Journal articles on the topic 'Myoelectric signal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Myoelectric signal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Scott, R. N., D. MacIsaac, and P. A. Parker. "Non-stationary Myoelectric Signals and Muscle Fatigue." Methods of Information in Medicine 39, no. 02 (2000): 125–29. http://dx.doi.org/10.1055/s-0038-1634281.
Full textYoo, Hyun-Joon, Hyeong-jun Park, and Boreom Lee. "Myoelectric Signal Classification of Targeted Muscles Using Dictionary Learning." Sensors 19, no. 10 (2019): 2370. http://dx.doi.org/10.3390/s19102370.
Full textKelly, M. F., P. A. Parker, and R. N. Scott. "Myoelectric signal analysis using neural networks." IEEE Engineering in Medicine and Biology Magazine 9, no. 1 (1990): 61–64. http://dx.doi.org/10.1109/51.62909.
Full textONUKI, Tomoya, and Nobuhiko HENMI. "1105 Engineering design using myoelectric Signal." Proceedings of Conference of Hokuriku-Shinetsu Branch 2012.49 (2012): 110501–2. http://dx.doi.org/10.1299/jsmehs.2012.49.110501.
Full textKnaflitz, M., and G. Balestra. "Computer analysis of the myoelectric signal." IEEE Micro 11, no. 5 (1991): 12–15. http://dx.doi.org/10.1109/40.108544.
Full textUngureanu, Mihaela, Rodica Strungaru, and Vasile Lazarescu. "Myoelectric Signal Classification Using Neural Networks." Biomedizinische Technik/Biomedical Engineering 43, s3 (1998): 87–90. http://dx.doi.org/10.1515/bmte.1998.43.s3.87.
Full textBasha, T., R. N. Scott, P. A. Parker, and B. S. Hudgins. "Deterministic components in the myoelectric signal." Medical & Biological Engineering & Computing 32, no. 2 (1994): 233–35. http://dx.doi.org/10.1007/bf02518927.
Full textDe Luca, Carlo J., Mohamed A. Sabbahi, and Serge H. Roy. "Median frequency of the myoelectric signal." European Journal of Applied Physiology and Occupational Physiology 55, no. 5 (1986): 457–64. http://dx.doi.org/10.1007/bf00421637.
Full textSanger, Terence D. "Bayesian Filtering of Myoelectric Signals." Journal of Neurophysiology 97, no. 2 (2007): 1839–45. http://dx.doi.org/10.1152/jn.00936.2006.
Full textTopalović, Marko, Đorđe Damnjanović, Aleksandar Peulić, Milan Blagojević, and Nenad Filipović. "SYLLABLE-BASED SPEECH RECOGNITION USING ELECTROMYOGRAPHY AND DECISION SET CLASSIFIER." Biomedical Engineering: Applications, Basis and Communications 27, no. 02 (2015): 1550020. http://dx.doi.org/10.4015/s1016237215500209.
Full textMerletti, R., S. H. Roy, E. Kupa, S. Roatta, and A. Granata. "Modeling of surface myoelectric signals. II. Model-based signal interpretation." IEEE Transactions on Biomedical Engineering 46, no. 7 (1999): 821–29. http://dx.doi.org/10.1109/10.771191.
Full textBroman, H. "Knowledge-based signal processing in the decomposition of myoelectric signals." IEEE Engineering in Medicine and Biology Magazine 7, no. 2 (1988): 24–28. http://dx.doi.org/10.1109/51.1970.
Full textGuo, Benzhen, Yanli Ma, Jingjing Yang, Zhihui Wang, and Xiao Zhang. "Lw-CNN-Based Myoelectric Signal Recognition and Real-Time Control of Robotic Arm for Upper-Limb Rehabilitation." Computational Intelligence and Neuroscience 2020 (December 28, 2020): 1–12. http://dx.doi.org/10.1155/2020/8846021.
Full textPantall, Annette, Emma F. Hodson-Tole, Robert J. Gregor, and Boris I. Prilutsky. "Increased intensity and reduced frequency of EMG signals from feline self-reinnervated ankle extensors during walking do not normalize excessive lengthening." Journal of Neurophysiology 115, no. 5 (2016): 2406–20. http://dx.doi.org/10.1152/jn.00565.2015.
Full textPacheco, Matheus M., Renato Moraes, Tenysson W. Lemos, Raoul M. Bongers, and Go Tani. "Convergence in myoelectric control: Between individual patterns of myoelectric learning." Biomedical Signal Processing and Control 70 (September 2021): 103057. http://dx.doi.org/10.1016/j.bspc.2021.103057.
Full textAl-Assaf, Y., and H. Al-Nashash. "Surface myoelectric signal classification for prostheses control." Journal of Medical Engineering & Technology 29, no. 5 (2005): 203–7. http://dx.doi.org/10.1080/03091900412331289906.
Full textXiong, Fuqin Q., and Ed Shwedyk. "Some Aspects of Nonstationary Myoelectric Signal Processing." IEEE Transactions on Biomedical Engineering BME-34, no. 2 (1987): 166–72. http://dx.doi.org/10.1109/tbme.1987.326041.
