficiencies near to 100%. The production of this material was done by HF etching of a precursor called MAX phase. This is the easiest and fastest method to obtain the material in laboratory scale, but it has many criticalities when the process has to be scale-up to industrial scale. A large part of this work was spent studying the synthetic technique to obtain MXenes for SIB by reducing or replacing HF in the chemical synthesis. The materials have been characterized by various techniques such as X-ray diffractometry, electron microscopy, X-ray photoelectron spectroscopy, etc., and by electrochemical tests, such as cyclic voltammetry and galvanostatic cycling. Thanks to the 2D structure, a common use of MXene in the literature is in nanocomposite syntheses for SIBs and LIBs, in order to produce high-capacity materials, as required in the battery market. Therefore, two nanocomposites based on antimony-MXene and tin oxide-MXene tested for SIB and for LIB respectively, were synthesized. Antimony and tin oxide are two materials with high theoretical capacity when used as anodes in batteries, but at the same time, they are extremely fragile and tend to pulverize during charging and discharging processes. MXene is used as a buffer to limit or prevent cracking and separation of alloys from the electrode surface.
APA, Harvard, Vancouver, ISO, and other styles
2

Bukovský, Marek. "Flexible and recyclable electronics made from nanoreinforced silk." Thesis, KTH, Fiber- och polymerteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296177.

Full text
Abstract:
Forskningsområdet för bärbar elektronik är fortfarande relativt ungt och det finns ett stort behov av utveckling av nya material inom området. Olika typer av kompositer är mycket intressanta och de ska uppvisa såväl hög hållfasthet som goda ledande egenskaper. I detta avseende är silkes fibroin och MXene mycket intressanta utgångsmaterial eftersom silkestrådarna kan ge en struktur med god jonledningsförmåga och god flexibilitet och MXene kan bidra med hög styvhet och god elektrisk ledningsförmåga. Med detta som bakgrund beslöts att undersöka om kompositer av silkestrådar och MXene kan användas i kompositer som kan användas i bärbar elektronik. 3 olika typer av hydrogeler studerades och de innehöll silkes fibroin med 0, 1 och 5% MXene. De egenskaper som utvärderades var struktur, mekaniska egenskaper, stabilitet i vatten, bionedbrytbarhet och både statisk och dynamisk ledningsförmåga. Resultaten visar att de tillverkade nanokompositerna har lovande förutsättningar inom området eftersom en kombination av silkes fibroin med 5 % MXene har god stabilitet, konduktivitet och en hög och stabil Gauge-faktor.
As the research area of wearable electronics is still relatively new, material science with this focus opens plenty of unexplored fields. That is why a study characterizing the unexplored composite system of silk fibroin and MXene (Silk/MXene) was conducted. These two biocompatible materials are complementary with regard to the requirements for wearable electronics materials. Silk fibroin dispose an ionic conductivity and solid flexibility, while MXene brings mechanical strength and significant increase of electrical conductivity. The reinforced hydrogel materials were studied at two concentrations of fillers, 1% and 5% and compared to pristine silk fibroin. All three materials were studied from the point of view of their structure, mechanical properties, behaviour in aqueous environment, biodegradability and electrical conductivity, both static and dynamic. Nanocomposite systems of silk fibroin and MXene have shown a potential for being used in the intended application area, as Silk/MXene 5% film displays good stability, conductivity with high andstable Gauge factor.
APA, Harvard, Vancouver, ISO, and other styles
3

Shi, Lu. "Des phases MAX au MXenes : synthèse,caractérisation et propriétés électroniques." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI101/document.

