Academic literature on the topic 'NACA 0018'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'NACA 0018.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "NACA 0018"

1

Seralathan, Sivamani, T. Micha Premkumar, S. Thangavel, and G. P. Pradeep. "Numerical Studies on the Effect of Cambered Airfoil Blades on Self-Starting of Vertical Axis Wind Turbine Part 2: NACA 0018 and NACA 63415." Applied Mechanics and Materials 787 (August 2015): 245–49. http://dx.doi.org/10.4028/www.scientific.net/amm.787.245.

Full text
Abstract:
NACA 0012 and NACA 4415 were discussed in Part 1 of the paper to study the capabilities of the airfoil blades by considering the effect of cambered airfoil blade on self-starting of vertical axis wind turbine. The numerical studies are carried out to identify self-starting capability of the airfoil using CFD analysis by studying the flow field over the vertical axis wind turbine blades. In this Part 2 paper, detailed numerical results of asymmetrical NACA 0018 and cambered airfoil NACA 63415 are presented. The lift force generated and the rotor torque induced varies with angle of attack. Based on the contours of static pressure and velocity distribution as well as based on the torque induced in the flow field over blade profiles, NACA 0018 is found to be better compared to cambered airfoil. Even though the lift force for cambered airfoils are higher, based on the rotor torque values, the wind turbine with asymmetrical airfoil blades NACA 0012 is better by 9.80% compared with NACA 4415 and 21.73% compared with NACA 63415. Self-starting issue can be addressed by proper selection of NACA blade profiles. By comparing the four airfoil blades in Part 1 and Part 2 of the papers, the asymmetrical NACA 0012 is found to be most suitable airfoil for self-starting the vertical axis wind turbine (VAWT).
APA, Harvard, Vancouver, ISO, and other styles
2

Sahid, Sahid, Mulyono Mulyono, and Dhiyaulhaq Arif Fauzi. "Performance Analysis of H-Type Darrieus Turbine Radial Projection Blades Based on NACA 0018." Eksergi 20, no. 02 (2024): 43–51. https://doi.org/10.32497/eksergi.v20i02.5806.

Full text
Abstract:
The H-type Darrieus turbine is a vertical windturbine that is used to convert wind energy into mechanicalenergy by utilizing lift force. This research is aimed at making amodified H-type Darrieus turbine blade model from a NACA0018 profile blade to a NACA 0018 blade with a chordlineprojected radially to the turbine diameter and the second resultis to compare the performance of the NACA 0018-based radialprojection blade to the performance of the NACA 0018 blade.This is preparation for searching literature, design making,manufacture of NACA 0018 blade test specimens and NACA0018 based radial shadow blades, assembly and installation oftest equipment, testing and data collection of wind turbineperformance, data processing and analysis, final results. Thevariables tested were wind speeds of 7 m/s, 8 m/s, 9 m/s, 10 m/s,11 m/s, 12 m/s. The test results show that the higher the TSR, thehigher the resulting power coefficient (Cp) until the maximumCp is reached. After that, the increasing TSR, the resulting Cp isgetting smaller. The test results show that projection bladesbased on NACA 0018 and NACA 0018 blades produce a smallmaximum Cp, respectively 0.082 and 0.124 compared to theDarrieus turbine maximum Cp reference on the vertical turbinecharacteristic chart, which is 0.4. The NACA 0018-based radialprojection produces a lower Cp than the NACA 0018 blade atspeeds of 7 m/s, 8 m/s, 10 m/s, 11 m/s, 12 m/s. At a wind speed of9 m/s the projection blade based on NACA 0018 produces ahigher power coefficient than the NACA 0018 blade. Projectingthe NACA 0018 blade chordline on the track causes the bladecross-sectional area and chordline length to shrink. The higherthe wind speed, the smaller the resulting Cp. The solidwallphenomenon affects turbine performance. Testing without loadat all wind speeds, the projection blade based on NACA 0018produces higher rotation than the NACA 0018 blade. Theparameter of the blade momentum affects the results of theturbine rotation when tested without load.
APA, Harvard, Vancouver, ISO, and other styles
3

González Díaz, Alan Javier, Leonardo José Geovo Coronado, and Yahir Enrique González Doria. "Selección del perfil alar simétrico óptimo para un aerogenerador de eje vertical utilizando la dinámica de flujos computacional." Ingeniare, no. 22 (April 5, 2018): 83–91. http://dx.doi.org/10.18041/1909-2458/ingeniare.22.1344.