Full textRay, G. C. "Myoelectric Signal—Its Analysis Modelling and Use." IETE Technical Review 11, no. 1 (1994): 15–22. http://dx.doi.org/10.1080/02564602.1994.11437413.
Full textPerez, Jorge, Hilda N. Ferrao, and G. E. Juarez. "Myoelectric Signal Processing Using Time-Frequency Distribution." IEEE Latin America Transactions 11, no. 1 (2013): 246–50. http://dx.doi.org/10.1109/tla.2013.6502811.
Full textOE, Katsutoshi, and Shoya UNO. "Control Method of Electrolarynx with Myoelectric Signal." Proceedings of Mechanical Engineering Congress, Japan 2020 (2020): J10302. http://dx.doi.org/10.1299/jsmemecj.2020.j10302.
Full textOe, Katsutoshi. "An Electrolarynx Control Method Using Myoelectric Signals from the Neck." Journal of Robotics and Mechatronics 33, no. 4 (2021): 804–13. http://dx.doi.org/10.20965/jrm.2021.p0804.
Full textMarquez-Figueroa, Sandra, Yuriy S. Shmaliy, and Oscar Ibarra-Manzano. "Improving Gaussianity of EMG Envelope for Myoelectric Robot Arm Control." WSEAS TRANSACTIONS ON BIOLOGY AND BIOMEDICINE 18 (August 5, 2021): 106–12. http://dx.doi.org/10.37394/23208.2021.18.12.
Full textWelinder, Annika, Leif Sörnmo, Dirk Q. Feild, et al. "Comparison of Signal Quality Between Easi and Mason-Likar 12-Lead Electrocardiograms During Physical Activity." American Journal of Critical Care 13, no. 3 (2004): 228–34. http://dx.doi.org/10.4037/ajcc2004.13.3.228.
Full textMcLean, L., M. Tingley, R. N. Scott, and J. Rickards. "Myoelectric signal measurement during prolonged computer terminal work." Journal of Electromyography and Kinesiology 10, no. 1 (2000): 33–45. http://dx.doi.org/10.1016/s1050-6411(99)00021-8.
Full textScheme, Erik J., Bernard Hudgins, and Phillip A. Parker. "Myoelectric Signal Classification for Phoneme-Based Speech Recognition." IEEE Transactions on Biomedical Engineering 54, no. 4 (2007): 694–99. http://dx.doi.org/10.1109/tbme.2006.889175.
Full textARJUNAN, SRIDHAR P., DINESH K. KUMAR, and BIJAYA K. PANIGRAHI. "RECOGNITION OF FINGER/HAND GRIP MECHANISM BY COMPUTING S-TRANSFORM FEATURES OF SURFACE ELECTROMYOGRAM SIGNAL FROM HEALTHY AND AMPUTEE." Journal of Mechanics in Medicine and Biology 16, no. 06 (2016): 1650076. http://dx.doi.org/10.1142/s0219519416500767.
Full textNaik, Ganesh, and Dinesh Kumar. "Hybrid Feature Selection for Myoelectric Signal Classification Using MICA." Journal of Electrical Engineering 61, no. 2 (2010): 93–99. http://dx.doi.org/10.2478/v10187-010-0013-8.
Full textTorres, Fernando, Santiago Puente, and Andrés Úbeda. "Assistance Robotics and Biosensors." Sensors 18, no. 10 (2018): 3502. http://dx.doi.org/10.3390/s18103502.
Full textBroman, H., G. Bilotto, and C. J. De Luca. "Myoelectric signal conduction velocity and spectral parameters: influence of force and time." Journal of Applied Physiology 58, no. 5 (1985): 1428–37. http://dx.doi.org/10.1152/jappl.1985.58.5.1428.
Full textAndo, Takeshi, Masaki Watanabe, Keigo Nishimoto, Yuya Matsumoto, Masatoshi Seki, and Masakatsu G. Fujie. "Myoelectric-Controlled Exoskeletal Elbow Robot to Suppress Essential Tremor: Extraction of Elbow Flexion Movement Using STFTs and TDNN." Journal of Robotics and Mechatronics 24, no. 1 (2012): 141–49. http://dx.doi.org/10.20965/jrm.2012.p0141.
Full textWakeling, James M., Motoshi Kaya, Genevieve K. Temple, Ian A. Johnston, and Walter Herzog. "Determining patterns of motor recruitment during locomotion." Journal of Experimental Biology 205, no. 3 (2002): 359–69. http://dx.doi.org/10.1242/jeb.205.3.359.
Full textLee, Seulah, Babar Jamil, Sunhong Kim, and Youngjin Choi. "Fabric Vest Socket with Embroidered Electrodes for Control of Myoelectric Prosthesis." Sensors 20, no. 4 (2020): 1196. http://dx.doi.org/10.3390/s20041196.
Full textAndo, Takeshi, Jun Okamoto, Mitsuru Takahashi, and Masakatsu G. Fujie. "Response Evaluation of Rollover Recognition in Myoelectric Controlled Orthosis Using Pneumatic Rubber Muscle for Cancer Bone Metastasis Patient." Journal of Robotics and Mechatronics 23, no. 2 (2011): 302–9. http://dx.doi.org/10.20965/jrm.2011.p0302.
Full textNing, Naiqiao, and Yong Tang. "Evaluation of an Information Flow Gain Algorithm for Microsensor Information Flow in Limber Motor Rehabilitation." Complexity 2021 (March 22, 2021): 1–11. http://dx.doi.org/10.1155/2021/6638038.
Full textNorris, Jason A., Kevin B. Englehart, and Dennis F. Lovely. "Myoelectric signal compression using zero-trees of wavelet coefficients." Medical Engineering & Physics 25, no. 9 (2003): 739–46. http://dx.doi.org/10.1016/s1350-4533(03)00118-8.
Full textOoe, Katsutoshi. "Development of Controllable Artificial Larynx by Neck Myoelectric Signal." Procedia Engineering 47 (2012): 869–72. http://dx.doi.org/10.1016/j.proeng.2012.09.285.
Full textStashuk, D. W., and R. K. Naphan. "Probabilistic inference-based classification applied to myoelectric signal decomposition." IEEE Transactions on Biomedical Engineering 39, no. 4 (1992): 346–55. http://dx.doi.org/10.1109/10.126607.
Full textEnglehart, K. B., and P. A. Parker. "Single motor unit myoelectric signal analysis with nonstationary data." IEEE Transactions on Biomedical Engineering 41, no. 2 (1994): 168–80. http://dx.doi.org/10.1109/10.284928.
Full textHelal, J. N., and J. Duchene. "A pseudoperiodic model for myoelectric signal during dynamic exercise." IEEE Transactions on Biomedical Engineering 36, no. 11 (1989): 1092–97. http://dx.doi.org/10.1109/10.40816.
Full textHargrove, L. J., K. Englehart, and B. Hudgins. "A Comparison of Surface and Intramuscular Myoelectric Signal Classification." IEEE Transactions on Biomedical Engineering 54, no. 5 (2007): 847–53. http://dx.doi.org/10.1109/tbme.2006.889192.
Full textO'Neill, P., E. L. Morin, and R. N. Scott. "Myoelectric signal characteristics from muscles in residual upper limbs." IEEE Transactions on Rehabilitation Engineering 2, no. 4 (1994): 266–70. http://dx.doi.org/10.1109/86.340871.
Full textOE, Katsutoshi, and Naoto IMAMURA. "Training System for Esophageal Speech Method with Myoelectric Signal." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2020 (2020): 2P2—E19. http://dx.doi.org/10.1299/jsmermd.2020.2p2-e19.
Full textMemberg, William D., Thomas G. Stage, and Robert F. Kirsch. "A Fully Implanted Intramuscular Bipolar Myoelectric Signal Recording Electrode." Neuromodulation: Technology at the Neural Interface 17, no. 8 (2014): 794–99. http://dx.doi.org/10.1111/ner.12165.
Full textKelly, M. F., P. A. Parker, and R. N. Scott. "Neural network classification of myoelectric signal for prosthesis control." Journal of Electromyography and Kinesiology 1, no. 4 (1991): 229–36. http://dx.doi.org/10.1016/1050-6411(91)90009-t.
Full textRasool, Ghulam, Nidhal Bouaynaya, Kamran Iqbal, and Gannon White. "Surface myoelectric signal classification using the AR-GARCH model." Biomedical Signal Processing and Control 13 (September 2014): 327–36. http://dx.doi.org/10.1016/j.bspc.2014.06.001.
Full textParker, P., K. Englehart, and B. Hudgins. "Myoelectric signal processing for control of powered limb prostheses." Journal of Electromyography and Kinesiology 16, no. 6 (2006): 541–48. http://dx.doi.org/10.1016/j.jelekin.2006.08.006.
Full textMoritani, Toshio, Masuo Muro, and Singo Oda. "Myoelectric signal characteristics in lumbar back muscles during fatigue." International Journal of Industrial Ergonomics 9, no. 2 (1992): 151–56. http://dx.doi.org/10.1016/0169-8141(92)90112-d.
Full textZhang, Y. T., P. A. Parker, and R. N. Scott. "Control performance characteristics of myoelectric signal with additive interference." Medical & Biological Engineering & Computing 29, no. 1 (1991): 84–88. http://dx.doi.org/10.1007/bf02446301.
Full textJeyaraj, Pandia Rajan, and Edward Rajan Samuel Nadar. "Adaptive machine learning algorithm employed statistical signal processing for classification of ECG signal and myoelectric signal." Multidimensional Systems and Signal Processing 31, no. 4 (2020): 1299–316. http://dx.doi.org/10.1007/s11045-020-00710-7.
Full textMerletti, R., M. Knaflitz, and C. J. De Luca. "Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions." Journal of Applied Physiology 69, no. 5 (1990): 1810–20. http://dx.doi.org/10.1152/jappl.1990.69.5.1810.
Full text