Full text
Abstract:
Les phases MAX sont des carbures ou des nitrures ternaires nano-lamellaires comportant un métal de transition (M), un élément des colonnes 13-16 (A), X=C ou N.Ces phases combinent certaines des meilleures propriétés des céramiques à celles des métaux. Leurs propriétés physiques (rigidité, résistance aux chocs mécaniques et thermiques, bonnes conductivités thermique et électrique), associées à la possibilité d’usinage, les rend très attractives en termes d’applications technologiques potentielles.En 2011, il a été établi qu’un traitement à l’acide fluorhydrique (HF) des phases MAX comprenant de l’aluminium permet une élimination sélective des plans d’atomes Al, avec pour résultat la formation de matériaux bi-dimensionnels (2D) appelés MXènes pour souligner la perte des atomes de Al. Ces nouveaux membres de la famille des matériaux 2D sont plus résistants, chimiquement plus polyvalents et possèdent une conductivité supérieure à nombre d’autres matériaux. Ils se révèlent par conséquent très intéressants pour de nouvelles applications, par exemple pour des systèmes de délivrance de médicaments in vivo, le stockage d’hydrogène, ou pour remplacer d’autres matériaux dans des batteries, le traitement des eaux usées ou divers capteurs.Dans cette thèse, nous présentons notre travail sur la synthèse, la caractérisation structurale et le transport électronique dans les phases MAX et leurs dérivés 2D, les MXènes. En ce qui concerne les phases MAX, et motivés par les propriétés fortement anisotropes attendues de tels matériaux nano-lamellaires, produire des monocristaux massifs est le moyen le plus naturel d’obtenir des échantillons où l’anisotropie des propriétés physiques peut être sondée expérimentalement. En utilisant avec succès la méthode de croissance en solution à haute température associée à un refroidissement lent, nous avons obtenu des monocristaux de divereses phases MAX, incluant Cr2AlC, V2AlC, Ti3SiC2, etc.La caractérisation structurale confirme le caractère mono-cristallin des échantillons. Expérimentalement, nous avons acquis un jeu exhaustif de mesures de magnéto-transport de monocristaux en fonction de la température et du champ magnétique. De plus, nous obtenons un rapport d’anisotropie très important entre la résistivité dans le plan ab et celle parallèle à l’axe c, allant de plusieurs centaines à plusieurs milliers. A partir des courbes de magnétorésistance et d’effet Hall, nous avons étudié en détail le comportement du transport dans le plan basal. D’un point de vue théorique, nous avons proposé un modèle général mais simple pour décrire les propriétés de magnéto-transport d’électrons presque libres dans des métaux 2D hexagonaux. Ce modèle a été modifié pour être appliqué aux propriétés de transport des phases MAX nano-lamellaires.En ce qui concerne les MXènes, nous avons synthétisé avec succès des écailles de MXènes V2CTx de grande surface à partir du traitement HF conventionnel de monocristaux de V2AlC. La délamination mécanique de ces écailles multi-couches de V2CTx en échantillons comportant peu de monocouches a aussi été réalisée. Nous avons établi la morphologie typique de ces couches à partir d’images de microscopies MEB ou TEM. A partir d’analyse EDX, nous concluons que les terminaisons -OH dominent et sont les plus stables énergétiquement. Nous détaillons ensuite le procédé de fabrication des dispositifs électriques utilisés pour obtenir les résultats de mesures de transport électrique jusqu’à basse température. Nous avons obtenu avec succès des résultats originaux sur les MXènes V2CTx, avec une valeur moyenne de résistivité de l’ordre de 2 × 10-5 ohmm. La mesure d’effet de champ indique une mobilité de 22.7 cm2/Vs. Du fait de l’intensité des recherches portées actuellement sur les MXènes, nous espérons que ces résultats contribueront de manière significative à une meilleure compréhension de cette classe de matériaux et de la façon dont leurs propriétés peuvent être contrôlées
MAX phases are layered early transition metal ternary carbides and nitrides so called because they are composed of M, an early transition metal, A, a group A element and X is C and/or N. MAX phase structure is composed of near close-packed planes of M atoms with the X atoms occupying all the octahedral sites between them. Their physical properties (stiffness, damage and thermal shock resistance, high thermal and electrical conductivity) along with the fact they are readily machinable, make them extremely attractive in terms of the potential technological applications.In 2011, it was discovered that by immersing Al-containing MAX phases in HF acid, it was possible to selectively etch the Al, resulting in two-dimensional (2D) materials, that were labeled MXene to denote the removal of the A-group element and make the connection to another conducting 2D material, graphene. This new member of 2D materials family owns stronger, more chemically versatile, and have higher conductivity than other materials. As such they are highly interesting on new applications, e.g. specialized in vivo drug delivery systems, hydrogen storage, or as replacements of common materials in e.g. batteries, sewage treatment, and sensors.In this thesis, as its self-telling title indicated, we present our work on the synthesis, structural characterization and the electron transport in the MAX phases and their 2D derivatives, MXenes.For MAX phase: motivated by the theoretically expected anisotropic properties of these layered materials, producing bulk single crystals is a natural way to obtain samples where the anisotropy of the physical properties can be experimentally probed. Also, knowledge of low-temperature behavior of single crystal is vital because it can provide insight into MAX intrinsic physical properties. Using high temperature solution growth and slow cooling technique, several MAX phases single crystals have been successfully grown, including Cr2AlC, V2AlC, Ti3SiC2, etc. Structural characterization confirms the single crystalline character of the samples. Experimentally, a set of experimental data was obtained from single crystals of V2AlC and Cr2AlC as a function of temperature and magnetic field. In particular, we obtain a very high ratio between the in-plane and parallel to the c-axis resistivity, which is very substantial, in the range of a few hundreds to thousands. From MR and Hall effect measurement, in-plane transport behaviors of MAX phases have been studied. The extracted mobility is in the range from 50 to 120 cm2/V·s, which is the same order of magnitude of polycrystalline sample. Theoretically, a general, yet simple model was proposed for describing the weak field magneto-transport properties of nearly free electrons in two-dimensional hexagonal metals. It was then modified to be applicable for the transport properties of layered MAX phases.For MXene: Large scale V2CTx MXene flakes was successfully synthesized by conventional HF-etching of V2AlC single crystals. Mechanical delamination of multilayered V2CTx flakes into few layer flakes and transfer on Si/SiO2 substrate was also achieved. Structural characterization demonstrated an enlarged interplane distance, while prior DMSO intercalation seems to have no effect on this type of MXenes. From EDS results, we concluded that -OH terminations on V2CTx is the dominated, and the most energetically favorable, compared to -F and -O functional groups. We then detail the electrical device fabrication process and proceed with electrical measurements results, performed down to low temperature, with the aim to extract useful information on charge carrier behavior. We successfully obtained some first hand transport data on V2CTx MXenes, the average value for the resistivity of V2CTx MXenes is 2 × 10-5 Ω ∙m, which is in consistent with reported other MXene samples. The mobility, 22.7 cm2/V·s , which stays in the same order of magnitude as its parent MAX phase
APA, Harvard, Vancouver, ISO, and other styles
4

Ama, Obinna Henry. "Novel K2W7O22/Ti3C2 Nanocomposite-Based Sensor Device for Breath Acetone Analysis in Diabetic Patients." Thesis, North Dakota State University, 2020. https://hdl.handle.net/10365/31828.