Full text
Abstract:
Las turbinas de eje vertical (VAWT) surgieron para la generación de energía a baja potencia. La principal parte de estos dispositivos son los álabes, los cuales definen el rendimiento de la turbina. En este trabajo, utilizando el software comercial ANSYS 14.0, se evaluaron los perfiles NACA 0015, NACA 0018, NACA 0021 y NACA 0025 para el álabe, seleccionando el perfil que presentó la mayor relación de los coeficientes de arrastre-sustentación y una variación suave del coeficiente de sustentación con respecto al ángulo de ataque. Se seleccionó, el perfil NACA 0025 por mantener una estabilidad dinámica para el número de Reynolds y ángulo de ataque evaluado.
APA, Harvard, Vancouver, ISO, and other styles
4

Erwin, Slamet Wiyono, Erny Listijorini, Rina Lusiani, and Tresna P. Soemardi. "Development of the Third Darrieus Blade of Sultan Wind Turbine for Low Wind Speed." Applied Mechanics and Materials 758 (April 2015): 13–19. http://dx.doi.org/10.4028/www.scientific.net/amm.758.13.

Full text
Abstract:
Use of NACA 0012 at the Sultan Wind Turbine prototype provide value coefficient power turbine at wind speed 5.5 m / s by 0017 , wind speed 6.1 m / s at 0.015 , wind speed 7.7 m / s at 0.016 , wind speed 6.5 m / s for 0018 and wind speed 6.2 m / s by 0017 . Where the value of the highest efficiency obtained at a speed of 6.5 m / s at 0.018 . This result is not as expected to generate sufficient energy.The next development carried out investigations on some kind of airfoil, from investigations obtained by using Qblade software that NACA 6612 has a value of 1.78 CL at 15 degrees angle of attack is the largest of all the airfoil .In this research, NACA 6612 will be simulated with a variable chord length, angle of attack, and wind speed, of these three variables will be created which will map graphics 3d sliding value of the ratio of the 3 variables, this graph will give recommendations most optimum combination of variables to types are mapped wind speed throughout the year, to produce optimum power.Optimum combination of NACA 6612 with wind speed varied from 2-7 m/s is chord length 30 cm and angle of attack 7 degree.
APA, Harvard, Vancouver, ISO, and other styles
5

Гоман, О. Г., та А. О. Рожкевич. "АЕРОДИНАМІЧНИЙ РОЗРАХУНОК ВІТРОВОЇ ТУРБІНИ ДАР’Є В ЗАЛЕЖНОСТІ ВІД РІЗНИХ ТИПІВ ПРОФІЛІВ ТА МІСЦЕВОГО ЧИСЛА РЕЙНОЛЬДСА". Проблеми обчислювальної механіки і міцності конструкцій 1, № 36 (2023): 40–48. http://dx.doi.org/10.15421/4223104.

Full text
Abstract:
У рамках класичної дводискової імпульсної теорії показано вплив змінного числа Рейнольдса на загальні енергетичні характеристики вітрової турбіни Дар’є. Інтегральний підхід дав змогу використовувати дводискову імпульсну модель для визначення основних питомих показників системи. Коефіцієнт потужності розраховувався на основі знайденого значення коефіцієнта крутного моменту на валу, який, у свою чергу, визначався числовим інтегруванням інтеграла повного крутного моменту, створюваного вітровою турбіною. Для розрахунку тестової задачі використовувалися класичні аеродинамічні профілі NACA: 0012, 0015, 0018, 0021. Запропонований алгоритм розрахунку дає змогу не вказувати на початку розрахунку число Рейнольдса та відповідні аеродинамічні коефіцієнти, а перераховувати їх залежно від відносної швидкості, положення профілю та лінійної швидкості профілю по колу.
APA, Harvard, Vancouver, ISO, and other styles
6

Ariefianto, Rizki Mendung, Rini Nur Hasanah, Wijono Wijono, and Asfarur Ridlwan. "Performance Study of a Humpback Whale Fluke Turbine on Foil Shape Variation Based on Double Multiple Streamtube Model." Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 20, no. 3 (2023): 320–28. http://dx.doi.org/10.14710/kapal.v20i3.53886.

