Academic literature on the topic 'Myc Genes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Myc Genes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Myc Genes"
Grandori, C. "Myc target genes." Trends in Biochemical Sciences 22, no. 5 (May 1997): 177–81. http://dx.doi.org/10.1016/s0968-0004(97)01025-6.
Full textCollum, R. G., D. F. Clayton, and F. W. Alt. "Structure and expression of canary myc family genes." Molecular and Cellular Biology 11, no. 3 (March 1991): 1770–76. http://dx.doi.org/10.1128/mcb.11.3.1770.
Full textCollum, R. G., D. F. Clayton, and F. W. Alt. "Structure and expression of canary myc family genes." Molecular and Cellular Biology 11, no. 3 (March 1991): 1770–76. http://dx.doi.org/10.1128/mcb.11.3.1770-1776.1991.
Full textKinzler, K. W., B. A. Zehnbauer, G. M. Brodeur, R. C. Seeger, J. M. Trent, P. S. Meltzer, and B. Vogelstein. "Amplification units containing human N-myc and c-myc genes." Proceedings of the National Academy of Sciences 83, no. 4 (February 1, 1986): 1031–35. http://dx.doi.org/10.1073/pnas.83.4.1031.
Full textLi, Feng, Yunyue Wang, Karen I. Zeller, James J. Potter, Diane R. Wonsey, Kathryn A. O'Donnell, Jung-whan Kim, Jason T. Yustein, Linda A. Lee, and Chi V. Dang. "Myc Stimulates Nuclearly Encoded Mitochondrial Genes and Mitochondrial Biogenesis." Molecular and Cellular Biology 25, no. 14 (July 2005): 6225–34. http://dx.doi.org/10.1128/mcb.25.14.6225-6234.2005.
Full textVersteeg, R., C. van der Minne, A. Plomp, A. Sijts, A. van Leeuwen, and P. Schrier. "N-myc expression switched off and class I human leukocyte antigen expression switched on after somatic cell fusion of neuroblastoma cells." Molecular and Cellular Biology 10, no. 10 (October 1990): 5416–23. http://dx.doi.org/10.1128/mcb.10.10.5416.
Full textVersteeg, R., C. van der Minne, A. Plomp, A. Sijts, A. van Leeuwen, and P. Schrier. "N-myc expression switched off and class I human leukocyte antigen expression switched on after somatic cell fusion of neuroblastoma cells." Molecular and Cellular Biology 10, no. 10 (October 1990): 5416–23. http://dx.doi.org/10.1128/mcb.10.10.5416-5423.1990.
Full textDunnick, Wesley, James Baumgartner, Lee Fradkin, Cynthia Schultz, and Paul Szurek. "Methylation of plasmacytoma c-myc genes." Gene 39, no. 2-3 (January 1985): 287–92. http://dx.doi.org/10.1016/0378-1119(85)90325-7.
Full textRimpi, S., and J. A. Nilsson. "Metabolic enzymes regulated by the Myc oncogene are possible targets for chemotherapy or chemoprevention." Biochemical Society Transactions 35, no. 2 (March 20, 2007): 305–10. http://dx.doi.org/10.1042/bst0350305.
Full textLeffak, M., and C. D. James. "Opposite replication polarity of the germ line c-myc gene in HeLa cells compared with that of two Burkitt lymphoma cell lines." Molecular and Cellular Biology 9, no. 2 (February 1989): 586–93. http://dx.doi.org/10.1128/mcb.9.2.586.
Full textDissertations / Theses on the topic "Myc Genes"
James, Leonard Philip. "Myc and Mad target genes /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/5093.
Full textCairo, Stefano. "The promyelocytic leukaemia gene product PML interacts with Myc and influences the expression of Myc target genes." Thesis, Open University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406451.
Full textVulcani-Freitas, Tânia Maria [UNIFESP]. "Perfil de expressão dos genes MYC, MYCN, TERT, ASPM e PRAME em Meduloblastoma." Universidade Federal de São Paulo (UNIFESP), 2010. http://repositorio.unifesp.br/handle/11600/9928.
Full textMeduloblastoma (MB) é o tumor maligno de sistema nervoso central (SNC) mais comum em criança, compreendendo 20% dos tumores primários de SNC e 40% dos tumores cerebelares da infância. Devido sua forte tendência metastática, o tratamento padrão pós-operatório inclui radio e quimioterapia, cujo impacto causa distúrbios endócrinos e de crescimento, e disfunção neurocognitiva a longo prazo. Frente a esses efeitos negativos, muitas pesquisas em meduloblastoma têm sido realizadas com intuito de obter conhecimento biológico desses tumores para tentar identificar fatores prognósticos moleculares que possam orientar os tratamentos, tornando-os mais específicos e menos agressivos. Alguns estudos em MB têm sugerido que a expressão do oncogene MYC está associada com diminuição da sobrevida e sua superexpressão com maior agressividade do tumor. Por isso, MYC pode ser um indicador importante de prognóstico, além de modulador do comportamento desta doença. Enquanto o gene MYC é expresso em uma variedade de tecidos, a expressão de MYCN, outro membro da família MYC, é restrita a estágios precoces do desenvolvimento embrionário de alguns tecidos apenas, entre eles, o sistema nervoso central e periférico, sendo um mediador importante dos efeitos de ativação na proliferação de células precursoras cerebelares. Dessa forma, quando a expressão de MYCN está desregulada, ela aumenta a tumorigenicidade dessas células podendo dar origem ao MB. Além disso, o gene MYC também é considerado importante regulador da transcrição TERT, gene que codifica uma subunidade catálica de da telomerase, enzima importante para carcinogênese e imortalização de células neoplásicas. A atividade anormal da telomerase está presente em 90% dos cânceres e o aumento de sua atividade está associado a eventos clínicos desfavoráveis. Outro gene importante é o ASPM (abnormal spindle-like microcephaly associated) que desempenha função fundamental na neurogênese e proliferação celular durante o desenvolvimento cerebral. Esse gene codifica uma proteína de centrossomo e fuso mitótico que permite a divisão celular simétrica em células neuroepiteliais durante o desenvolvimento e aumento do tamanho cerebral. Alterações em ASPM é a causa mais comum de microcefalia primária em humanos e de falha de segregação, induzindo a aneuploidias e instabilidade genética. Além desses genes, outro gene estudado recentemente, como alvo em xv imunoterapia, é o gene PRAME que codifica um antígeno tumoral que está presente em vários tumores, incluindo meduloblastoma. O gene PRAME possui baixa ou ausência de expressão em tecidos normais, por isso é pode ser um forte candidato como alvo em imunoterapia, que é um tratamento menos tóxico. OBJETIVOS: O objetivo desse estudo foi investigar a expressão dos genes MYC, MYCN, TERT, ASPM e PRAME em fragmentos tumorais de meduloblastoma de crianças e tentar correlacionar com os parâmetros clínicos e verificar se há correlação de MYC, MYCN, TERT entre si, uma vez que estão correlacionados. MÉTODOS: Análise de expressão gênica foi realizada através de PCR quantitativa em tempo real, utilizando sistema SYBR Green, em 37 amostras tumorais de crianças, com média de idade de 8 anos. Para comparação de perfil de expressão foi usada duas amostra de cérebro normal. A análise estatística foi realizada nos programas Graph Pad Prism 4 e VassarStats RESULTADOS: Todas nossas amostras superexpressaram o gene MYCN com valor de quantificação relativa (RQ) mediana igual a 31 com p=0.001; assim como, todas nossas amostras também superexpressaram o gene ASPM com mediana igual a 586, p<0.0001. Do total de amostras, 95%, 81% e 84% superexpressaram TERT, MYC e PRAME respectivamente, sendo os valores de RQ (mediana) iguais a 322, p=0.01; 9.2, p<0.0001; 33, p<0.0001. Apesar da elevada expressão dos genes estudados na maioria das amostras estudadas, houve apenas correlação estatística entre a superexpressão de MYCN (p=0.008) e os pacientes que foram a óbito, e de TERT e os pacientes que recidivaram (p=0.0431). Não encontramos outra correlação estatística entre a superexpressão dos genes e as características clínicas dos pacientes. CONCLUSÃO: Os genes MYC, MYCN e TERT estavam superexpressos nas amostras de meduloblastoma analisadas em uma freqüência muito superior ao demonstrado na literatura, o que sugere que esses três genes podem ajudar na identificação de tumores agressivos, uma vez que o pognóstico desses pacientes continua baseado apenas em parâmentros clínicos. A superexpressão de ASPM em todas as amostras estudadas sugere que este gene pode estar envolvido na origem de MB, como parte da neurogênse anormal durante o desenvolvimento embrionário, porém estudoas funcionais devem ser realizados para confirmar essa hipótese. Por fim, o gene PRAME pode ser candidato à marcador de célula tumoral em MB, podendo no futuro ser candidato como alvo em imunoterapias.