Full text
Abstract:
Acetone in exhaled breath is gaining attention as a non-invasive means of quantifying blood glucose levels in Diabetics. This calls for development of novel biosensors for the detection of trace concentrations of acetone present in human breath. Traditional gas detection systems, such as GC/MS and chemiresistive sensors, are currently used for this purpose. However, these systems have limitations with regards to size, cost, and operating temperature. This work presents the K2W7O22/Ti3C2 nanocomposite sensor as breath acetone sensor that overcomes the limitations in traditional detection systems. Sensing experiments were conducted using 5 different sensor materials in varying ratios. KWO/Ti3C2 - ratio 2:1 (annealed) and KWO/Ti3C2 - ratio 2:1 (Unannealed) showed excellent sensitivity to 2.85ppm and 5.4ppm acetone concentration. These materials were then implemented in a prototype device. Material and device test results confirm the potentials of the novel KWO/Ti3C2 nanocomposite as a good sensor for breath acetone detection.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Hongyan, Yang Hou, Faxing Wang, Martin R. Lohe, Xiaodong Zhuang, Li Niu, and Xinliang Feng. "Flexible All-Solid-State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-235446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dall'Agnese, Yohan. "Study of early transition metal carbides for energy storage applications." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30025/document.

Full text
Abstract:
La demande urgente d'innovations dans le domaine du stockage de l'énergie est liée au développement récent de la production d'énergie renouvelable ainsi qu'à la diversification des produits électroniques portables qui consomment de plus en plus d'énergie. Il existe plusieurs technologies pour le stockage et la conversion électrochimique de l'énergie, les plus notables étant les batteries aux ions lithium, les piles à combustible et les supercondensateurs. Ces systèmes sont utilisés de façon complémentaire des uns aux autres dans des applications différentes. Par exemple, les batteries sont plus facilement transportables que les piles à combustible et ont de bonne densité d'énergie alors que les supercondensateurs ont des densités de puissance plus élevés et une meilleure durée de vie. L'objectif principal de ces travaux est d'étudier les performances électrochimiques d'une nouvelle famille de matériaux bidimensionnel appelée MXène, en vue de proposer de nouvelles solutions pour le stockage de l'énergie. Pour y arriver, plusieurs directions ont été explorées. Dans un premier temps, la thèse se concentre sur les supercondensateurs dans des électrolytes aqueux et aux effets des groupes de surface. La seconde partie se concentre sur les systèmes de batterie et de capacités à ions sodium. Une cellule complète comportant une anode en carbone et une cathode de MXène a été développées. La dernière partie de la thèse présente l'étude des MXènes pour les supercondensateur en milieu organique. Une attention particulière est apportée à l'étude du mécanisme d'intercalation des ions entre les feuillets de MXène. Différentes techniques de caractérisations ont été utilisées, en particulier la voltampérométrie cyclique, le cyclage galvanostatique, la spectroscopie d'impédance, la microscopie électronique et la diffraction des rayons X
An increase in energy and power densities is needed to match the growing energy storage demands linked with the development of renewable energy production and portable electronics. Several energy storage technologies exist including lithium ion batteries, sodium ion batteries, fuel cells and electrochemical capacitors. These systems are complementary to each other. For example, electrochemical capacitors (ECs) can deliver high power densities whereas batteries are used for high energy densities applications. The first objective of this work is to investigate the electrochemical performances of a new family of 2-D material called MXene and propose new solutions to tackle the energy storage concern. To achieve this goal, several directions have been explored. The first part of the research focuses on MXene behavior as electrode material for electrochemical capacitors in aqueous electrolytes. The next part starts with sodium-ion batteries, and a new hybrid system of sodium ion capacitor is proposed. The last part is the study of MXene electrodes for supercapacitors is organic electrolytes. The energy storage mechanisms are thoroughly investigated. Different characterization techniques were used in this work, such as cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy, scanning electron microscopy and X-ray diffraction
APA, Harvard, Vancouver, ISO, and other styles
7

Yan, Yilong. "Catalytic hydrogenation properties of MXenes promoted by single metal atoms." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10190.

Full text
Abstract:
Les MXènes, matériaux bidimensionnels dérivés des phases MAX par élimination sélective de l'élément A (e.g. Al, Ga ou Si), présentent une large gamme de chimies et de potentielles applications catalytiques. Ces matériaux possèdent la formule chimique Mn+1XnTx, où M représente un métal de transition de début de série, X désigne C ou N, et Tx correspond aux groupements terminaux (e.g. -O, -OH, -F). Les catalyseurs à atomes isolés (SACs), composés d'atomes de métaux isolés sur des supports tels que les oxydes métalliques ou le carbone, présentent une efficacité atomique maximale et des propriétés électroniques remarquables par rapport aux nanocatalyseurs. Néanmoins, assurer leur stabilité reste un défi majeur. Les MXènes offrent une opportunité nouvelle d'ancrer des atomes métalliques et d'améliorer les performances catalytiques. Dans ce travail, nous avons étudié le potentiel des MXènes, en particulier les systèmes Ti3C2Tx et Mo2Ti2C3Tx, comme catalyseurs à part entière ou comme supports pour la stabilisation des SACs utilisés dans des réactions d'hydrogénation. Nous avons notamment mis l’accent sur la délamination et le désempilement des MXènes pour des applications de catalyse en phase gazeuse. Diverses techniques de caractérisation, telles que STEM et XPS, ont été employées.Notre étude a commencé par une évaluation de la stabilité d’atomes isolés de Pt et de Pd sur le MXène Ti3C2Tx, en utilisant la méthodologie classique d'imprégnation humide avec des sels chlorés comme précurseurs. Tout d'abord, l'impact de la méthode de préparation du MXène (HF versus LiF-HCl) sur la structure/composition de surface et l'état de dispersion/oxydation des métaux est dévoilé. Ensuite, les performances catalytiques d'hydrogénation de ces matériaux sont présentées. Tandis que le MXène seul est inactif, les SACs Pt/Ti3C2Tx, obtenus à faible teneur en métal, montrent une sélectivité en 2-butène exceptionnelle sans formation de butane, dans l'hydrogénation du butadiène, réaction ici considérée comme modèle. De plus, dans la réduction du CO2 en CO par réaction de gaz à l’eau inverse à haute pression – un procédé d’intérêt pour la production d’énergie propre –, ces catalyseurs montrent jusqu'à 99 % de sélectivité et une activité par mole de Pt accrue par rapport à des catalyseurs de référence supportés sur oxydes. Pour améliorer davantage les performances, nous avons considéré le MXène Mo2Ti2C3Tx, qui possède des propriétés d'hydrogénation intrinsèques. L'utilisation du précurseur Pt(NH3)4(NO3)2 a permis d'atteindre une charge en Pt plus élevée (jusqu’à 2,3 % en poids). Les SACs Pt/Mo2Ti2C3Tx montrent une activité catalytique supérieure à celle du MXène nu pour l'hydrogénation du CO2, produisant du CO et de plus petites quantités de méthane et de méthanol. Après imprégnation, les atomes isolés sont sous la forme Pt2+ et subissent une réduction lorsqu'ils sont soumis à un traitement thermique sous H2, substituant des atomes Mo en surface ou comblant des lacunes en Mo–comme montré par EXAFS. L'ajout de platine augmente l'activité du MXène en facilitant la dissociation du dihydrogène, comment le suggèrent les calculs DFT, mais a peu d'effet sur la sélectivité du SAC. Pour étudier la stabilité thermique des catalyseurs et leur évolution en conditions de réaction, des techniques de caractérisation avancées, incluant XRD in situ, TG-DTA-MS, XAS operando, NAP-XPS et expériences isotopiques, ont été employées. Le MXène Mo2Ti2C3Tx montre une haute stabilité thermique jusqu'à environ 600 °C sous flux d'argon ou d’hydrogène. À 400 °C sous H2, une fraction des ions MoIV subissent une réduction en MoII en raison de la défonctionnalisation de la surface. À 600 °C, une stœchiométrie Mo2Ti1.9C2.6O0.3, déficitaire en carbone, est obtenue. La formation de structures stables par ancrage des atomes de platine dans les plans de surface riches en molybdène, se produit à des températures approchant 200 °C, et induit une stabilité élevée des SACs en conditions de réaction
Two-dimensional materials attract considerable interest due to their distinctive properties. MXenes, derived from MAX phases through the selective etching of the A element (e.g. Al, Ga or Si), exhibit a wide range of chemistries and potential catalytic applications. These materials possess the chemical formula Mn+1XnTx, where M represents an early transition metal, X is either C or N, and Tx denotes surface terminations (e.g. -O, -OH, -F). Single-atom catalysts (SACs), which comprise isolated metal atoms on supports such as metal oxides or carbon, offer high atomic efficiency and possess distinctive electronic properties with respect to nanoparticulate counterparts. Nevertheless, ensuring their stability remains a significant challenge. MXenes present a renewed opportunity to anchor metal atoms and enhance catalytic performance. In this research work, we investigated the potential of MXenes, specifically Ti3C2Tx and Mo2Ti2C3Tx, as full-fledged catalysts or catalyst supports for the stabilization of single metal atoms employed in hydrogenation reactions. A particular focus was put on MXene delamination and unstacking via solid intercalation for effective application in gas-phase catalysis. Numerous characterization techniques were employed, including XPS, XRD, STEM, and SEM.The investigation started with an evaluation of the stability of Pt and Pd single atoms on Ti3C2Tx MXene, employing the conventional wet impregnation method with chloride salts as the precursors. First, the impact of the MXene preparation methodology (HF versus LiF-HCl etchants) on the surface structure/composition and metal dispersion/oxidation state is investigated. Second, the catalytic hydrogenation performances of these materials are presented. While the bare MXene is inactive, Pt/Ti3C2Tx SACs, obtained for low metal content, exhibit an exceptional selectivity towards 2-butene, with no butane formation, in the hydrogenation of butadiene, herein considered as a model reaction. Furthermore, in the reduction of CO2 to CO through reverse water-gas shift at high pressure, which is relevant to clean-energy applications, these catalysts demonstrate up to 99% selectivity and enhanced Pt-molar activity in comparison to oxide-supported references. To further enhance performance, we employed the Mo2Ti2C3Tx MXene, which possesses inherent hydrogenation properties, with the objective of exploiting the synergy between Pt atoms and surface carbidic Mo atoms. The use of the Pt(NH3)4(NO3)2 precursor enabled the achievement of a higher loading of atomically dispersed Pt (up to 2.3 wt%). The Pt/Mo2Ti2C3Tx SACs demonstrate remarkable catalytic activity for CO2 hydrogenation, even higher than the MXene alone, producing CO and smaller amounts of methane and methanol. Following impregnation, single Pt atoms bear a +2 charge like in the precursor, but undergo partial reduction upon exposure to H2 flow at 400 °C, thereby replacing surface Mo atoms or filling surface Mo vacancies – as supported by EXAFS. The addition of platinum increases the activity of the MXene mostly by facilitating H2 dissociation, as suggested by DFT modeling, but has little effect on the SAC selectivity. To investigate the thermal stability of the catalysts and their evolution under reaction conditions, advanced characterization techniques, including in situ XRD, TG-DTA-MS, operando XAS, NAP-XPS, and isotopic temperature-programmed experiments were employed. The Mo2Ti2C3Tx MXene exhibits high thermal stability up to ca. 600 °C under argon or hydrogen flow. At 400 °C under hydrogen, part of MoIV ions undergo reduction to MoII owing to surface defunctionalization. At 600 °C, a carbon-deficient stoichiometry of Mo2Ti1.9C2.6O0.3 is obtained. The formation of stable structures with anchoring of Pt single atoms, mostly in the Mo-rich surface layers, occur at temperatures approaching 200 °C. This leads to a high thermal stability of the SACs under reaction conditions
APA, Harvard, Vancouver, ISO, and other styles
8

