Journal articles on the topic 'Mycobacterial Protein Synthesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mycobacterial Protein Synthesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gan, Wei Chong, Hien Fuh Ng, and Yun Fong Ngeow. "Mechanisms of Linezolid Resistance in Mycobacteria." Pharmaceuticals 16, no. 6 (2023): 784. http://dx.doi.org/10.3390/ph16060784.
Full textRao, Alka, Geeta Ram, Adesh Kumar Saini, et al. "Synthesis and Selection of De Novo Proteins That Bind and Impede Cellular Functions of an Essential Mycobacterial Protein." Applied and Environmental Microbiology 73, no. 4 (2006): 1320–31. http://dx.doi.org/10.1128/aem.02461-06.
Full textDoherty, T. M., R. J. Booth, S. G. Love, J. J. Gibson, D. R. Harding, and J. D. Watson. "Characterization of an antibody-binding epitope from the 18-kDa protein on Mycobacterium leprae." Journal of Immunology 142, no. 5 (1989): 1691–95. http://dx.doi.org/10.4049/jimmunol.142.5.1691.
Full textRodrigues, José, Vanessa T. Almeida, Ana L. Rosário, et al. "High Throughput Expression Screening of Arabinofuranosyltransferases from Mycobacteria." Processes 9, no. 4 (2021): 629. http://dx.doi.org/10.3390/pr9040629.
Full textDriss, Virginie, Fanny Legrand, Emmanuel Hermann та ін. "TLR2-dependent eosinophil interactions with mycobacteria: role of α-defensins". Blood 113, № 14 (2009): 3235–44. http://dx.doi.org/10.1182/blood-2008-07-166595.
Full textRoach, Shannon K., and Jeffrey S. Schorey. "Differential Regulation of the Mitogen-Activated Protein Kinases by Pathogenic and Nonpathogenic Mycobacteria." Infection and Immunity 70, no. 6 (2002): 3040–52. http://dx.doi.org/10.1128/iai.70.6.3040-3052.2002.
Full textMir, Mushtaq, Sladjana Prisic, Choong-Min Kang, et al. "Mycobacterial GenecuvAIs Required for Optimal Nutrient Utilization and Virulence." Infection and Immunity 82, no. 10 (2014): 4104–17. http://dx.doi.org/10.1128/iai.02207-14.
Full textGupta, Kuldeepkumar Ramnaresh, Gunjan Arora, Abid Mattoo, and Andaleeb Sajid. "Stringent Response in Mycobacteria: From Biology to Therapeutic Potential." Pathogens 10, no. 11 (2021): 1417. http://dx.doi.org/10.3390/pathogens10111417.
Full textGobala Krishnan P, Gnanaprakash K, and Chandrasekhar KB. "Design, synthesis, characterization and antitubercular activity of some nov-el 2, 4-disubstituted thiazole derivatives." International Journal of Research in Pharmaceutical Sciences 10, no. 2 (2019): 1504–9. http://dx.doi.org/10.26452/ijrps.v10i2.729.
Full textKatsube, Tomoya, Sohkichi Matsumoto, Masaki Takatsuka, et al. "Control of Cell Wall Assembly by a Histone-Like Protein in Mycobacteria." Journal of Bacteriology 189, no. 22 (2007): 8241–49. http://dx.doi.org/10.1128/jb.00550-07.
Full textGreve, Jennifer, Axel Mogk, and Uli Kazmaier. "Total Synthesis and Biological Evaluation of Modified Ilamycin Derivatives." Marine Drugs 20, no. 10 (2022): 632. http://dx.doi.org/10.3390/md20100632.
Full textHu, Zhe, and John E. Cronan. "The primary step of biotin synthesis in mycobacteria." Proceedings of the National Academy of Sciences 117, no. 38 (2020): 23794–801. http://dx.doi.org/10.1073/pnas.2010189117.
Full textBrzostek, Anna, Filip Gąsior, Jakub Lach, et al. "ATP-Dependent Ligases and AEP Primases Affect the Profile and Frequency of Mutations in Mycobacteria under Oxidative Stress." Genes 12, no. 4 (2021): 547. http://dx.doi.org/10.3390/genes12040547.
Full textEzquerra-Aznárez, José Manuel, Giulia Degiacomi, Henrich Gašparovič, et al. "The Veterinary Anti-Parasitic Selamectin Is a Novel Inhibitor of the Mycobacterium tuberculosis DprE1 Enzyme." International Journal of Molecular Sciences 23, no. 2 (2022): 771. http://dx.doi.org/10.3390/ijms23020771.
Full textKuron, Aneta, Malgorzata Korycka-Machala, Anna Brzostek, et al. "Evaluation of DNA Primase DnaG as a Potential Target for Antibiotics." Antimicrobial Agents and Chemotherapy 58, no. 3 (2013): 1699–706. http://dx.doi.org/10.1128/aac.01721-13.
Full textSinha, Sudhir, K. Kosalai, Shalini Arora, et al. "Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics." Microbiology 151, no. 7 (2005): 2411–19. http://dx.doi.org/10.1099/mic.0.27799-0.
Full textPatel, Onisha, Rajini Brammananth, Weiwen Dai, et al. "Crystal structure of the putative cell-wall lipoglycan biosynthesis protein LmcA from Mycobacterium smegmatis." Acta Crystallographica Section D Structural Biology 78, no. 4 (2022): 494–508. http://dx.doi.org/10.1107/s2059798322001772.
Full textSuttmann, Henrik, Nadine Lehan, Andreas Böhle, and Sven Brandau. "Stimulation of Neutrophil Granulocytes with Mycobacterium bovis Bacillus Calmette-Guérin Induces Changes in Phenotype and Gene Expression and Inhibits Spontaneous Apoptosis." Infection and Immunity 71, no. 8 (2003): 4647–56. http://dx.doi.org/10.1128/iai.71.8.4647-4656.2003.
Full textBerman, J. S., R. L. Blumenthal, H. Kornfeld, et al. "Chemotactic activity of mycobacterial lipoarabinomannans for human blood T lymphocytes in vitro." Journal of Immunology 156, no. 10 (1996): 3828–35. http://dx.doi.org/10.4049/jimmunol.156.10.3828.
Full textGhosh, Shreya, Sourabh Samaddar, Prithwiraj Kirtania, and Sujoy K. Das Gupta. "A DinB Ortholog Enables Mycobacterial Growth under dTTP-Limiting Conditions Induced by the Expression of a Mycobacteriophage-Derived Ribonucleotide Reductase Gene." Journal of Bacteriology 198, no. 2 (2015): 352–62. http://dx.doi.org/10.1128/jb.00669-15.
Full textStinear, Timothy P., Melinda J. Pryor, Jessica L. Porter, and Stewart T. Cole. "Functional analysis and annotation of the virulence plasmid pMUM001 from Mycobacterium ulcerans." Microbiology 151, no. 3 (2005): 683–92. http://dx.doi.org/10.1099/mic.0.27674-0.
Full textSlayden, R. A., R. E. Lee, J. W. Armour, et al. "Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis." Antimicrobial Agents and Chemotherapy 40, no. 12 (1996): 2813–19. http://dx.doi.org/10.1128/aac.40.12.2813.
Full textRodriguez, G. Marcela, Martin I. Voskuil, Benjamin Gold, Gary K. Schoolnik, and Issar Smith. "ideR, an Essential Gene in Mycobacterium tuberculosis: Role of IdeR in Iron-Dependent Gene Expression, Iron Metabolism, and Oxidative Stress Response." Infection and Immunity 70, no. 7 (2002): 3371–81. http://dx.doi.org/10.1128/iai.70.7.3371-3381.2002.
Full textThomas, Sherine E., Andrew J. Whitehouse, Karen Brown, et al. "Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification." Nucleic Acids Research 48, no. 14 (2020): 8099–112. http://dx.doi.org/10.1093/nar/gkaa539.
Full textYamazaki, Yoshitaka, Lia Danelishvili, Martin Wu, Molly MacNab, and Luiz E. Bermudez. "Mycobacterium avium Genes Associated with the Ability To Form a Biofilm." Applied and Environmental Microbiology 72, no. 1 (2006): 819–25. http://dx.doi.org/10.1128/aem.72.1.819-825.2006.
Full textDanelishvili, Lia, Martin Wu, Lowell S. Young, and Luiz E. Bermudez. "Genomic Approach to Identifying the Putative Target of and Mechanisms of Resistance to Mefloquine in Mycobacteria." Antimicrobial Agents and Chemotherapy 49, no. 9 (2005): 3707–14. http://dx.doi.org/10.1128/aac.49.9.3707-3714.2005.
Full textMalik, Muhammad, Tao Lu, Xilin Zhao, et al. "Lethality of Quinolones against Mycobacterium smegmatis in the Presence or Absence of Chloramphenicol." Antimicrobial Agents and Chemotherapy 49, no. 5 (2005): 2008–14. http://dx.doi.org/10.1128/aac.49.5.2008-2014.2005.
Full textGurvitz, Aner, J. Kalervo Hiltunen, and Alexander J. Kastaniotis. "Heterologous Expression of Mycobacterial Proteins in Saccharomyces cerevisiae Reveals Two Physiologically Functional 3-Hydroxyacyl-Thioester Dehydratases, HtdX and HtdY, in Addition to HadABC and HtdZ." Journal of Bacteriology 191, no. 8 (2009): 2683–90. http://dx.doi.org/10.1128/jb.01046-08.
Full textLewthwaite, Jo C., Anthony R. M. Coates, Peter Tormay, et al. "Mycobacterium tuberculosisChaperonin 60.1 Is a More Potent Cytokine Stimulator than Chaperonin 60.2 (Hsp 65) and Contains a CD14-Binding Domain." Infection and Immunity 69, no. 12 (2001): 7349–55. http://dx.doi.org/10.1128/iai.69.12.7349-7355.2001.
Full textSarathy, Jickky Palmae, Gerhard Gruber, and Thomas Dick. "Re-Understanding the Mechanisms of Action of the Anti-Mycobacterial Drug Bedaquiline." Antibiotics 8, no. 4 (2019): 261. http://dx.doi.org/10.3390/antibiotics8040261.
Full textMikušová, Katarína, Martina Beláňová, Jana Korduláková, et al. "Identification of a Novel Galactosyl Transferase Involved in Biosynthesis of the Mycobacterial Cell Wall." Journal of Bacteriology 188, no. 18 (2006): 6592–98. http://dx.doi.org/10.1128/jb.00489-06.
Full textMatsunaga, Isamu, Apoorva Bhatt, David C. Young, et al. "Mycobacterium tuberculosis pks12 Produces a Novel Polyketide Presented by CD1c to T Cells." Journal of Experimental Medicine 200, no. 12 (2004): 1559–69. http://dx.doi.org/10.1084/jem.20041429.
Full textPflégr, Václav, Jana Maixnerová, Jiřina Stolaříková, et al. "Design and Synthesis of Highly Active Antimycobacterial Mutual Esters of 2-(2-Isonicotinoylhydrazineylidene)propanoic Acid." Pharmaceuticals 14, no. 12 (2021): 1302. http://dx.doi.org/10.3390/ph14121302.
Full textYokoyama, Kazumasa, Davide Cossu, Yasunobu Hoshino, Yuji Tomizawa, Eiichi Momotani, and Nobutaka Hattori. "Anti-Mycobacterial Antibodies in Paired Cerebrospinal Fluid and Serum Samples from Japanese Patients with Multiple Sclerosis or Neuromyelitis Optica Spectrum Disorder." Journal of Clinical Medicine 7, no. 12 (2018): 522. http://dx.doi.org/10.3390/jcm7120522.
Full textStephanie, Filia, Usman Sumo Friend Tambunan, and Teruna J. Siahaan. "M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts." Life 12, no. 11 (2022): 1774. http://dx.doi.org/10.3390/life12111774.
Full textZhang, Lu, Yao Zhao, Ruogu Gao, et al. "Cryo-EM snapshots of mycobacterial arabinosyltransferase complex EmbB2-AcpM2." Protein & Cell 11, no. 7 (2020): 505–17. http://dx.doi.org/10.1007/s13238-020-00726-6.
Full textSow, Fatoumata Ba, Larry Schlesinger, Abhay Satoskar, Bruce Zwilling та William Lafuse. "Hepcidin is synergistically induced in mouse macrophages by mycobacteria and IFN-γ, and is present in the mycobacterial phagosome (B166)". Journal of Immunology 178, № 1_Supplement (2007): LB35. http://dx.doi.org/10.4049/jimmunol.178.supp.b166.
Full textSritharan, Manjula. "Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake." Journal of Bacteriology 198, no. 18 (2016): 2399–409. http://dx.doi.org/10.1128/jb.00359-16.
Full textKwofie, Samuel K., Kweku S. Enninful, Jaleel A. Yussif, et al. "Molecular Informatics Studies of the Iron-Dependent Regulator (ideR) Reveal Potential Novel Anti-Mycobacterium ulcerans Natural Product-Derived Compounds." Molecules 24, no. 12 (2019): 2299. http://dx.doi.org/10.3390/molecules24122299.
Full textKhetmalis, Yogesh Mahadu, Surendar Chitti, Anjani Umarani Wunnava, et al. "Design, synthesis and anti-mycobacterial evaluation of imidazo[1,2-a]pyridine analogues." RSC Medicinal Chemistry 13, no. 3 (2022): 327–42. http://dx.doi.org/10.1039/d1md00367d.
Full textCorrêa, Ivan R, Andrea Nören-Müller, Horst-Dieter Ambrosi, et al. "Identification of Inhibitors for Mycobacterial Protein Tyrosine Phosphatase B (MptpB) by Biology-Oriented Synthesis (BIOS)." Chemistry – An Asian Journal 2, no. 9 (2007): 1109–26. http://dx.doi.org/10.1002/asia.200700125.
Full textGonzalez-y-Merchand, J. A., M. J. Colston, and R. A. Cox. "Effects of Growth Conditions on Expression of Mycobacterial murA and tyrS Genes and Contributions of Their Transcripts to Precursor rRNA Synthesis." Journal of Bacteriology 181, no. 15 (1999): 4617–27. http://dx.doi.org/10.1128/jb.181.15.4617-4627.1999.
Full textBurke, Christopher, Monika Jankute, Patrick Moynihan, et al. "Development of a novel secondary phenotypic screen to identify hits within the mycobacterial protein synthesis pipeline." FASEB BioAdvances 2, no. 10 (2020): 600–612. http://dx.doi.org/10.1096/fba.2020-00022.
Full textSharma, Indra Mani, Sunita Prakash, Thillaivillalan Dhanaraman, and Dipankar Chatterji. "Characterization of a dual-active enzyme, DcpA, involved in cyclic diguanosine monophosphate turnover in Mycobacterium smegmatis." Microbiology 160, no. 10 (2014): 2304–18. http://dx.doi.org/10.1099/mic.0.080200-0.
Full textKapranov, Ivan, S. Bukhdruker, M. Karpova, et al. "Abstract P-11: Microscale Thermophoresis of Mycobacterial Cytochrome P450 with Azole Drugs." International Journal of Biomedicine 11, Suppl_1 (2021): S15—S16. http://dx.doi.org/10.21103/ijbm.11.suppl_1.p11.
Full textDubois, Eric P., John B. Robbins, and Vince Pozsgay. "Chemical approaches to bacterial vaccines. synthesis of mycobacterial oligosaccharide-protein conjugates for use as serodiagnostics and immunogens." Bioorganic & Medicinal Chemistry Letters 6, no. 12 (1996): 1387–92. http://dx.doi.org/10.1016/0960-894x(96)00235-1.
Full textGarg, Rajni, Deeksha Tripathi, Sashi Kant, Harish Chandra, Rakesh Bhatnagar, and Nirupama Banerjee. "The Conserved Hypothetical Protein Rv0574c Is Required for Cell Wall Integrity, Stress Tolerance, and Virulence of Mycobacterium tuberculosis." Infection and Immunity 83, no. 1 (2014): 120–29. http://dx.doi.org/10.1128/iai.02274-14.
Full textKolly, Gaëlle S., Raju Mukherjee, Emöke Kilacsková, et al. "GtrA Protein Rv3789 Is Required for Arabinosylation of Arabinogalactan in Mycobacterium tuberculosis." Journal of Bacteriology 197, no. 23 (2015): 3686–97. http://dx.doi.org/10.1128/jb.00628-15.
Full textSingh, Kratika, Niharika Pandey, Firoz Ahmad, et al. "Identification of Novel Inhibitor of Enoyl-Acyl Carrier Protein Reductase (InhA) Enzyme in Mycobacterium tuberculosis from Plant-Derived Metabolites: An In Silico Study." Antibiotics 11, no. 8 (2022): 1038. http://dx.doi.org/10.3390/antibiotics11081038.
Full textMunshi, Tulika, Adam Sparrow, Brendan W. Wren, Rajko Reljic, and Samuel J. Willcocks. "The Antimicrobial Peptide, Bactenecin 5, Supports Cell-Mediated but Not Humoral Immunity in the Context of a Mycobacterial Antigen Vaccine Model." Antibiotics 9, no. 12 (2020): 926. http://dx.doi.org/10.3390/antibiotics9120926.
Full text