To investigate the expression of genes MYC, MYCN and TERT in tumor fragments of pediatric medulloblastoma and correlate gene expression profiles with clinical parameters. Analysis of gene expression was performed by quantitative PCR real time in 37 tumor samples and correlated with clinical and pathological data. All 37 samples overexpressed MYCN gene (p= 0.001), 95% and 84% of the samples overexpressed TERT and MYC, respectively (p<0.0001). Twenty nine (78%) of all samples had concomitant high expression of MYC, MYCN and TERT genes together. Seventeen (59%) were high-risk classification, 10 (34%) were metastatic (M+) stage, two (7%) were anaplastic or largecell/ anaplastic subtype, eight (28%) of patients relapsed, beyond thirteen (45%) suffered partial surgical resection. and fourteen (48%) died. We found correlation between MYC, MYCN and TERT expression (p<0.0001). The identification of a subgroup with concomitant overexpression of the three investigated genes suggests the possibility of using more than one aspect of molecular indicative of unfavorable prognosis that characterizes the group with poor outcome. However, in future this may be enhanced by targeted therapy for the product TERT as proposed in some neoplasms. The identification of molecular events in the medulloblastoma categorization aims to help at-risk groups moving towards individualized medicine.
TEDE
BV UNIFESP: Teses e dissertações
Evans, Joanne R. "The investigation of internal ribosome entry in the c-myc and c-myb genes." Thesis, University of Leicester, 2003. http://hdl.handle.net/2381/29681.
Full textÖstergren, Tiolina. "Identification of MYCN and SOX9 target genes and a study of drug treatment effects in medulloblastoma." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262085.
Full textMadisen, Linda. "Lymphoid specific elements deregulate c-myc transcription following chromosomal translocation in murine plasmacytoma and human Burkitt's lymphoma cells /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6324.
Full textPeres, Raquel Mary Rodrigues 1983. "Instabilidade genômica em neoplasias malignas da mama em função da concentração de alumínio intracelular : Genomic instability association with intracellular aluminum concentration in breast tumors." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/310522.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-11-07T13:37:40Z (GMT). No. of bitstreams: 1 Peres_RaquelMaryRodrigues_D.pdf: 3497486 bytes, checksum: c509c5d08807f1a5bcd1b918eaf7d09d (MD5) Previous issue date: 2013
Resumo: Introdução: A hipótese de que os efeitos do alumínio em células humanas podem ter implicações clínicas tem sido levantada há algum tempo, especialmente no que concerne ao câncer de mama. As evidências laboratoriais mostrando altos níveis de alumínio nos tecidos da mama e os efeitos biológicos conhecidos sobre esse metal não são suficientes para estabelecer uma relação causal entre a exposição ao alumínio e o risco aumentando para o desenvolvimento do câncer de mama. O objetivo deste estudo foi estabelecer a concentração de alumínio nas áreas centrais e periféricas de tumores de mama, assim como na área glandular normal da mama e correlacionar esses achados com a instabilidade dos genes ERBB2, C-MYC e CCND1 e a aneuploidia dos cromossomos que contêm estes genes. Métodos: Para este estudo foram incluídas 176 mulheres com diagnóstico de carcinoma invasor de mama, com tumores maiores de 1cm3, sem quimioterapia neoadjuvante, operadas enter 2008 e 2010 no Hospital da Mulher Prof. Dr. José Aristodemo Pinotti - Centro de Atenção Integral à Saúde da Mulher (CAISM) - UNICAMP. Para a análise da concentração de alumínio intracelular, amostras de 150 pacientes foram consideradas viáveis; para a análise da instabilidade genômica em função da concentração de alumínio, 118 amostras foram consideradas viáveis, definindo o espaço amostral de cada um dos artigos apresentados. As amostras das áreas centrais e periféricas dos tumores de mama e das áreas glandulares normais da mama foram obtidas. A quantificação do alumínio contido nos tecidos da mama foi feita através da técnica de Espectrometria de Absorção Atômica em Forno de Grafite (GFAAS). Uma lâmina de Tissue Microarray (TMA), contendo as amostras de tumor e tecido normal foi utilizado para a realização da técnica de FISH para acessar o status dos genes ERBB2, C-MYC e CCND1 e dos centrômeros dos seus respectivos cromossomos 17, 8 e 11. Os dados clínico-patológicos foram obtidos dos prontuários de pacientes. Resultados: A média da concentração de alumínio encontrada na mama foi de 1,88 mg/kg nas áreas centrais do tumor, 2,10mg/kg nas áreas periféricas do tumor e 1,68mg/kg nas áreas de tecido glandular normal. A amplificação e/ou aneuploidia para ERBB2/CEP17, C-MYC/CEP8 e CCND1/CEP11 foi encontrada em 24%, 36,7% e 29,3% dos tumores, respectivamente. A média da concentração de alumínio nas áreas tumorais (tanto centrais quanto periféricas) não foi significativamente diferente daquela nas áreas de tecido normal. A concentração de alumínio também não foi significativamente associada a nenhum status de amplificação e/ou aneuploidia para os genes/cromossomos em questão. Conclusões: Consideramos importante que estudos experimentais in vitro continuem sendo realizados para elucidar os possíveis efeitos do alumínio nos tumores de mama, quer sejam esses efeitos relacionados ao microambiente tecidual ou mesmo a outras vias de estabilidade genômica
Abstract: Introduction: It has long been hypothesized if the effects of aluminum on human cells may have clinical implications, especially regarding to breast cancer. The current laboratorial evidence showing higher levels of aluminum in breast tissues and the known biological effects of this metal, are not sufficient to establish a causal relationship between aluminum exposure and increased risk of developing breast cancer. The objective of this study was to establish the aluminum concentration in the central and peripheral areas of breast tumors as well as in normal glandular area of the breast and to correlate these findings with the instability of ERBB2, C-MYC and CCND1, and aneuploidy of chromosomes harboring these genes. Methods: This study included 176 women diagnosed with invasive breast carcinoma with tumors larger than 1cm3 without neoadjuvant chemotherapy, operated between 2008 and 2010 at the Women's Hospital Professor. Dr. José Aristodemo Pinotti - Centro de Atenção Integral à Saúde da Mulher (CAISM) - UNICAMP. To analyze the intracellular concentration of aluminum, samples from 150 patients were considered viable; for the analysis of genomic instability as a function of the concentration of aluminum, 118 samples were considered viable. These figures define the sample of each of the two articles that this PhD thesis comprises. Evaluation of tissue aluminum content was carried out using Graphite Furnace Atomic Absorption Spectrometry (GFAAS). A TMA slide containing the tumor and normal samples was used in FISH assays to assess ERBB2, C-MYC and CCND1 and the respective chromosomes 17, 8 and 11 centromeres status. Clinicopathological data were obtained from patients' records. Results: The average aluminum content found in breast was 1.88 mg/kg in the central tumor areas, 2.10 mg/ kg in the peripheral tumor areas and 1.68 mg/ kg in the normal tissue areas. The amplification and/or aneuploid status for the ERBB2/CEP17, C-MYC/CEP8 and CCND1/CEP11 was detected in 24%, 36.7% and 29.3% of the tumors, respectively. The average aluminum content in tumor areas (either central or peripheral) was not significantly different from that in normal tissues. We found that aluminum concentration was not related to any of the gene status. Conclusions: We consider important that in vitro experimental studies continue to be done in order to elucidate the possible effects of aluminum in the development of breast tumors, whether it is influencing the tissue microenvironment or other genome stability pathways
Doutorado
Oncologia Ginecológica e Mamária
Doutora em Ciências da Saúde
Lee, Sun Young. "The search for Myc-family genes in lepidopteran insects, strategies and applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq62172.pdf.
Full textIbson, Julia Mary. "Structure and expression of myc genes in human small cell lung cancer." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.330254.
Full textSouza, Ana Carolina Mamana Fernandes de. "Comparação das técnicas de PCR em tempo real e PCR para o estudo dos genes MYCN, DDX1 e NAG em pacientes portadores de neuroblastoma." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/5/5136/tde-21062007-141525/.
Full textNeuroblastoma is the most common and deadly extra-cranial solid childhood tumor. Survival rates for aggressive neuroblastomas are still disappointingly low. One of the hopes is that molecular studies will provide insights into the genes and molecular pathways that govern neuroblastoma pathogenesis. However, at present only a few genes as MYCN have been directly linked to neuroblastoma. MYCN oncogene amplification, occurring in up to 25% of neuroblastomas, has been considered the most important prognostic factor, strongly correlating to advanced stage disease and treatment failure. Another genes in the MYCN amplicon, including the DEAD box polypeptide 1 (DDX1) gene, and neuroblastoma-amplified gene (NAG gene), have been found to be frequently co-amplified with MYCN in NB. But the prognostic significance of the coamplification remains unclear. The aims of this study were to evaluate which is the best method to study the gene amplification of those three genes MYCN, DDX1 and NAG, as well as clarify the prognostic significance of the co-amplification or DDX1 and NAG with MYCN. Procedure: The gene copy numbers of MYCN, DDX1, and NAG were determined by the real-time quantitative polymerase chain reaction and conventional polymerase chain reaction in 100 primary NBs. Real-Time data were analyzed by absolute and relative quantification. For conventional PCR, samples were electrophoresed on a 2% agarose gel and the intensity of each band evaluated by Kodak image software. To evaluate of the prognostic significance of the gene amplification we had only 74 cases in witch we could analyze the follow-up. Results: In all 74 cases, both methods demonstrated that MYCN amplification was associated mainly with advanced cancer stages, and the analysis of overall survival confirmed that patients without MYCN amplification had a cumulative survival significantly higher than patients with oncogene amplification. We also studied DDX1 and NAG amplification for all NB samples even that without MYCN amplification. No relationship between any gene co-amplification status and disease stage, age at diagnosis, or overall survival was found. Conclusions: The two methods used to calculate gene copy number for Real Time PCR assay shown to be equivalent. Real Time PCR assay shown to be more accurate to study gene amplification than conventional PCR assay. Survival analysis pointed out that DDX1 and/or NAG amplification has no additional adverse effect on prognosis.
Books on the topic "Myc Genes"
Perry, Claire Louise. A search for novel MHC-encoded IDDM susceptibility genes using oriental haplotypes. Birmingham: University of Birmingham, 1997.
Find full textSoucie, Erinn Louisa. Myc and apoptosis: Identifying key regulators and target genes. 2004.
Find full textEisenman, Robert N., and Chi V. Dang. MYC and the Pathway to Cancer. Cold Spring Harbor Laboratory Press, 2014.
Find full textPotter, M. C-myc In B-cell Neoplasia: 14TH WORKSHOP ON MECHANISMS IN B-CELL NEOPLASIA (Current Topics in Microbiology & Immunology). Edited by M. Potter. SPRINGER-VERLAG, 1997.
Find full textMichael, Browning, and McMichael Andrew J, eds. HLA and MHC: Genes, molecules and function. Oxford: BIOS Scientific, 1996.
Find full textYang, Wei-Cheng. Sequence Analysis of MHC Class II Genes in Cetaceans. INTECH Open Access Publisher, 2012.
Find full textBrowning, Michael. HLA AND MHC GENES MOLECULES AND FUNCTIONS (Human Molecular Genetics). Routledge, 1996.
Find full textBrowning, Michael, and Andrew McMichael. HLA and MHC: Genes, Molecules and Function (Human Molecular Genetics Series). Academic Pr, 1999.
Find full textAptsiauri, Natalia, Angel Miguel Garcia-Lora, and Teresa Cabrera. MHC Class I Antigens In Malignant Cells: Immune Escape And Response To Immunotherapy. Springer, 2013.
Find full textBook chapters on the topic "Myc Genes"
Dang, Chi V., and Linda A. Lee. "Retroviruses, Cancer Genes, and Tumor Suppressor Genes." In c-Myc Function in Neoplasia, 37–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-22681-0_2.
Full textShim, H., B. C. Lewis, C. Dolde, Q. Li, C. S. Wu, Y. S. Chun, and C. V. Dang. "Myc Target Genes in Neoplastic Tranformation." In Current Topics in Microbiology and Immunology, 181–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60801-8_18.
Full textGrandori, Carla. "A High-Throughput siRNA Screening Platform to Identify MYC-Synthetic Lethal Genes as Candidate Therapeutic Targets." In The Myc Gene, 187–200. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-429-6_12.
Full textKato, Gregory J., Daniel S. Wechsler, and Chi V. Dang. "DNA binding by the Myc oncoproteins." In Oncogenes and Tumor Suppressor Genes in Human Malignancies, 313–25. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3088-6_16.
Full textDean, M., J. Cleveland, H. Y. Kim, J. Campisi, R. A. Levine, J. N. Ihle, and U. Rapp. "Deregulation of the c-myc and N-myc Genes in Transformed Cells." In Current Topics in Microbiology and Immunology, 216–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-74006-0_29.
Full textDang, Chi V., and Linda A. Lee. "Myc Target Genes in Cell Proliferation and Programmed Cell Death." In c-Myc Function in Neoplasia, 171–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-22681-0_10.
Full textDildrop, R., K. Zimmerman, R. A. DePinho, G. D. Yancopoulos, A. Tesfaye, and F. W. Alt. "Differential Expression of myc-family Genes During Development: Normal and Deregulated N-myc Expression in Transgenic Mice." In Current Topics in Microbiology and Immunology, 100–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-74006-0_14.
Full textPapas, T. S., N. C. Kan, D. K. Watson, J. A. Lautenberger, C. Flordellis, K. P. Samuel, U. G. Rovigatti, M. C. Psallidopoulos, R. Ascione, and P. H. Duesberg. "Myc, a Genetic Element that is Shared by a Cellular Gene (proto-myc) and by viruses with one (MC29) or two (MH2) onc genes." In RNA Tumor Viruses, Oncogenes, Human Cancer and AIDS: On the Frontiers of Understanding, 1–13. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2583-3_1.
Full textKerr, D. J., J. A. Plumb, G. C. Wishart, M. Z. Khan, R. I. Freshney, and D. A. Spandidos. "The Effect of H-ras and C-myc Oncogene Transfection on the Response of Lung Epithelial Cells to Growth Factors and Cytotoxic Drugs." In The Superfamily of ras-Related Genes, 285–94. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6018-6_31.
Full textZaritskey, A., I. Stuif, T. Bykova, A. Sominskaya, N. Anikina, and B. Afanasiev. "Coexpression of mdr-1 and myc Genes in Relation to Prognosis in Acute Leukemia Patients." In Acute Leukemias VI, 593–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60377-8_93.
Full textConference papers on the topic "Myc Genes"
"In silico analysis of the R2R3-Myb, bHLH-Myc and WDR proathocyanidins regulatory genes in Gossypium genus." In SYSTEMS BIOLOGY AND BIOINFORMATICS (SBB-2020). Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences., 2020. http://dx.doi.org/10.18699/sbb-2020-23.
Full textPicard, Daniel J., Limei Zhou, Yaqi Hu, Meihua Li, David Shih, Duncan Stearns, Susan Cohn, et al. "Abstract 3109: Myc confers aggressive medulloblastoma phenotypes by regulating cell migration and adhesion genes." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3109.
Full textSato, Fuyuki, and Yasueru Muragaki. "Abstract 3355: Clock genes DEC1 and BMAL1 regulate the expression of stem cell marker genes Sox2 and c-Myc in cervical cancer." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3355.
Full textAnderson, Philip D., Sydika A. McKissic, Monica Logan, Meejeon Roh, Omar Franco, Jie Wang, Irina Doubinskaia, et al. "Abstract 2983: Nkx3.1 and c-Myc co-regulate shared target genes involved in prostate cancer." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2983.
Full textJi, Hongkai, George Wu, Xiangcan Zhan, Alexandra Nolan, Cheryl Koh, Angelo De Marzo, Jinshui Fan, et al. "Abstract 928: Species and cell type independent core MYC target genes in cancer and stem cells." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-928.
Full textZhang, Kai, Hien Dang, and Anna Barry. "Abstract 2483: NELFE modulates chromatin accessibility to amplify the transcription of MYC-associated genes in hepatocellular carcinoma." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-2483.
Full textDudek, Hank, Kathleen Wortham, Rokhand Arvan, Anee Shah, Bo Ying, Wendy Cyr, Hailin Yang, et al. "Abstract B222: Dicer substrate siRNAs to MYC, B-catenin, and other target genes effectively induce in vivo target gene knockdown and tumor inhibition." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-b222.
Full textHook, Kenneth E., Adam Pavlicek, Scott J. Garza, Maruja E. Lira, Keith Ching, Julie Kan, Sreesha P. Srinivasa, and James G. Christensen. "Abstract 2615: Amplification and/or high expression of Myc family genes sensitizes tumor cells to aurora kinase inhibitors." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-2615.
Full textPal, Bidisha, Wael Tasabehji, Sandhya Sorra, Joyeeta Talukdar, and Bikul Das. "Abstract 4297: MYC HIF-2 alpha embryonic stemness genes mediate a transcriptional network to maintain asymmetric self-renewal in oral cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-4297.
Full textBhadury, Joydeep, Lisa M. Nilsson, Muralidharan Veppil Somsundar, Lydia C. Green, Ulrich B. Keller, Kevin G. McLure, and Jonas A. Nilsson. "Abstract B26: BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma." In Abstracts: AACR Special Conference on Myc: From Biology to Therapy; January 7-10, 2015; La Jolla, CA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3125.myc15-b26.
Full textReports on the topic "Myc Genes"
Pillai, Shiv S. MHC Genes and Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada394028.
Full textSheen, Joon-Ho. A Gene Amplification Phenotype in c-Myc-Induced Mammary Tumors Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada396567.
Full textSheen, Joon-Ho. A Gene Amplification Phenotype in c-Myc-Induced Mammary Tumors Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada390716.
Full textMelkoumian, Zaroui. Regulation of C-myc Gene Expression by Potassium Channel Blocker Quindine in MCF-7 Human Breast Cancer Cell Line. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada384096.
Full textYe, Shanli. DNA Sequences Involved in the Regulation of Human c-myc Gene Expression by Herpes Simplex Virus Type 1 (HSV-1). Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7097.
Full textHarrison, Maria J., and Matthew E. Hudson. Identification of genes that regulate phosphate acquisition and plant performance during arbuscular my corrhizal symbiosis in medicago truncatula and brachypodium distachyon. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1226798.
Full text