Karlsson, Linda. "Transmission Electron Microscopy of 2D Materials : Structure and Surface Properties." Doctoral thesis, Linköpings universitet, Tunnfilmsfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127526.

Full text
Abstract:
During recent years, new types of materials have been discovered with unique properties. One family of such materials are two-dimensional materials, which include graphene and MXene. These materials are stronger, more flexible, and have higher conductivity than other materials. As such they are highly interesting for new applications, e.g. specialized in vivo drug delivery systems, hydrogen storage, or as replacements of common materials in e.g. batteries, bulletproof clothing, and sensors. The list of potential applications is long for these new materials. As these materials are almost entirely made up of surfaces, their properties are strongly influenced by interaction between their surfaces, as well as with molecules or adatoms attached to the surfaces (surface groups). This interaction can change the materials and their properties, and it is therefore imperative to understand the underlying mechanisms. Surface groups on two-dimensional materials can be studied by Transmission Electron Microscopy (TEM), where high energy electrons are transmitted through a sample and the resulting image is recorded. However, the high energy needed to get enough resolution to observe single atoms damages the sample and limits the type of materials which can be analyzed. Lowering the electron energy decreases the damage, but the image resolution at such conditions is severely limited by inherent imperfections (aberrations) in the TEM. During the last years, new TEM models have been developed which employ a low acceleration voltage together with aberration correction, enabling imaging at the atomic scale without damaging the samples. These aberration-corrected TEMs are important tools in understanding the structure and chemistry of two-dimensional materials. In this thesis the two-dimensional materials graphene and Ti3C2Tx MXene have been investigated by low-voltage, aberration-corrected (scanning) TEM. High temperature annealing of graphene covered by residues from the synthesis is studied, as well as the structure and surface groups on single and double Ti3C2Tx MXene. These results are important contributions to the understanding of this class of materials and how their properties can be controlled.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Liyuan. "Les matériaux 2D pour le stockage de l'énergie." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30204.

Full text
Abstract:
L'objectif de cette thèse est d'étudier les propriétés électrochimiques des matériaux 2D utilisés comme électrode dans les batteries et les supercondensateurs. La première partie commence par la synthèse du graphène et la préparation des films d'électrode. Une étude détaillée des propriétés électrochimiques du stockage des ions potassium a été réalisée en utilisant un aérogel à oxyde de graphène réduit (rGO) comme matériau d'électrode négative. L'influence de la nature de l'électrolyte et les méthodes de séchage utilisées ont été étudiées afin d'optimiser les performances électrochimiques du rGO lyophilisé dans les batteries potassium-ion (PIB). La spectroscopie d'impédance électrochimique (EIS) a été utilisée pour évaluer les performances de notre matériau rGO dans les PIB. Utilisé comme électrode négative, le rGO lyophilisé peut fournir une capacité élevée de 267 mAh g-1 à un taux de C/3 avec une rétention de capacité de 78% pendant 100 cycles, combinée à une capacité de taux élevé (92 mAh g-1 à 6.7 C ). Cet ensemble de résultats rend de l'aérogel rGO un matériau d'électrode prometteur pour les PIB. Ensuite, nous nous sommes concentrés sur la méthode du sel fondu (MSM) pour concevoir des matériaux aux propriétés électrochimiques améliorées pour les applications de stockage d'énergie. Avec le MSM, une quantité considérable d'oxydes ternaires Mn-based 2D and V-based 1D a été explorée puis utilisée comme cathode pour les batteries divalentes aqueuses. La nanoparticule K0.27MnO2·0.54H2O (KMO) a été utilisée comme cathode pour les batteries aqueuses Zn-ion, avec des capacités spécifiques élevées (288 mAh g-1) et une cyclabilité à long terme (rétention de capacité de 91% après 1000 cycles à 10 C) . La technique Electrochemical quartz crystal admittance (EQCM) a d'abord été réalisée pour confirmer le mécanisme de stockage de charge d'intercalation H3O+ et Zn2+ qui en résulte. De plus, le procédé au sel fondu utilisé ici a permis la préparation de 1D CaV6O16·7H2O (CVO) et utilisé en outre comme matériau de cathode dans des batteries aqueuses au Ca-ion. En conséquence, d'excellentes performances électrochimiques ont été obtenues, avec une capacité de 205 mAh g-1, une longue durée de vie (> 97% de rétention de capacité après 200 cycles à 3C) et des performances élevées (117 mAh g-1 à 12 C ) lors de réactions d'intercalation (de) intercalation des Ca-ions. Contrairement à la précédente méthode de sel fondu flash réalisée dans l'air, nous avons conçu une autre méthode de sel fondu sous atmosphère d'argon pour préparer des matériaux de carbures métalliques 2-dimmensionnels (MXene) tels que Ti3C2 (M = Ti, X = C). En jouant avec la chimie du précurseur MAX et la composition de la fonte acide de Lewis, nous généralisons cette voie de synthèse à une large gamme chimique de précurseurs MAX (A = Zn, Al, Si, Ga). Les matériaux MXene obtenus (appelés MS-MXenes) présentent des performances électrochimiques améliorées dans un électrolyte non aqueux contenant du Li+, avec une capacité de 205 mAh g-1 à 1.1 C, ce qui rend ces matériaux très prometteurs en tant qu'électrodes négatives pour les batteries Li haute puissance ou les appareils hybrides tels que les condensateurs Li-ion. Outre l'APS, un autre agent de gravure (FeCl3) a été utilisé pour dissoudre le Cu. En résumé, cette méthode permet de produire de nouveaux types de MXène difficiles voire impossibles à préparer en utilisant des méthodes de synthèse précédemment rapportées comme la gravure HF. En conséquence, il élargit encore la gamme de précurseurs de phase MAX qui peuvent être utilisés et offre des opportunités importantes pour ajuster la chimie de surface et faire du MS-MXene une électrode à haut débit dans un système non aqueux
The aim of this thesis is to study the electrochemical properties of 2D materials used as electrode in batteries and supercapacitor. The first part starts with using reduced graphene oxide (rGO) aerogel as a negative electrode material for potassium-ion batteries (PIBs). The influence of the nature of the electrolyte and the drying methods used were investigated in order to optimize the electrochemical performance of freeze-dried rGO in PIBs. Electrochemical impedance spectroscopy (EIS) were used to assess the performance of our rGO material in PIBs. rGO can deliver a high capacity of 267 mAh g-1 at C/3 rate together with 78% capacity retention during 100 cycles, combined with high rate capability (92 mAh g-1 at 6.7 C). This set of results makes rGO aerogel a promising electrode material for PIBs. Afterwards, we focused on molten salt method (MSM) to design materials with enhanced electrochemical properties for energy storage applications. With MSM, 2D K0.27MnO2·0.54H2O (KMO) and 1D CaV6O16·7H2O (CVO) have successfully prepared. KMO nanosheet has been used as cathode for aqueous Zn-ion batteries, with high specific capacities (288 mAh g-1) and long-term cyclability (91% capacity retention after 1000 cycles at 10 C). Electrochemical quartz crystal admittance (EQCM) technique was firstly performed to confirm the consequent H3O+ and Zn2+ intercalation charge storage mechanism. Additionally, CVO was further used as cathode material in aqueous Ca-ion batteries. As a result, excellent electrochemical performance was achieved, with a capacity of 205 mA h g-1, long cycle life (>97% capacity retention after 200 cycles at 3C rate) and high rate performance (117 mAh g-1 at 12 C) during Ca-ion (de)intercalation reactions. Differently from the previous flash molten salt method achieved in air, we designed another molten salt method under argon atmosphere to prepare 2D metal carbides (MXene) materials such as Ti3C2 (M=Ti, X=C). By playing with the chemistry of the MAX precursor and the Lewis acid melt composition, we generalize this synthesis route to a wide chemical range of MAX precursors (A=Zn, Al, Si, Ga). The obtained MXene materials (termed as MS-MXenes) exhibits enhanced electrochemical performance in Li+ containing non-aqueous electrolyte, with a capacity of 205 mAh g-1 at 1.1 C, making these materials highly promising as negative electrodes for high power Li batteries or hybrid devices such as Li-ion capacitors. Besides APS, another etchant (FeCl3) has been used to dissolve Cu. Furthermore, high conductive ACN-based electrolyte has been applied to improve the power performance of multi-layered MS-MXene. To sum up, this method allows producing new types of MXene that are difficult or even impossible to be prepared by using previously reported synthesis methods like HF etching. As a result, it expands further the range of MAX phase precursors that can be used and offer important opportunities for tuning the surface chemistry and make MS-MXene as high rate electrode in non-aqueous system
APA, Harvard, Vancouver, ISO, and other styles
10

Shao, Hui. "2D Ti3C2Tx MXenes pour le stockage électrochimique d'énergie." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30195.