Full text
Abstract:
Exploration of ocean current energy allows for the development of turbines as the primary conversion device. Turbine technologies have been developed in various types, including bio-inspired turbines, such as the humpback whale fluke turbine. In this study, the achievement of a humpback whale fluke turbine is investigated by applying various forms of foil, both symmetric and asymmetric, to obtain the appropriate foil profile. Symmetric foils were represented by NACA 0012, NACA 0018, and NACA 0021, while asymmetric foils were represented by NACA 4312, NACA 4512, and NACA 4712 foils. Simulations were performed using QBlade software, which was developed based on the DMST theory. In general, symmetric foils have a more stable performance than asymmetric foils because they produce a better performance at positive and negative angles of attack. This result is also supported by a review of efficiency and self-starting capability where symmetric foils have significantly higher CP values and positive CQ along the azimuth angle than asymmetric foils. Finally, NACA 0021 foil is recommended for a humpback whale fluke turbine based on its efficiency and self-starting capability.
APA, Harvard, Vancouver, ISO, and other styles
7

Abdus, Shabur, Hasan Afnan, and Ali Mohammad. "Comparison of Aerodynamic Behaviour between NACA 0018 and NACA 0012 Airfoils at Low Reynolds Number Through CFD Analysis." Advancement in Mechanical Engineering and Technology 3, no. 2 (2020): 1–8. https://doi.org/10.5281/zenodo.4003677.

Full text
Abstract:
<em>For better designing of an airfoil, the aerodynamic characteristics of the airfoil need to be investigated both experimentally and numerically. Coefficient of lift (C<sub>L</sub>), coefficient of drag (C<sub>D</sub>), variation of C<sub>L</sub>/C<sub>D</sub> ratio with angle of attack is very important parameters in CFD analysis. In this study the above parameters are investigated for two symmetric airfoils (NACA0018 and NACA0012) at two different low Reynolds numbers of 300,000 and 700,000. This numerical results show that the stall angle for NACA0018 airfoil at Re=300,000 is less than 17 degree and at Re=700,000 for the same airfoil it is 17.5 degree and this happened due to the increased velocity. C<sub>L</sub> increases more linearly than C<sub>D</sub> up to about 10 degree so that C<sub>L</sub>/C<sub>D</sub> ratio increases with the angle of attack and then decreases after or near about 10 degree. It has been also found that higher the Reynolds number, greater the value of C<sub>L</sub>/C<sub>D</sub> ratio. Besides, it is evident from this simulation that NACA 0012 produces more lift than NACA 0018 for the same Reynolds number. That&rsquo;s why, NACA 0012 airfoil may be verily used for aircraft application whereas NACA 0018 airfoil may be used in VAWT (Vertical Axis Wind Turbine) And HAWT (Horizontal Axis Wind Turbine) to capture the wind energy and convert it to useable energy which is one form of renewable energy.</em>
APA, Harvard, Vancouver, ISO, and other styles
8

Micha Premkumar, T., Sivamani Seralathan, T. Mohan, and N. N. P. Saran Reddy. "Numerical Studies on the Effect of Cambered Airfoil Blades on Self-Starting of Vertical Axis Wind Turbine Part 1: NACA 0012 and NACA 4415." Applied Mechanics and Materials 787 (August 2015): 250–54. http://dx.doi.org/10.4028/www.scientific.net/amm.787.250.

