Journal articles on the topic 'Na3Zr2Si2PO12'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Na3Zr2Si2PO12.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jalalian-Khakshour, A., C. O. Phillips, L. Jackson, T. O. Dunlop, S. Margadonna, and D. Deganello. "Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity." Journal of Materials Science 55, no. 6 (2019): 2291–302. http://dx.doi.org/10.1007/s10853-019-04162-8.
Full textHuang, Congcai, Guanming Yang, Wenhao Yu, et al. "Gallium-substituted Nasicon Na3Zr2Si2PO12 solid electrolytes." Journal of Alloys and Compounds 855 (February 2021): 157501. http://dx.doi.org/10.1016/j.jallcom.2020.157501.
Full textNicholas, V. A., A. M. Heyns, A. I. Kingon, and J. B. Clark. "Reactions in the formation of Na3Zr2Si2PO12." Journal of Materials Science 21, no. 6 (1986): 1967–73. http://dx.doi.org/10.1007/bf00547935.
Full textHorwat, D., J. F. Pierson, and A. Billard. "Magnetron sputtering of NASICON (Na3Zr2Si2PO12) thin films." Surface and Coatings Technology 201, no. 16-17 (2007): 7060–65. http://dx.doi.org/10.1016/j.surfcoat.2007.01.016.
Full textBoilot, J. P., G. Collin, and Ph Colomban. "Crystal structure of the true nasicon: Na3Zr2Si2PO12." Materials Research Bulletin 22, no. 5 (1987): 669–76. http://dx.doi.org/10.1016/0025-5408(87)90116-4.
Full textSadaoka, Y., M. Matsuguchi, Y. Sakai, and S. Nakayama. "Electrical conductivity of Na3Zr2Si2PO12-doped sodium aluminosilicate glass." Journal of Materials Science 24, no. 4 (1989): 1299–304. http://dx.doi.org/10.1007/bf02397062.
Full textSadaoka, Y., M. Matsuguchi, Y. Sakai, and S. Nakayama. "Electrical conductivity of Na3Zr2Si2PO12-doped sodium aluminosilicate glass." Journal of Materials Science 24, no. 4 (1989): 1299–304. http://dx.doi.org/10.1007/pl00020211.
Full textChen, Dan, Fa Luo, Wancheng Zhou, and Dongmei Zhu. "Dielectric properties in the microwave range of Na3Zr2Si2PO12 ceramics." Materials Letters 221 (June 2018): 172–74. http://dx.doi.org/10.1016/j.matlet.2018.03.128.
Full textDinachandra Singh, Mayanglambam, Anshuman Dalvi, and D. M. Phase. "Na3Zr2Si2PO12-Polymer Hybrid Composites for Solid-State Supercapacitor Applications." ECS Meeting Abstracts MA2020-01, no. 4 (2020): 580. http://dx.doi.org/10.1149/ma2020-014580mtgabs.
Full textDi Vona, Maria Luisa, Enrico Traversa, and Silvia Licoccia. "Nonhydrolytic Synthesis of NASICON of Composition Na3Zr2Si2PO12: A Spectroscopic Study." Chemistry of Materials 13, no. 1 (2001): 141–44. http://dx.doi.org/10.1021/cm001128i.
Full textNoi, Kousuke, Yuka Nagata, Takashi Hakari, et al. "Oxide-Based Composite Electrolytes Using Na3Zr2Si2PO12/Na3PS4 Interfacial Ion Transfer." ACS Applied Materials & Interfaces 10, no. 23 (2018): 19605–14. http://dx.doi.org/10.1021/acsami.8b02427.
Full textQiang, LI, SHI Wan-Yan, ZHANG Chen, and JIANG Dan-Yu. "SO2 Non-equilibrium Gas Sensor Based on Na3Zr2Si2PO12 Solid Electrolyte." Journal of Inorganic Materials 33, no. 2 (2018): 229. http://dx.doi.org/10.15541/jim20170312.
Full textChen, Dan, Fa Luo, Lu Gao, Wancheng Zhou, and Dongmei Zhu. "Dielectric and microwave absorption properties of divalent-doped Na3Zr2Si2PO12 ceramics." Journal of the European Ceramic Society 38, no. 13 (2018): 4440–45. http://dx.doi.org/10.1016/j.jeurceramsoc.2018.05.039.
Full textLucco-Borlera, M., D. Mazza, L. Montanaro, A. Negro, and S. Ronchetti. "X-ray characterization of the new nasicon compositions Na3Zr2−x/4Si2−xP1+xO12 with x=0.333, 0.667, 1.000, 1.333, 1.667." Powder Diffraction 12, no. 3 (1997): 171–74. http://dx.doi.org/10.1017/s0885715600009660.
Full textHiraoka, Koji, Masaki Kato, Takeshi Kobayashi, and Shiro Seki. "Polyether/Na3Zr2Si2PO12 Composite Solid Electrolytes for All-Solid-State Sodium Batteries." Journal of Physical Chemistry C 124, no. 40 (2020): 21948–56. http://dx.doi.org/10.1021/acs.jpcc.0c05334.
Full textZhang, Zhizhen, Sebastian Wenzel, Yizhou Zhu, et al. "Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries." ACS Applied Energy Materials 3, no. 8 (2020): 7427–37. http://dx.doi.org/10.1021/acsaem.0c00820.
Full textBAUR, W., J. DYGAS, D. WHITMORE, and J. FABER. "Neutron powder diffraction study and ionic conductivity of Na2Zr2SiP2O12 and Na3Zr2Si2PO12." Solid State Ionics 18-19 (January 1986): 935–43. http://dx.doi.org/10.1016/0167-2738(86)90290-0.
Full textNaqash, Sahir, Frank Tietz, Elena Yazhenskikh, Michael Müller, and Olivier Guillon. "Impact of sodium excess on electrical conductivity of Na3Zr2Si2PO12 + x Na2O ceramics." Solid State Ionics 336 (August 2019): 57–66. http://dx.doi.org/10.1016/j.ssi.2019.03.017.
Full textPark, Heetaek, Keeyoung Jung, Marjan Nezafati, Chang-Soo Kim, and Byoungwoo Kang. "Sodium Ion Diffusion in Nasicon (Na3Zr2Si2PO12) Solid Electrolytes: Effects of Excess Sodium." ACS Applied Materials & Interfaces 8, no. 41 (2016): 27814–24. http://dx.doi.org/10.1021/acsami.6b09992.
Full textLiu, Saiyue, Chang Zhou, You Wang, et al. "Ce-Substituted Nanograin Na3Zr2Si2PO12 Prepared by LF-FSP as Sodium-Ion Conductors." ACS Applied Materials & Interfaces 12, no. 3 (2019): 3502–9. http://dx.doi.org/10.1021/acsami.9b11995.
Full textDi Vona, Maria Luisa, Enrico Traversa, and Silvia Licoccia. "ChemInform Abstract: Nonhydrolytic Synthesis of NASICON of Composition Na3Zr2Si2PO12: A Spectroscopic Study." ChemInform 32, no. 19 (2001): no. http://dx.doi.org/10.1002/chin.200119016.
Full textKida, Tetsuya, Naoki Morinaga, Shotaro Kishi, et al. "Electrochemical detection of volatile organic compounds using a Na3Zr2Si2PO12/Bi2Cu0.1V0.9O5.35 heterojunction device." Electrochimica Acta 56, no. 22 (2011): 7484–90. http://dx.doi.org/10.1016/j.electacta.2011.06.108.
Full textJolley, Adam G., Gil Cohn, Gregory T. Hitz, and Eric D. Wachsman. "Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12." Ionics 21, no. 11 (2015): 3031–38. http://dx.doi.org/10.1007/s11581-015-1498-8.
Full textShimizu, Youichi, Satoko Takase, Kensaku Ida, Masataka Imamura, and Ikuhiro Koguma. "Preparation of NASICON-Based Ceramic Thick-Film with Electrophoretic Deposition for Solid-State Photoluminescence Device." Key Engineering Materials 412 (June 2009): 107–11. http://dx.doi.org/10.4028/www.scientific.net/kem.412.107.
Full textZHANG, Zhi-Zhen, Si-Qi SHI, Yong-Sheng HU, and Li-Quan CHEN. "Sol-Gel Synthesis and Conductivity Properties of Sodium Ion Solid State Electrolytes Na3Zr2Si2PO12." Journal of Inorganic Materials 28, no. 11 (2013): 1255–60. http://dx.doi.org/10.3724/sp.j.1077.2013.13120.
Full textPal, Santosh K., Ritobrata Saha, Gundugolanu Vijay Kumar, and Shobit Omar. "Designing High Ionic Conducting NASICON-type Na3Zr2Si2PO12 Solid-Electrolytes for Na-Ion Batteries." Journal of Physical Chemistry C 124, no. 17 (2020): 9161–69. http://dx.doi.org/10.1021/acs.jpcc.0c00543.
Full textGao, Zhonghui, Jiayi Yang, Haiyang Yuan, et al. "Stabilizing Na3Zr2Si2PO12/Na Interfacial Performance by Introducing a Clean and Na-Deficient Surface." Chemistry of Materials 32, no. 9 (2020): 3970–79. http://dx.doi.org/10.1021/acs.chemmater.0c00474.
Full textJha, Paramjyot Kumar, O. P. Pandey, and K. Singh. "Optimization of High Conducting Na3Zr2Si2PO12 Phase by new Phosphate Salt for Solid Electrolyte." Silicon 9, no. 3 (2016): 411–19. http://dx.doi.org/10.1007/s12633-015-9396-2.
Full textSingh, M. Dinachandra, Gurpreet Kaur, Shrishti Sharma, and Anshuman Dalvi. "All-solid-state Na+ ion supercapacitors using Na3Zr2Si2PO12-polymer hybrid films as electrolyte." Journal of Energy Storage 41 (September 2021): 102984. http://dx.doi.org/10.1016/j.est.2021.102984.
Full textLi, Jian Guo, Xi Shuang Liang, Cheng Guo Yin, Feng Min Liu, and Ge Yu Lu. "Preparation of NASICON Disk by Tape Casting and its CO2 Sensing Properties." Key Engineering Materials 537 (January 2013): 134–39. http://dx.doi.org/10.4028/www.scientific.net/kem.537.134.
Full textDinachandra Singh, M., Anshuman Dalvi, and D. M. Phase. "Novel Na3Zr2Si2PO12–polymer hybrid composites with high ionic conductivity for solid-state ionic devices." Materials Letters 262 (March 2020): 127022. http://dx.doi.org/10.1016/j.matlet.2019.127022.
Full textPark, Heetaek, Minseok Kang, Yoon-Cheol Park, Keeyoung Jung, and Byoungwoo Kang. "Improving ionic conductivity of Nasicon (Na3Zr2Si2PO12) at intermediate temperatures by modifying phase transition behavior." Journal of Power Sources 399 (September 2018): 329–36. http://dx.doi.org/10.1016/j.jpowsour.2018.07.113.
Full textWang, Xinxin, Zehua Liu, Yihua Tang, Jingjing Chen, Dajian Wang, and Zhiyong Mao. "Low temperature and rapid microwave sintering of Na3Zr2Si2PO12 solid electrolytes for Na-Ion batteries." Journal of Power Sources 481 (January 2021): 228924. http://dx.doi.org/10.1016/j.jpowsour.2020.228924.
Full textHorwat, D., J. F. Pierson, and A. Billard. "Magnetron sputtering of NASICON (Na3Zr2Si2PO12) thin films Part I: Limitations of the classical methods." Surface and Coatings Technology 201, no. 16-17 (2007): 7013–17. http://dx.doi.org/10.1016/j.surfcoat.2007.01.007.
Full textTsukuda, Satoshi, Keigo Miyake, Takuya Yamaguchi, et al. "Formation of Amorphous H3Zr2Si2PO12 by Electrochemical Substitution of Sodium Ions in Na3Zr2Si2PO12 with Protons." Inorganic Chemistry 56, no. 22 (2017): 13949–54. http://dx.doi.org/10.1021/acs.inorgchem.7b02060.
Full textPETROLEKAS, P. D., S. BROSDA, and C. G. VAYENAS. "ChemInform Abstract: Electrochemical Promotion of Pt Catalyst Electrodes Deposited on Na3Zr2Si2PO12 During Ethylene Oxidation." ChemInform 29, no. 30 (2010): no. http://dx.doi.org/10.1002/chin.199830022.
Full textRuan, Yanli, Fang Guo, Jingjing Liu, Shidong Song, Ningyi Jiang, and Bowen Cheng. "Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery." Ceramics International 45, no. 2 (2019): 1770–76. http://dx.doi.org/10.1016/j.ceramint.2018.10.062.
Full textCao, Xiao Guo, Xiao Hua Zhang, Tao Tao, and Hai Yan Zhang. "Effects of antimony tin oxide (ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes." Ceramics International 46, no. 6 (2020): 8405–12. http://dx.doi.org/10.1016/j.ceramint.2019.12.074.
Full textChen, Dan, Fa Luo, Wancheng Zhou, and Dongmei Zhu. "Influence of Nb5+, Ti4+, Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity." Journal of Alloys and Compounds 757 (August 2018): 348–55. http://dx.doi.org/10.1016/j.jallcom.2018.05.116.
Full textJi, Yongzheng, Tsuyoshi Honma, and Takayuki Komatsu. "Synthesis and Na+ Ion Conductivity of Stoichiometric Na3Zr2Si2PO12 by Liquid-Phase Sintering with NaPO3 Glass." Materials 14, no. 14 (2021): 3790. http://dx.doi.org/10.3390/ma14143790.
Full textNarayanan, Sumaletha, Samuel Reid, Shantel Butler, and Venkataraman Thangadurai. "Sintering temperature, excess sodium, and phosphorous dependencies on morphology and ionic conductivity of NASICON Na3Zr2Si2PO12." Solid State Ionics 331 (March 2019): 22–29. http://dx.doi.org/10.1016/j.ssi.2018.12.003.
Full textHe, Shengnan, Youlong Xu, Yanjun Chen, and Xiaoning Ma. "Enhanced ionic conductivity of an F−-assisted Na3Zr2Si2PO12 solid electrolyte for solid-state sodium batteries." Journal of Materials Chemistry A 8, no. 25 (2020): 12594–602. http://dx.doi.org/10.1039/c9ta12213c.
Full textRuan, Yanli, Shidong Song, Jingjing Liu, et al. "Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions." Ceramics International 43, no. 10 (2017): 7810–15. http://dx.doi.org/10.1016/j.ceramint.2017.03.095.
Full textZhao, Yongjie, Chengzhi Wang, Yejing Dai, and Haibo Jin. "Homogeneous Na+ transfer dynamic at Na/Na3Zr2Si2PO12 interface for all solid-state sodium metal batteries." Nano Energy 88 (October 2021): 106293. http://dx.doi.org/10.1016/j.nanoen.2021.106293.
Full textHaarmann, L., and K. Albe. "From ionic to superionic conductivity: The influence of cation order on sodium diffusion in Na3Zr2Si2PO12." Solid State Ionics 363 (May 2021): 115604. http://dx.doi.org/10.1016/j.ssi.2021.115604.
Full textYi, Qiang, Wenqiang Zhang, Shaoqing Li, Xinyuan Li, and Chunwen Sun. "Durable Sodium Battery with a Flexible Na3Zr2Si2PO12–PVDF–HFP Composite Electrolyte and Sodium/Carbon Cloth Anode." ACS Applied Materials & Interfaces 10, no. 41 (2018): 35039–46. http://dx.doi.org/10.1021/acsami.8b09991.
Full textYu, Xingwen, Leigang Xue, John B. Goodenough, and Arumugam Manthiram. "A High-Performance All-Solid-State Sodium Battery with a Poly(ethylene oxide)–Na3Zr2Si2PO12 Composite Electrolyte." ACS Materials Letters 1, no. 1 (2019): 132–38. http://dx.doi.org/10.1021/acsmaterialslett.9b00103.
Full textOh, Jin An Sam, Linchun He, Anna Plewa, et al. "Composite NASICON (Na3Zr2Si2PO12) Solid-State Electrolyte with Enhanced Na+ Ionic Conductivity: Effect of Liquid Phase Sintering." ACS Applied Materials & Interfaces 11, no. 43 (2019): 40125–33. http://dx.doi.org/10.1021/acsami.9b14986.
Full textNakayama, Susumu, and Yoshihiko Sadaoka. "Preparation of Na3Zr2Si2PO12–sodium aluminosilicate composite and its application as a solid-state electrochemical CO2gas sensor." J. Mater. Chem. 4, no. 5 (1994): 663–68. http://dx.doi.org/10.1039/jm9940400663.
Full textChen, Dan, Fa Luo, Lu Gao, Wancheng Zhou, and Dongmei Zhu. "Influence of Indium-Tin Oxide Additive on the Sintering Process and Conductivity of Na3Zr2Si2PO12 Solid Electrolyte." Journal of Electronic Materials 46, no. 11 (2017): 6367–72. http://dx.doi.org/10.1007/s11664-017-5674-7.
Full text