Full text
Abstract:
Cette thèse vise à comprendre et étudier la cinétique électrochimique et les mécanismes de stockage de charge de l'électrode Ti3C2Tx MXene dans les systèmes aqueux, et à augmenter davantage les performances électrochimiques du Ti3C2Tx MXene dans les systèmes non aqueux. Dans la première partie de cette thèse, les comportements électrochimiques des électrodes pseudocapacitives Ti3C2Tx MXene ont été analysés dans des électrolytes aqueux par une technique de chronoampérométrie à étapes potentielles multiples (MUSCA). Le MUSCA permet de reconstruire des voltammogrammes cycliques avec une contribution de la chute ohmique considérablement plus faible, ce qui permet de déconvoluer avec précision les réponses en courant du voltammogramme partagées entre les processus de surface et ceux se déroulant dans le cœur des électrodes à tout potentiel donné, en particulier à des vitesses de balayage élevées. Une analyse cinétique électrochimique de l'électrode Ti3C2Tx utilisant les voltammogrammes calculés grâce au MUSCA a montré que le processus de surface domine à une vitesse de balayage plus élevée tandis que le processus au cœur prend le relais à la vitesse de balayage faible dans les électrolytes acides et alcalins. Par la suite, les mécanismes de stockage des charges des électrodes Ti3C2Tx dans l'électrolyte acide ont été étudiés en combinant des approches expérimentales et de simulation. Il a été démontré que la présence de molécules de H2O entre les couches de MXene joue un rôle critique dans le comportement pseudocapacitif, fournissant une voie de transport de protons pour activer la réaction redox des atomes de Ti. Dans la deuxième partie de la thèse, une gravure des phases MAX dans des acides fondus de Lewis est proposée et validée par la synthèse de divers MXènes à partir des précurseurs de phase MAX non conventionnels avec des éléments A tels que Si, Zn et Ga. Le matériau Ti3C2Tx MXene obtenu par cette méthode de synthèse de sel fondu peut fournir une capacité de stockage allant jusqu'à 738 C g^-1 (205 mAh g^-1) avec des performances à haute vitesse de balayage et une signature électrochimique pseudo-capacitive dans l'électrolyte à base de carbonate LiPF6 1M. Ce matériau offre des opportunités en tant qu'électrode négative dans les dispositifs de stockage d'énergie électrochimique
This thesis aims at studying the electrochemical kinetics and charge storage mechanisms of two-dimensional Ti3C2Tx MXene electrodes in aqueous and non-aqueous electrolytes. In the first part of this thesis, the electrochemical behaviors of pseudocapacitive Ti3C2Tx MXene electrodes were analyzed in aqueous electrolytes using a multiple potential step chronoamperometry (MUSCA) technique specifically designed for this study. The MUSCA tool allows for building back cyclic voltammograms by minimizing ohmic drop contribution. The current can then be deconvoluted at any given potentials into surface and bulk contributions,especially at high scan rates. The calculated voltammograms are further used to achieve an electrochemical kinetic analysis of the Ti3C2Tx electrode; results showed that the surface process dominates at a higher scan rate while the bulk process takes over at the low scan rate in both acidic and alkaline electrolytes. Afterward, the charge storage mechanisms of the Ti3C2Tx electrodes in the acidic electrolyte was further studied by combining experimental and simulation approaches. It was demonstrated that the presence of H2O molecules in-between the MXene layers plays a critical role in the pseudocapacitive behavior, providing a pathway for proton transportation to activate the redox reaction of the Ti atoms. In the last part of the work, a new synthesis method of MXenes has been proposed from the etching of MAX phase precursors in Lewis acidic melts. This new method allows the synthesis of various MXenes, including from MAX phase precursors with A elements such as Si, Zn, and Ga which were difficult or impossible to prepare from conventional etching from HF containing aqueous electrolyte. Ti3C2Tx MXene material obtained through this molten salt synthesis method could achieve exceptional electrochemical performance in 1M LiPF6 carbonate-based electrolyte non-aqueous electrolytes, with capacity up to 738 C g^-1 (205 mAh g^-1) with high-rate performance and pseudocapacitive-like electrochemical signature, offering opportunities as the negative electrode in electrochemical energy storage devices
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "MXene"

1

Das, Poushali, Andreas Rosenkranz, and Sayan Ganguly. MXene Nanocomposites. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Qin, Zuzeng, Tongming Su, and Hongbing Ji. MXene-Based Photocatalysts. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003156963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

George, Soney C., Sharika T. Nair, and Joice Sophia Ponraj. MXene-Filled Polymer Nanocomposites. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003164975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chakroborty, Subhendu. MXenes. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003366225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gogotsi, Yury. MXenes. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003306511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xiao, Zhuohao, Shuangchen Ruan, Ling Bing Kong, Wenxiu Que, Kun Zhou, Yin Liu, and Tianshu Zhang. MXenes and MXenes-based Composites. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59373-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pandey, Om Prakash, and Piyush Sharma, eds. MXenes: Emerging 2D Materials. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4064-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rizwan, Komal, Anish Khan, and Abdullah Mohammed Ahmed Asiri, eds. Handbook of Functionalized Nanostructured MXenes. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2038-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Khalid, Mohammad, Andrews Nirmala Grace, Arunachalam Arulraj, and Arshid Numan, eds. Fundamental Aspects and Perspectives of MXenes. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05006-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khalid, Mohammad, Andrews Nirmala Grace, Arunachalam Arulraj, and Arshid Numan, eds. Fundamental Aspects and Perspectives of MXenes. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05006-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "MXene"

1

Ganguly, Sayan. "Synthesis and Processing Strategies of MXenes." In MXene Nanocomposites, 19–36. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ponnada, Srikanth, Sarita Yadav, Demudu Babu Gorle, Indu Kumari, Battula Venkateswara Rao, and Rakesh K. Sharma. "Introduction and Background of MXenes." In MXene Nanocomposites, 1–18. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Biswas, Sayani, and Prashant S. Alegaonkar. "Electrical Conductivity of MXenes-Based Polymer Composites." In MXene Nanocomposites, 111–36. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ganguly, Sayan. "Role of Porous MXenes." In MXene Nanocomposites, 153–76. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shukla, Vineeta. "Advancement in Nanostructured Carbide/Nitrides MXenes with Different Architecture for Electromagnetic Interference Shielding Application." In MXene Nanocomposites, 247–76. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Amandeep, Sonam Gupta, K. Kumari, and P. P. Kundu. "MXene-Polymer Nanocomposites for Biomedical Applications." In MXene Nanocomposites, 197–226. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ganguly, Sayan. "Composites of MXenes." In MXene Nanocomposites, 91–110. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khatun, Nasima, and Somnath C. Roy. "Solid-Solution MXenes and Their Properties." In MXene Nanocomposites, 67–90. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wojciechowska, Anita, Madhurya Chandel, and Agnieszka Maria Jastrzębska. "Surface Functionalization and Interfacial Design of MXenes." In MXene Nanocomposites, 37–66. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Das, Poushali, Seshasai Srinivasan, and Amin Reza Rajabzadeh. "Electromagnetic Interference Shielding Behavior of MXenes." In MXene Nanocomposites, 137–52. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003281511-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "MXene"

1

Vertina, Eric Warnemunde, Emily Sutherland, N. Aaron Deskins, and Oren Mangoubi. "MXene Property Prediction via Graph Contrastive Learning." In 2024 IEEE 14th International Conference Nanomaterials: Applications & Properties (NAP), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/nap62956.2024.10739742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Diachenko, Radomyr, and Kwanil Lee. "Bound State Soliton Rain Generation in Femtosecond Fiber Laser Using Mxene Saturable Absorber." In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, JTu1A.36. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/bgpp.2024.jtu1a.36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kou, Lijie, Rawhan Haque, Aniq Shazni Mohammad Haniff, Chang Fu Dee, and Poh Choon Ooi. "Piezoelectric Nanogenerator based on Graphene and MXene Heterostructure." In 2024 IEEE International Conference on Semiconductor Electronics (ICSE), 167–70. IEEE, 2024. http://dx.doi.org/10.1109/icse62991.2024.10681343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pešić, Ivan, Milena Rašljić Rafajilović, Marko V. Bošković, Dana Vasiljević-Radović, Marko Spasenović, and Marija V. Pergal. "Preparation of Polyurethane/MXene Composite for Strain Sensor Applications." In 2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/icetran62308.2024.10645134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

P, Parthasarathy, and Manjunath V. Gudur. "MXene: A 2-Dimensional Material for Wearable and Flexible Electronics." In 2024 International Conference on Electrical Electronics and Computing Technologies (ICEECT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/iceect61758.2024.10739170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kou, Lijie, Poh Choon Ooi, Chang Fu Dee, and Muhammad Aniq Shazni Mohammad Haniff. "Piezoelectric Energy Harvesting from Thermal Vibrations Using Doped Graphene-MXene Heterostructure." In 2024 IEEE International Conference on Semiconductor Electronics (ICSE), 108–11. IEEE, 2024. http://dx.doi.org/10.1109/icse62991.2024.10681356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, Zhong, Xue Chen, Jialiang Yuan, Lexiang Lin, and Zhuo Lei. "A Dual-Band Cross-Shaped Microstrip Antenna Based on Ti3C2Tx MXene." In 2024 20th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/icnc-fskd64080.2024.10702247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xiaofei, S., J. Ji, L. You, and W. Wei. "MXene Metamaterial Absorber." In 2024 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2024. http://dx.doi.org/10.1109/iccem60619.2024.10559113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wan, Zhen, Cheng Li, Chuanxue Huang, Wei Zhou, Yang Liu, and Wenjing Fan. "Pressure sensing in Ti3C2Tx MXene photothermal actuated nanomechanical resonator." In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.tu3.57.

Full text
Abstract:
The Young’s modulus of Ti3C2Tx MXene membrane was extracted to 18 GPa, and the proposed MXene photothermal resonator with a pressure sensitivity of 24.2 kHz/kPa in the range of 0.005~100 kPa was demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Changhoon, Nu-Ri Park, Jisung Kwon, Hyerim Kim, Chong Min Koo, and Myung-Ki Kim. "Extreme light localization from MXene plasmons in short-wave infrared range." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cthp8e_03.

Full text
Abstract:
Light localization with plasmons in 2D material is restricted to mid- or long-wave infrared. Here, we demonstrate plasmons in 2D MXene, covering whole mid-infrared range. MXene plasmon exhibits wavelength 20 times shorter than vacuum wavelength.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "MXene"

1

Mahoney, Ashe, and Patrick Ward. INFLUENCE OF MXENE TERMINATION GROUPS ON HYDROGEN INTERACTIONS. Office of Scientific and Technical Information (OSTI), July 2023. http://dx.doi.org/10.2172/1993034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cooke, P., A. Pendse, and A. Noy. Rare earth separation in voltage-gated 2D MXene membranes. Office of Scientific and Technical Information (OSTI), May 2023. http://dx.doi.org/10.2172/1974667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Salah, Belal, Kamel Eid, Ahmed Abdelgwad, Aboubakr M Abdullah, Mohamed Hassan, Leena A. Al-Sulaiti, and Kenneth Ozoemena. Facile synthesis MXene (Ti3C2Tx) Decorated with Palladium Nanoparticles for Electrochemically CO Oxidation. Peeref, October 2022. http://dx.doi.org/10.54985/peeref.2210p1971989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lascola, R., and S. Murph. EXPLORING THE SUITABILITY OF MXENES FOR SENSING APPLICATIONS. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1568791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hitchcock, Dale, Brenda Garcia-Diaz, T. Krentz, and M. Drory. MAX phase materials and MXenes as hydrogen barrier coatings. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1651111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography