To see the other types of publications on this topic, follow the link: Na3Zr2Si2PO12.

Journal articles on the topic 'Na3Zr2Si2PO12'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Na3Zr2Si2PO12.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jalalian-Khakshour, A., C. O. Phillips, L. Jackson, T. O. Dunlop, S. Margadonna, and D. Deganello. "Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity." Journal of Materials Science 55, no. 6 (2019): 2291–302. http://dx.doi.org/10.1007/s10853-019-04162-8.

Full text
Abstract:
Abstract In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle pre
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Congcai, Guanming Yang, Wenhao Yu, et al. "Gallium-substituted Nasicon Na3Zr2Si2PO12 solid electrolytes." Journal of Alloys and Compounds 855 (February 2021): 157501. http://dx.doi.org/10.1016/j.jallcom.2020.157501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nicholas, V. A., A. M. Heyns, A. I. Kingon, and J. B. Clark. "Reactions in the formation of Na3Zr2Si2PO12." Journal of Materials Science 21, no. 6 (1986): 1967–73. http://dx.doi.org/10.1007/bf00547935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Horwat, D., J. F. Pierson, and A. Billard. "Magnetron sputtering of NASICON (Na3Zr2Si2PO12) thin films." Surface and Coatings Technology 201, no. 16-17 (2007): 7060–65. http://dx.doi.org/10.1016/j.surfcoat.2007.01.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boilot, J. P., G. Collin, and Ph Colomban. "Crystal structure of the true nasicon: Na3Zr2Si2PO12." Materials Research Bulletin 22, no. 5 (1987): 669–76. http://dx.doi.org/10.1016/0025-5408(87)90116-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sadaoka, Y., M. Matsuguchi, Y. Sakai, and S. Nakayama. "Electrical conductivity of Na3Zr2Si2PO12-doped sodium aluminosilicate glass." Journal of Materials Science 24, no. 4 (1989): 1299–304. http://dx.doi.org/10.1007/bf02397062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sadaoka, Y., M. Matsuguchi, Y. Sakai, and S. Nakayama. "Electrical conductivity of Na3Zr2Si2PO12-doped sodium aluminosilicate glass." Journal of Materials Science 24, no. 4 (1989): 1299–304. http://dx.doi.org/10.1007/pl00020211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Dan, Fa Luo, Wancheng Zhou, and Dongmei Zhu. "Dielectric properties in the microwave range of Na3Zr2Si2PO12 ceramics." Materials Letters 221 (June 2018): 172–74. http://dx.doi.org/10.1016/j.matlet.2018.03.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dinachandra Singh, Mayanglambam, Anshuman Dalvi, and D. M. Phase. "Na3Zr2Si2PO12-Polymer Hybrid Composites for Solid-State Supercapacitor Applications." ECS Meeting Abstracts MA2020-01, no. 4 (2020): 580. http://dx.doi.org/10.1149/ma2020-014580mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Di Vona, Maria Luisa, Enrico Traversa, and Silvia Licoccia. "Nonhydrolytic Synthesis of NASICON of Composition Na3Zr2Si2PO12: A Spectroscopic Study." Chemistry of Materials 13, no. 1 (2001): 141–44. http://dx.doi.org/10.1021/cm001128i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Noi, Kousuke, Yuka Nagata, Takashi Hakari, et al. "Oxide-Based Composite Electrolytes Using Na3Zr2Si2PO12/Na3PS4 Interfacial Ion Transfer." ACS Applied Materials & Interfaces 10, no. 23 (2018): 19605–14. http://dx.doi.org/10.1021/acsami.8b02427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Qiang, LI, SHI Wan-Yan, ZHANG Chen, and JIANG Dan-Yu. "SO2 Non-equilibrium Gas Sensor Based on Na3Zr2Si2PO12 Solid Electrolyte." Journal of Inorganic Materials 33, no. 2 (2018): 229. http://dx.doi.org/10.15541/jim20170312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, Dan, Fa Luo, Lu Gao, Wancheng Zhou, and Dongmei Zhu. "Dielectric and microwave absorption properties of divalent-doped Na3Zr2Si2PO12 ceramics." Journal of the European Ceramic Society 38, no. 13 (2018): 4440–45. http://dx.doi.org/10.1016/j.jeurceramsoc.2018.05.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lucco-Borlera, M., D. Mazza, L. Montanaro, A. Negro, and S. Ronchetti. "X-ray characterization of the new nasicon compositions Na3Zr2−x/4Si2−xP1+xO12 with x=0.333, 0.667, 1.000, 1.333, 1.667." Powder Diffraction 12, no. 3 (1997): 171–74. http://dx.doi.org/10.1017/s0885715600009660.

Full text
Abstract:
It is known that solids with composition Na3Zr2Si2PO12 heated at 1200 °C crystallize in the nasicon structure. This material shows a high ionic conductivity that represents an interesting improvement in the field of solid electrolytes. Our experimental results allow to establish for the first time that nasicon structures are stable along the compositional join Na3Zr2−x/4Si2−xP1+xO12 with x extending from 0 to 1.667. These structures are characterized by a Zr underoccupation of octahedral sites and a constant number of Na+ ions. This fact envisages a possible application of these materials in t
APA, Harvard, Vancouver, ISO, and other styles
15

Hiraoka, Koji, Masaki Kato, Takeshi Kobayashi, and Shiro Seki. "Polyether/Na3Zr2Si2PO12 Composite Solid Electrolytes for All-Solid-State Sodium Batteries." Journal of Physical Chemistry C 124, no. 40 (2020): 21948–56. http://dx.doi.org/10.1021/acs.jpcc.0c05334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zhang, Zhizhen, Sebastian Wenzel, Yizhou Zhu, et al. "Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries." ACS Applied Energy Materials 3, no. 8 (2020): 7427–37. http://dx.doi.org/10.1021/acsaem.0c00820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

BAUR, W., J. DYGAS, D. WHITMORE, and J. FABER. "Neutron powder diffraction study and ionic conductivity of Na2Zr2SiP2O12 and Na3Zr2Si2PO12." Solid State Ionics 18-19 (January 1986): 935–43. http://dx.doi.org/10.1016/0167-2738(86)90290-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Naqash, Sahir, Frank Tietz, Elena Yazhenskikh, Michael Müller, and Olivier Guillon. "Impact of sodium excess on electrical conductivity of Na3Zr2Si2PO12 + x Na2O ceramics." Solid State Ionics 336 (August 2019): 57–66. http://dx.doi.org/10.1016/j.ssi.2019.03.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Park, Heetaek, Keeyoung Jung, Marjan Nezafati, Chang-Soo Kim, and Byoungwoo Kang. "Sodium Ion Diffusion in Nasicon (Na3Zr2Si2PO12) Solid Electrolytes: Effects of Excess Sodium." ACS Applied Materials & Interfaces 8, no. 41 (2016): 27814–24. http://dx.doi.org/10.1021/acsami.6b09992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Liu, Saiyue, Chang Zhou, You Wang, et al. "Ce-Substituted Nanograin Na3Zr2Si2PO12 Prepared by LF-FSP as Sodium-Ion Conductors." ACS Applied Materials & Interfaces 12, no. 3 (2019): 3502–9. http://dx.doi.org/10.1021/acsami.9b11995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Di Vona, Maria Luisa, Enrico Traversa, and Silvia Licoccia. "ChemInform Abstract: Nonhydrolytic Synthesis of NASICON of Composition Na3Zr2Si2PO12: A Spectroscopic Study." ChemInform 32, no. 19 (2001): no. http://dx.doi.org/10.1002/chin.200119016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kida, Tetsuya, Naoki Morinaga, Shotaro Kishi, et al. "Electrochemical detection of volatile organic compounds using a Na3Zr2Si2PO12/Bi2Cu0.1V0.9O5.35 heterojunction device." Electrochimica Acta 56, no. 22 (2011): 7484–90. http://dx.doi.org/10.1016/j.electacta.2011.06.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jolley, Adam G., Gil Cohn, Gregory T. Hitz, and Eric D. Wachsman. "Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12." Ionics 21, no. 11 (2015): 3031–38. http://dx.doi.org/10.1007/s11581-015-1498-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shimizu, Youichi, Satoko Takase, Kensaku Ida, Masataka Imamura, and Ikuhiro Koguma. "Preparation of NASICON-Based Ceramic Thick-Film with Electrophoretic Deposition for Solid-State Photoluminescence Device." Key Engineering Materials 412 (June 2009): 107–11. http://dx.doi.org/10.4028/www.scientific.net/kem.412.107.

Full text
Abstract:
Electrophoretic deposition method was applied to prepare some solid-electrolyte thick-films of Na1+xZr2SixP3-xO12 (x = 2, 3; NASICON) and Na5DySi4O12 (NDSO) on Au-coated alumina substrates. With the ethanol-based medium, the deposition process was investigated under constant voltage mode. The concentration of the suspension and applied voltage were optimized with respect to the rate of deposition and quality of the deposit. The NASICON (Na3Zr2Si2PO12) -based solid-state ionic conductor thick-film as a host ceramic with a guest Cu+ ion has been produced as a noble phosphor thick-film by using a
APA, Harvard, Vancouver, ISO, and other styles
25

ZHANG, Zhi-Zhen, Si-Qi SHI, Yong-Sheng HU, and Li-Quan CHEN. "Sol-Gel Synthesis and Conductivity Properties of Sodium Ion Solid State Electrolytes Na3Zr2Si2PO12." Journal of Inorganic Materials 28, no. 11 (2013): 1255–60. http://dx.doi.org/10.3724/sp.j.1077.2013.13120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Pal, Santosh K., Ritobrata Saha, Gundugolanu Vijay Kumar, and Shobit Omar. "Designing High Ionic Conducting NASICON-type Na3Zr2Si2PO12 Solid-Electrolytes for Na-Ion Batteries." Journal of Physical Chemistry C 124, no. 17 (2020): 9161–69. http://dx.doi.org/10.1021/acs.jpcc.0c00543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gao, Zhonghui, Jiayi Yang, Haiyang Yuan, et al. "Stabilizing Na3Zr2Si2PO12/Na Interfacial Performance by Introducing a Clean and Na-Deficient Surface." Chemistry of Materials 32, no. 9 (2020): 3970–79. http://dx.doi.org/10.1021/acs.chemmater.0c00474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jha, Paramjyot Kumar, O. P. Pandey, and K. Singh. "Optimization of High Conducting Na3Zr2Si2PO12 Phase by new Phosphate Salt for Solid Electrolyte." Silicon 9, no. 3 (2016): 411–19. http://dx.doi.org/10.1007/s12633-015-9396-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Singh, M. Dinachandra, Gurpreet Kaur, Shrishti Sharma, and Anshuman Dalvi. "All-solid-state Na+ ion supercapacitors using Na3Zr2Si2PO12-polymer hybrid films as electrolyte." Journal of Energy Storage 41 (September 2021): 102984. http://dx.doi.org/10.1016/j.est.2021.102984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Jian Guo, Xi Shuang Liang, Cheng Guo Yin, Feng Min Liu, and Ge Yu Lu. "Preparation of NASICON Disk by Tape Casting and its CO2 Sensing Properties." Key Engineering Materials 537 (January 2013): 134–39. http://dx.doi.org/10.4028/www.scientific.net/kem.537.134.

Full text
Abstract:
In this work, NASICON-type disks with the formula, Na3Zr2Si2PO12 were prepared by non-aqueous tape casting method. The effect of the dispersant on the slurry viscosity was investigated, triethanolamine was found to be an effective dispersant for NASICON slurry. The correlation between the overall conductivity and the sintering conditions (temperature and time) for the NASICON disk was also studied. Green tapes were calcined at 900°C, 1000°C, 1100°C for 6h and 12h, respectively. Results revealed that the overall conductivity increased with the increasing of the sintering temperature and decreas
APA, Harvard, Vancouver, ISO, and other styles
31

Dinachandra Singh, M., Anshuman Dalvi, and D. M. Phase. "Novel Na3Zr2Si2PO12–polymer hybrid composites with high ionic conductivity for solid-state ionic devices." Materials Letters 262 (March 2020): 127022. http://dx.doi.org/10.1016/j.matlet.2019.127022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Park, Heetaek, Minseok Kang, Yoon-Cheol Park, Keeyoung Jung, and Byoungwoo Kang. "Improving ionic conductivity of Nasicon (Na3Zr2Si2PO12) at intermediate temperatures by modifying phase transition behavior." Journal of Power Sources 399 (September 2018): 329–36. http://dx.doi.org/10.1016/j.jpowsour.2018.07.113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Xinxin, Zehua Liu, Yihua Tang, Jingjing Chen, Dajian Wang, and Zhiyong Mao. "Low temperature and rapid microwave sintering of Na3Zr2Si2PO12 solid electrolytes for Na-Ion batteries." Journal of Power Sources 481 (January 2021): 228924. http://dx.doi.org/10.1016/j.jpowsour.2020.228924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Horwat, D., J. F. Pierson, and A. Billard. "Magnetron sputtering of NASICON (Na3Zr2Si2PO12) thin films Part I: Limitations of the classical methods." Surface and Coatings Technology 201, no. 16-17 (2007): 7013–17. http://dx.doi.org/10.1016/j.surfcoat.2007.01.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Tsukuda, Satoshi, Keigo Miyake, Takuya Yamaguchi, et al. "Formation of Amorphous H3Zr2Si2PO12 by Electrochemical Substitution of Sodium Ions in Na3Zr2Si2PO12 with Protons." Inorganic Chemistry 56, no. 22 (2017): 13949–54. http://dx.doi.org/10.1021/acs.inorgchem.7b02060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

PETROLEKAS, P. D., S. BROSDA, and C. G. VAYENAS. "ChemInform Abstract: Electrochemical Promotion of Pt Catalyst Electrodes Deposited on Na3Zr2Si2PO12 During Ethylene Oxidation." ChemInform 29, no. 30 (2010): no. http://dx.doi.org/10.1002/chin.199830022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ruan, Yanli, Fang Guo, Jingjing Liu, Shidong Song, Ningyi Jiang, and Bowen Cheng. "Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery." Ceramics International 45, no. 2 (2019): 1770–76. http://dx.doi.org/10.1016/j.ceramint.2018.10.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cao, Xiao Guo, Xiao Hua Zhang, Tao Tao, and Hai Yan Zhang. "Effects of antimony tin oxide (ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes." Ceramics International 46, no. 6 (2020): 8405–12. http://dx.doi.org/10.1016/j.ceramint.2019.12.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, Dan, Fa Luo, Wancheng Zhou, and Dongmei Zhu. "Influence of Nb5+, Ti4+, Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity." Journal of Alloys and Compounds 757 (August 2018): 348–55. http://dx.doi.org/10.1016/j.jallcom.2018.05.116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ji, Yongzheng, Tsuyoshi Honma, and Takayuki Komatsu. "Synthesis and Na+ Ion Conductivity of Stoichiometric Na3Zr2Si2PO12 by Liquid-Phase Sintering with NaPO3 Glass." Materials 14, no. 14 (2021): 3790. http://dx.doi.org/10.3390/ma14143790.

Full text
Abstract:
Sodium super ionic conductor (NASICON)-type Na3Zr2Si2PO12 (NZSP) with the advantages of the high ionic conductivity, stability and safety is one of the most famous solid-state electrolytes. NZSP, however, requires the high sintering temperature about 1200 °C and long sintering time in the conventional solid-state reaction (SSR) method. In this study, the liquid-phase sintering (LPS) method was applied to synthesize NZSP with the use of NaPO3 glass with a low glass transition temperature of 292 °C. The formation of NZSP was confirmed by X-ray diffraction analyses in the samples obtained by the
APA, Harvard, Vancouver, ISO, and other styles
41

Narayanan, Sumaletha, Samuel Reid, Shantel Butler, and Venkataraman Thangadurai. "Sintering temperature, excess sodium, and phosphorous dependencies on morphology and ionic conductivity of NASICON Na3Zr2Si2PO12." Solid State Ionics 331 (March 2019): 22–29. http://dx.doi.org/10.1016/j.ssi.2018.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

He, Shengnan, Youlong Xu, Yanjun Chen, and Xiaoning Ma. "Enhanced ionic conductivity of an F−-assisted Na3Zr2Si2PO12 solid electrolyte for solid-state sodium batteries." Journal of Materials Chemistry A 8, no. 25 (2020): 12594–602. http://dx.doi.org/10.1039/c9ta12213c.

Full text
Abstract:
F<sup>−</sup>-assisted Na<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub> (NZSP) solid electrolyte with high ionic conductivity is promising as a solid electrolyte for solid-state sodium batteries.
APA, Harvard, Vancouver, ISO, and other styles
43

Ruan, Yanli, Shidong Song, Jingjing Liu, et al. "Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions." Ceramics International 43, no. 10 (2017): 7810–15. http://dx.doi.org/10.1016/j.ceramint.2017.03.095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhao, Yongjie, Chengzhi Wang, Yejing Dai, and Haibo Jin. "Homogeneous Na+ transfer dynamic at Na/Na3Zr2Si2PO12 interface for all solid-state sodium metal batteries." Nano Energy 88 (October 2021): 106293. http://dx.doi.org/10.1016/j.nanoen.2021.106293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Haarmann, L., and K. Albe. "From ionic to superionic conductivity: The influence of cation order on sodium diffusion in Na3Zr2Si2PO12." Solid State Ionics 363 (May 2021): 115604. http://dx.doi.org/10.1016/j.ssi.2021.115604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yi, Qiang, Wenqiang Zhang, Shaoqing Li, Xinyuan Li, and Chunwen Sun. "Durable Sodium Battery with a Flexible Na3Zr2Si2PO12–PVDF–HFP Composite Electrolyte and Sodium/Carbon Cloth Anode." ACS Applied Materials & Interfaces 10, no. 41 (2018): 35039–46. http://dx.doi.org/10.1021/acsami.8b09991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yu, Xingwen, Leigang Xue, John B. Goodenough, and Arumugam Manthiram. "A High-Performance All-Solid-State Sodium Battery with a Poly(ethylene oxide)–Na3Zr2Si2PO12 Composite Electrolyte." ACS Materials Letters 1, no. 1 (2019): 132–38. http://dx.doi.org/10.1021/acsmaterialslett.9b00103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Oh, Jin An Sam, Linchun He, Anna Plewa, et al. "Composite NASICON (Na3Zr2Si2PO12) Solid-State Electrolyte with Enhanced Na+ Ionic Conductivity: Effect of Liquid Phase Sintering." ACS Applied Materials & Interfaces 11, no. 43 (2019): 40125–33. http://dx.doi.org/10.1021/acsami.9b14986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nakayama, Susumu, and Yoshihiko Sadaoka. "Preparation of Na3Zr2Si2PO12–sodium aluminosilicate composite and its application as a solid-state electrochemical CO2gas sensor." J. Mater. Chem. 4, no. 5 (1994): 663–68. http://dx.doi.org/10.1039/jm9940400663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chen, Dan, Fa Luo, Lu Gao, Wancheng Zhou, and Dongmei Zhu. "Influence of Indium-Tin Oxide Additive on the Sintering Process and Conductivity of Na3Zr2Si2PO12 Solid Electrolyte." Journal of Electronic Materials 46, no. 11 (2017): 6367–72. http://dx.doi.org/10.1007/s11664-017-5674-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!