Full text
Abstract:
This is Part-1 of the two-part paper in considering the effect of cambered airfoil blades on self-starting of vertical axis wind turbine. Part 1 reports the numerical studies on self-starting of vertical axis wind turbine with comparative studies involving NACA 0012 and cambered airfoil NACA 4415. Part 2 of the paper deals with numerical studies of NACA 0018 and cambered air foil NACA 63415. Darrieus type VAWT is attracting many researchers attention for its inherent advantages and its diversified applications. However, a disadvantage is when the rotor is stationary, no net rotational forces arises, even at high-wind speed. The principal advantage of the vertical axis format is their ability to accept wind from any direction without yawing mechanism. However, self-starting capability is the major drawbacks. Moreover, literatures based on computational analysis involving the cambered airfoil are few only. The objective of this present study is to select the suitable airfoil blades on self-starting of VAWT at low-Reynolds number. The numerical studies are carried out to identify self-starting capability of the airfoil using CFD analysis by studying the flow field over the vertical axis wind turbine blades. The commercial CFD code, ANSYS CFX 13.0© was used for the present studies. Initially, the flow over NACA 0012 was simulated and analyzed for different angles of attacks and similarly carried out for NACA 4415. The contours of static pressure distribution and velocity as well as the force and torque were obtained. Even though the lift force for cambered airfoil NACA 4415 is higher, based on the torque values of the above blade profiles, asymmetrical airfoil NACA 0012 is found to be appropriate for self-starring of VAWT.
APA, Harvard, Vancouver, ISO, and other styles
9

Fadila, Anis, and Ilham Zakaria. "Rancang Bangun Turbin Angin Tipe Darrieus Tiga Sudu Rangkap Tiga dengan Profil NACA 0006." Eksergi 15, no. 3 (2020): 102. http://dx.doi.org/10.32497/eksergi.v15i3.1785.

Full text
Abstract:
&lt;p&gt;Turbin angin Darrieus merupakan turbin angin sumbu vertical yang memilki poros rotor utama disusun tegak lurus dengan kelebihan utama dapat mengkonversi energi angin dari segala arah.Tujuan penelitian ini yaitu Membuat, melakukan uji kinerja dan analisis kinerja model turbin angin Darrieus tiga sudu rangkap tiga profil NACA 0006dan tiga sudu tunggal profil NACA 0018. Metode peneitian meliputi perancangan desain turbin angin Darrieus tiga sudu rangkap tiga, pembuatan, perakitan turbin angin, proses pengujian, dan metode analisis data. Pengujian dilakukan pada kecepatan angin 7-12 m/detik.Analisis uji kinerja turbin angin didasarkan pada perhitungan efisiensi sistem (ƞ sistem). Hasil uji menunjukkan efisiensi sistem tertinggi tiga sudu rangkap tiga NACA 0006 memiliki efisiensi terbesar pada kecepatan angin 7 sampai 11 m/detik yaitu 0,0977 dibandingkan dengan tiga sudu tunggal NACA 0018 yang memiliki efisiensi terbesar hanya pada kecepatan angin 12 m/detik yaitu sebesar 0,154.&lt;/p&gt;
APA, Harvard, Vancouver, ISO, and other styles
10

Cardona-Cárdenas, José Daniel, Diego Andrés Hincapié Zuluaga, Juan Gonzalo Ardila Marín, Rafael de Oliveira Faria, and Carlos Alberto Ramírez Vanegas. "Impact of Blade and Solidity on the Performance of H-Darrieus Hydrokinetic Turbines by CFD Simulation." Revista de Gestão Social e Ambiental 18, no. 1 (2023): e03224. http://dx.doi.org/10.24857/rgsa.v18n1-007.

Full text
Abstract:
Purpose: In the present work, the 2D design of H-Darrieus turbines with a diameter of 900 mm and NACA blades 0018, 0025, 2415, and 4415 has been carried out for the solidity values of 0,5; 1 and 1,5. In order to know its maximum performance. Method/design/approach: The 2D simulations were developed with the ANSYS® FLUENT package in the transient state, varying the angular velocity (ω) for a peak velocity ratio (TSR) of 1 to 7 and the SST K-ω turbulence model, for a constant water flow rate of 1 m/s. This in order to know the results of the torque (Nm) generated and thus calculate the power coefficient (Cp). Results and conclusion: The NACA 0018 blade reached a power coefficient of 0,604 for a solidity of 0,5, followed by NACA 2415 blade at the same solidity with a maximum Cp of 0,594. On the other hand, the NACA 0025 blade for solidity of 1 reached a maximum Cp value of 0,570, while the NACA 4415 profile with a solidity of 1,5 obtained a maximum value of 0.495. Research implications: These results of maximum Cp values were given in a TSR range of 2 to 4 with a mean value of 3,5 for NACA profiles 0018 and 2415. Thus, evidencing the behavior of this type of turbine reaching maximum values to then begin to decrease. Originality/value: The present work contributes to the understanding of the impact of geometrical parameters on the operating coefficient of H-Darrieus.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "NACA 0018"

1

Oliveira, Thiago Fernandes. "Estudo experimental do estol dinâmico em um aerofólio naca 0018." reponame:Repositório Institucional da UnB, 2011. http://repositorio.unb.br/handle/10482/9388.

Full text
Abstract:
Dissertação (mestrado)—Universidade de Brasília, Departamento de Engenharia Mecânica, 2011.<br>Submitted by Shayane Marques Zica (marquacizh@uol.com.br) on 2011-09-13T19:13:31Z No. of bitstreams: 1 2011_ThiagoFernandesOliveira.pdf: 4245386 bytes, checksum: 1a6804b340c8e4f82fe6c1591dffe1e9 (MD5)<br>Approved for entry into archive by LUCIANA SETUBAL MARQUES DA SILVA(lucianasetubal@bce.unb.br) on 2011-10-04T16:16:42Z (GMT) No. of bitstreams: 1 2011_ThiagoFernandesOliveira.pdf: 4245386 bytes, checksum: 1a6804b340c8e4f82fe6c1591dffe1e9 (MD5)<br>Made available in DSpace on 2011-10-04T16:16:42Z (GMT). No. of bitstreams: 1 2011_ThiagoFernandesOliveira.pdf: 4245386 bytes, checksum: 1a6804b340c8e4f82fe6c1591dffe1e9 (MD5)<br>O objetivo deste trabalho é o estudo experimental de um perfil aerodinâmico NACA 0018 em movimento angular em túnel de água. Os coeficientes de sustentação, arrasto e momento de arfagem foram medidos estaticamente e dinamicamente (durante a movimentação angular do perfil) através de uma célula de carga desenvolvida especificamente para este estudo. O software LabView foi utilizado para a aquisição de dados e controle do experimento. Os ensaios foram realizados para os números de Reynolds iguais a 97.000, 124.000 e 150.000 para os casos estáticos e 124.000 e 150.000 para os casos dinâmicos com velocidades angulares do perfil iguais a 0,06, 0,13 e 0,19 rad/s. Os resultados dos ensaios estáticos foram comparados com a literatura apresentando boa concordância. Os ensaios dinâmicos foram realizados para a verificação do fenômeno de estol dinâmico. Os resultados foram comparados entre os diferentes números de Reynolds. A influência das diferentes velocidades angulares nos casos dinâmicos também foi evidenciada comparando-se inclusive com o caso estático. A visualização do escoamento também foi realizada para complementar a análise. _______________________________________________________________________________ ABSTRACT<br>The objective of this work is the experimental study of a NACA 0018 airfoil in angular movement in a water tunnel. The lift, drag and pitching moment coefficients were measured statically and dynamically (along the airfoil's angular movement) through a load cell specifically designed for this study. The LabView software was used for the data acquisition and control of the experiment. The tests were performed for Reynolds numbers equal to 97,000, 124,000 and 150,000 for the statics cases and 124,000 and 150,000 for the dynamics cases with angular velocities of the airfoil equal to 0.06, 0.13 e 0.19 rad/s. The results of the statics tests were compared with the literature with good agreement. The dynamic tests were performed to verify the phenomenon of dynamic stall. The results were compared between the different Reynolds numbers. The influence of the angular velocities in the dynamics cases was also evidenced comparing including with the static case. The flow visualization was also performed to complement the analysis.
APA, Harvard, Vancouver, ISO, and other styles
2

Bonavita, Gianluca. "Ottimizzazione costruttiva e di montaggio di un aerogeneratore ad asse verticale privo di fondazione." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3666/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Hongtao. "A Validation Study of SC/Tetra CFD Code." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1399896316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Islam, Md Monirul. "Nonlinear normal force indicial responses for a 2-D NACA 0015 airfoil." Ohio : Ohio University, 1991. http://www.ohiolink.edu/etd/view.cgi?ohiou1183730957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fang, Kuan-Chieh. "Nonlinear aerodynamic responses in tow tank study for a two dimensional NACA 0015 airfoil." Ohio : Ohio University, 1992. http://www.ohiolink.edu/etd/view.cgi?ohiou1172265691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Sihao. "Effect of aeroelasticity in tow tank strain gauge measurements on a NACA 0015 airfoil." Ohio : Ohio University, 1993. http://www.ohiolink.edu/etd/view.cgi?ohiou1175713922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fernie, Robert Mark. "Low frequency shock motion on a NACA 0012 aerofoil." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jensen, Christopher Douglas. "Global Pressure and Temperature Surface Measurements on a NACA 0012 Airfoil in Oscillatory Compressible Flow at Low Reduced Frequencies." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1331075431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Digavalli, Sasi K. (Sasi Kumar). "Dynamic stall of a NACA 0012 airfoil in laminar flow." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Castañeda, Vergara David Armando. "Active Control of Flow over an Oscillating NACA 0012 Airfoil." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587420875168203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "NACA 0018"

1

K, Takahashi R., Ames Research Center, and United States. Army Aviation Systems Command., eds. NACA 0015 wing pressure and trailing vortex measurements. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heyd, Darrick Vaughn. Photodissociation of methyl bromide adsorbed on LiF(001), NaCl(001), and MgO(001). National Library of Canada = Bibliothèque nationale du Canada, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Applin, Zachary T. Pressure distributions from subsonic tests of a NACA 0012 semispan wing model. National Aeronautics and Space Administration, Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Robert, Shaw, Newton James E, and United States. National Aeronautics and Space Administration., eds. Ice shapes and the resulting drag increase for a NACA 0012 airfoil. National Aeronautics and Space Administration, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Applin, Zachary T. Pressure distributions from subsonic tests of a NACA 0012 semispan wing model. National Aeronautics and Space Administration, Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

McCroskey, W. J. A critical assessment of wind tunnel results for the NACA 0012 airfoil. National Aeronautics and Space Administration, Ames Research Center, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mineck, Raymond E. Effect of full-chord porosity on aerodynamic characteristics of the NACA 0012 airfoil. Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

A, Rivera José, and Langley Research Center, eds. Experimental flutter boundaries with unsteady pressure distributions for the NACA 0012 Benchmark Model. National Aeronautics and Space Administration, Langley Research Center, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

H, Bond Thomas, and United States. National Aeronautics and Space Administration., eds. Experimental and computational ice shapes and resulting drag increase for a NACA 0012 airfoil. National Aeronautics and Space Administration, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

H, Bond Thomas, and United States. National Aeronautics and Space Administration., eds. Experimental and computational ice shapes and resulting drag increase for a NACA 0012 airfoil. National Aeronautics and Space Administration, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "NACA 0018"

1

Livya, E., R. Sai Anirudh, V. Vignesh, B. Prasannavenkatesh, and S. Nadaraja Pillai. "Experimental Analysis of Implementing Roughness on NACA 0018 Airfoil." In Lecture Notes in Mechanical Engineering. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2697-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Güler, Emre, Mehmet Erdem, Şıhmehmet Yıldız, and Melike Nikbay. "Optimization of Gurney Flap Over NACA 0018 by Using Surrogate Modeling." In Studies in Systems, Decision and Control. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-82342-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Apostol, Eliza-Ioana, and Aurel-Mihail Țîțu. "CFD Simulation of the Aerodynamic Characteristics of the NACA 0018 Symmetrical Profile." In Lecture Notes in Mechanical Engineering. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53991-6_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arini, Nu Rhahida, Stephen R. Turnock, and Mingyi Tan. "2D CFD Model of Blunt NACA 0018 at High Reynolds Number for Improving Vertical Axis Turbine Performance." In Proceedings of Second International Conference on Electrical Systems, Technology and Information 2015 (ICESTI 2015). Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-988-2_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Das, Sourav, Tanumoy Banerjee, and Nripen Mondal. "A Comparative CFD Study to Analyze the Performance of NACA 0018 and S1210 Darrieus Wind Turbine Blade." In Lecture Notes in Mechanical Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6970-6_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cortez, Diogo, and Guilherme de Souza Papini. "NACA 0012 Aeroacoustic Study Using ANSYSFluent." In Proceedings of the 7th Brazilian Technology Symposium (BTSym’21). Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08545-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hering, Ekbert. "Programmablaufplan nach DIN 66 001." In Software-Engineering. Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-663-12366-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Secretan, Yves, Gouri Dhatt, and Dinh Nguyen. "Compressible Viscous Flow Around a NACA-0012 Airfoil." In Numerical Simulation of Compressible Navier-Stokes Flows. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-322-87873-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jalasabri, Jafirdaus, Mohamed Sukri Mat Ali, Fairuz Izzuddin Romli, and Nurshafinaz Mohd Maruai. "Noise Estimation of NACA 0012 Airfoil Using DES Method." In Lecture Notes in Mechanical Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6874-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nitya, MV, and Rajesh Ranjan. "Numerical investigation of transitional flows over NACA 0012 Airfoil." In Lecture Notes in Mechanical Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6270-7_64.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "NACA 0018"

1

Mangalore, Aniket Ashish, Farrel Kent Kuntadihardja, Ahmad Dzakwaan Haniif Herefa, and Muhammad Athallah Naufal. "Exploring the Potential of Morphing Wings: A Comparative Analysis of the NACA 0018 Airfoil." In 2024 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES). IEEE, 2024. https://doi.org/10.1109/icares64249.2024.10767963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kocher, Alexander, Reed Cummings, and Onkar Sahni. "Large Eddy Simulation of Flow over an Airfoil Undergoing Surging and Pitching Motions." In Vertical Flight Society 73rd Annual Forum & Technology Display. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-12013.

Full text
Abstract:
A dynamic large eddy simulation (LES) approach is employed to study flow over an oscillating NACA 0018 airfoil with surging and pitching motions. Surging motion is studied at moderate and large advance ratios of λ=0.5 and 1.0, and a reduced frequency of k=0.0985. An airfoil at fixed incidence of 8° is set in a constant freestream flow at Reynolds number of ReC=300,000. LES predictions for lift force are compared to experimental results at λ=0.5 and show a good agreement. LES predictions are also made at λ=1.0 which is at the tipping point of reverse flow regime. With a large surging amplitude, there is a loss of lift during the retreating phase, and a roll up and ejection of a distinct leading-edge vortex. Pitching motion is studied at ReC=250,000 and k=0.074 with both mean and amplitude of incidence set to 10°. Again, LES predictions for lift force are compared with experiments. Unsteady Reynolds-averaged Navier-Stokes (URANS) predictions are also made. LES predictions show similar features in the force response as experiments while URANS lack few prominent features. In all cases, instantaneous flowfield is analyzed at different phases.
APA, Harvard, Vancouver, ISO, and other styles
3

Ryan-Simmons, Dean M., and Ramesh K. Agarwal. "Application of Wray-Agarwal Turbulence Model for Predicting Flow past NACA 0012, 0015, and 0018 Airfoils." In AIAA AVIATION 2022 Forum. American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-3411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ryan-Simmons, Dean, and Ramesh K. Agarwal. "Application of Wray-Agarwal Algebraic Transition Model to Flow past NACA 0012, 0015, and 0018 Airfoils." In AIAA SCITECH 2023 Forum. American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-1623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Veeraperumal Senthil Nathan, Janani Priyadharshini, Mahendran Rajendran, Manikandan Arumugam, et al. "Ascertainment of Optimized Profile of Hybrid Vortex Bladeless Turbine for Unmanned Surface Vehicles Using Progressive Computational Studies." In Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility (ADMMS’25). SAE International, 2025. https://doi.org/10.4271/2025-28-0185.

Full text
Abstract:
&lt;div class="section abstract"&gt;&lt;div class="htmlview paragraph"&gt;This work addresses an innovative method for improving energy harvesting in Bladeless wind turbines (BWT) by implementing profile modifications to the wind turbine for fixing it in Unmanned Surface Vehicles (USV). The streamlined flow undergoes a transformation and generates a vortex in the vicinity of the structure when the wind impacts the BWT. As the velocity increases, the wind strikes the structure with greater force, resulting in an imbalance that causes the structure to vibrate. To convert this vibrational energy of the wind turbine into electrical energy, the research investigates the use of a variety of profile modifications to capitalize on the aerodynamic effect generated by the structure. The entire cylindrical shape is altered to tapered shape, airfoil shapes with coordinates such as NACA 0012, 0015, 0018, 4412 and 4420. In addition to these shapes, hybrid models were also constructed by merging models made from two airfoil coordinates, including NACA 0018 &amp;amp; 4412, NACA 4412 &amp;amp; 4420 and NACA 4412 &amp;amp; 4412. Computational fluid dynamics simulations are employed to design and investigate aerodynamic forces, torque, pressure and induced velocity of the diverse design profiles using ANSYS Workbench software. The analysis is performed under specific boundary conditions to determine the most effective design for enhancing energy extraction. The USV employs this efficient method of operating BWT to generate additional power from renewable sources by utilizing the high-velocity air generated in the environment. The results of the analysis indicate that the Hybrid 4412-4420 airfoil structured design performs better and is more efficient than the other models.&lt;/div&gt;&lt;/div&gt;
APA, Harvard, Vancouver, ISO, and other styles
6

Niel, Fabien, Casey P. Fagley, Jurgen Seidel, and Thomas E. McLaughlin. "Reduced order modeling of a dynamically pitching NACA 0018 Airfoil." In 55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-0952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gerakopulos, Ryan, Michael Boutilier, and Serhiy Yarusevych. "Aerodynamic Characterization of a NACA 0018 Airfoil at Low Reynolds Numbers." In 40th Fluid Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Connolly, Jonathan, Matthew McGilvray, and David R. Gillespie. "Optical measurement of ice crystal icing on a NACA 0018 airfoil." In AIAA AVIATION 2022 Forum. American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-3699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yarusevych, Serhiy, and Michael Boutilier. "Vortex Shedding Characteristics of a NACA 0018 Airfoil at Low Reynolds Numbers." In 40th Fluid Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Culler, Ethan C., John A. Farnsworth, Casey P. Fagley, and Thomas E. McLaughlin. "Spanwise Variation of Stall Flutter on a Flexible NACA 0018 Finite SpanWing." In 54th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1554.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "NACA 0018"

1

Chaudhary, R. I., and D. T. Williamson. Endplate Effectiveness for a NACA 0015 Airfoil. Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada373750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Covert, Eugene E., Michael J. Fletcher, Kirk J. Flittie, and Samuel W. Linton. On the Unsteady Characteristics of Flows Around an NACA 0012 Airfoil. Defense Technical Information Center, 1986. http://dx.doi.org/10.21236/ada179654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bigdeli, Mohammad, та Vahid Monfared. Investigation and Comparison of Stall Angle of Airfoil NACA 0012 in Reynolds Number of 3 × 106 with K‑ω SST, Realizable k‑ε, Spalart-Allmaras Turbulence Models. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2020. http://dx.doi.org/10.7546/crabs.2020.03.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography