Academic literature on the topic 'Naive bayes classifier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Naive bayes classifier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Naive bayes classifier"
Hairani, Hairani, Gibran Satya Nugraha, Mokhammad Nurkholis Abdillah, and Muhammad Innuddin. "Komparasi Akurasi Metode Correlated Naive Bayes Classifier dan Naive Bayes Classifier untuk Diagnosis Penyakit Diabetes." InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan) 3, no. 1 (September 13, 2018): 6–11. http://dx.doi.org/10.30743/infotekjar.v3i1.558.
Full textAhmad, Amir, Hamza Abujabal, and C. Aswani Kumar. "Random Subclasses Ensembles by Using 1-Nearest Neighbor Framework." International Journal of Pattern Recognition and Artificial Intelligence 31, no. 10 (February 24, 2017): 1750031. http://dx.doi.org/10.1142/s0218001417500318.
Full textNakra, Abhilasha, and Manoj Duhan. "Comparative Analysis of Bayes Net Classifier, Naive Bayes Classifier and Combination of both Classifiers using WEKA." International Journal of Information Technology and Computer Science 11, no. 3 (March 8, 2019): 38–45. http://dx.doi.org/10.5815/ijitcs.2019.03.04.
Full text., Pooja, and Komal Kumar Bhatia. "Spam Detection using Naive Bayes Classifier." International Journal of Computer Sciences and Engineering 6, no. 7 (July 31, 2018): 712–16. http://dx.doi.org/10.26438/ijcse/v6i7.712716.
Full text., Pooja, and Komal Kumar Bhatia. "Spam Detection using Naive Bayes Classifier." International Journal of Computer Sciences and Engineering 6, no. 7 (July 31, 2018): 934–38. http://dx.doi.org/10.26438/ijcse/v6i7.934938.
Full textSetianingrum, Anif Hanifa, Dea Herwinda Kalokasari, and Imam Marzuki Shofi. "IMPLEMENTASI ALGORITMA MULTINOMIAL NAIVE BAYES CLASSIFIER." JURNAL TEKNIK INFORMATIKA 10, no. 2 (January 26, 2018): 109–18. http://dx.doi.org/10.15408/jti.v10i2.6822.
Full textUtami, Putri Dinda, and Risna Sari. "Filtering Hoax Menggunakan Naive Bayes Classifier." MULTINETICS 4, no. 1 (May 30, 2018): 57. http://dx.doi.org/10.32722/multinetics.vol4.no.1.2018.pp.57-61.
Full textUtami, Putri Dinda, and Risna Sari. "Filtering Hoax Menggunakan Naive Bayes Classifier." MULTINETICS 4, no. 1 (May 30, 2018): 57. http://dx.doi.org/10.32722/vol4.no1.2018.pp57-61.
Full textUtami, Putri Dinda, and Risna Sari. "Filtering Hoax Menggunakan Naive Bayes Classifier." MULTINETICS 4, no. 1 (May 30, 2018): 57–61. http://dx.doi.org/10.32722/multinetics.v4i1.1179.
Full textSugahara, Shouta, and Maomi Ueno. "Exact Learning Augmented Naive Bayes Classifier." Entropy 23, no. 12 (December 20, 2021): 1703. http://dx.doi.org/10.3390/e23121703.
Full textDissertations / Theses on the topic "Naive bayes classifier"
Wester, Philip. "Anomaly-based intrusion detection using Tree Augmented Naive Bayes Classifier." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295754.
Full textMed informationsteknikens utveckling och det ökade beroendet av dessa system, blir det alltmer viktigt att hålla systemen säkra. Intrångsdetektionssystem (IDS) är en av många fundamentala teknologier som kan öka säkerheten i ett system. En av de större utmaningarna inom IDS, är att upptäcka typer av intrång som tidigare inte stötts på, så kallade okända intrång. Dessa intrång upptäcks oftast med hjälp av metoder som kollektivt kallas för avvikelsedetektionsmetoder. I denna uppsats utvärderar jag algoritmen Tree Augmented Naive Bayes Classifiers (TAN) prestation som en intrångsdetektionsklassificerare. Jag programmerade ett TAN-program, i Python, och testade detta program på två dataset som innehöll datatrafik. Denna uppsats ämnar att skapa en bättre förståelse för hur TAN fungerar, samt utvärdera om det är en lämplig algoritm för detektion av intrång. Resultaten visar att TAN kan prestera på en acceptabel nivå, med rimligt hög noggrannhet. Resultaten markerar även betydelsen av "smoothing operator", som inkluderas i standardversionen av TAN.
Eldud, Omer Ahmed Abdelkarim. "Prediction of protein secondary structure using binary classificationtrees, naive Bayes classifiers and the Logistic Regression Classifier." Thesis, Rhodes University, 2016. http://hdl.handle.net/10962/d1019985.
Full textKoc, Levent. "Application of a Hidden Bayes Naive Multiclass Classifier in Network Intrusion Detection." The George Washington University, 2013.
Find full textVallin, Simon. "Likelihood-based classification of single trees in hemi-boreal forests." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-99691.
Full textAtt kunna artbestämma enskilda träd är viktigt inom skogsbruket. I denna uppsats undersöker vi om det är möjligt att skilja mellan gran, tall och lövträd med data från en flygburen laserskanner genom att skatta en unik täthetsfunktion för varje trädslag. Täthetsfunktionerna skattas på tre olika sätt: genom att anpassa en beta-fördelning, skatta täthetsfunktionen med histogram samt skatta täthetsfunktionen med en kernel täthetsskattning. Alla dessa metoder klassificerar varje enskild laserretur (och inte segment av laserreturer). Resultaten från vår klassificering jämförs sedan med en referensmetod som bygger på särdrag från laserskanner data. Vi mäter hur väl metoderna presterar genom att jämföra den totala precisionen, vilket är andelen korrektklassificerade träd. Den högsta totala precisionen för de framtagna metoderna i denna uppsats erhölls med metoden som bygger på täthetsskattning med histogram. Precisionen för denna metod var 83,4 procent rättklassicerade träd. Detta kan jämföras med en rättklassificering på 84,1 procent vilket är det bästa resultatet för referensmetoderna. Att vi erhåller en så pass hög grad av rättklassificerade träd tyder på att de metoder som vi använder oss av är användbara för trädslagsklassificering.
Warsitha, Tedy, and Robin Kammerlander. "Analyzing the ability of Naive-Bayes and Label Spreading to predict labels with varying quantities of training data : Classifier Evaluation." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188132.
Full textEn studie utfördes på klassifieringsmetoderna Naive-Bayes och Label Spreading applicerade i ett spam filter. Meto- dernas förmåga att predicera observerades och resultaten jämfördes i ett McNemar test, vilket ledde till upptäckten av styrkorna och svagheterna av de valda metoderna i en miljö med varierande träningsdata. Fastän resultaten var ofullständiga på grund av bristfälliga resurser, så diskute- ras den bakomliggande teorin utifrån flera vinklar. Denna diskussion har målet att ge en bättre förståelse kring de bakomliggande förutsättningarna som kan leda till poten- tiellt annorlunda resultat för de valda metoderna. Vidare öppnar detta möjligheter för förbättringar och framtida stu- dier. Slutsatsen som dras av denna studie är att signifikanta skillnader existerar i förmågan att kunna predicera klasser mellan de två valda klassifierarna. Den slutgiltiga rekom- mendationen blir att välja en klassifierare utifrån utbudet av träningsdata och tillgängligheten av datorkraft.
SILVA, Antonio Carlos de Castro da. "Reconhecimento automático de defeitos de fabricação em painéis TFT-LCD através de inspeção de imagem." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17823.
Full textMade available in DSpace on 2016-09-12T14:09:09Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) MSc_Antonio Carlos de Castro da Silva_digital_12_04_16.pdf: 2938596 bytes, checksum: 9d5e96b489990fe36c4e1ad5a23148dd (MD5) Previous issue date: 2016-01-15
A detecção prematura de defeitos nos componentes de linhas de montagem de fabricação é determinante para a obtenção de produtos finais de boa qualidade. Partindo desse pressuposto, o presente trabalho apresenta uma plataforma desenvolvida para detecção automática dos defeitos de fabricação em painéis TFT-LCD (Thin Film Transistor-Liquid Cristal Displays) através da realização de inspeção de imagem. A plataforma desenvolvida é baseada em câmeras, sendo o painel inspecionado posicionado em uma câmara fechada para não sofrer interferência da luminosidade do ambiente. As etapas da inspeção consistem em aquisição das imagens pelas câmeras, definição da região de interesse (detecção do quadro), extração das características, análise das imagens, classificação dos defeitos e tomada de decisão de aprovação ou rejeição do painel. A extração das características das imagens é realizada tomando tanto o padrão RGB como imagens em escala de cinza. Para cada componente RGB a intensidade de pixels é analisada e a variância é calculada, se um painel apresentar variação de 5% em relação aos valores de referência, o painel é rejeitado. A classificação é realizada por meio do algorítimo de Naive Bayes. Os resultados obtidos mostram um índice de 94,23% de acurácia na detecção dos defeitos. Está sendo estudada a incorporação da plataforma aqui descrita à linha de produção em massa da Samsung em Manaus.
The early detection of defects in the parts used in manufacturing assembly lines is crucial for assuring the good quality of the final product. Thus, this paper presents a platform developed for automatically detecting manufacturing defects in TFT-LCD (Thin Film Transistor-Liquid Cristal Displays) panels by image inspection. The developed platform is based on câmeras. The panel under inspection is positioned in a closed chamber to avoid interference from light sources from the environment. The inspection steps encompass image acquisition by the cameras, setting the region of interest (frame detection), feature extraction, image analysis, classification of defects, and decision making. The extraction of the features of the acquired images is performed using both the standard RGB and grayscale images. For each component the intensity of RGB pixels is analyzed and the variance is calculated. A panel is rejected if the value variation of the measure obtained is 5% of the reference values. The classification is performed using the Naive Bayes algorithm. The results obtained show an accuracy rate of 94.23% in defect detection. Samsung (Manaus) is considering the possibility of incorporating the platform described here to its mass production line.
Pyon, Yoon Soo. "Variant Detection Using Next Generation Sequencing Data." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1347053645.
Full textAnderson, Michael P. "Bayesian classification of DNA barcodes." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2247.
Full textLee, Jun won. "Relationships Among Learning Algorithms and Tasks." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2478.
Full textGiunchi, Massimiliano. "Tecnologie per la gestione di big data: analisi della piattaforma Hadoop." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textBook chapters on the topic "Naive bayes classifier"
Mihaljevic, Bojan, Pedro Larrañaga, and Concha Bielza. "Augmented Semi-naive Bayes Classifier." In Advances in Artificial Intelligence, 159–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40643-0_17.
Full textWajs, Wiesław, Marcin Ochab, Piotr Wais, Kamil Trojnar, and Hubert Wojtowicz. "Bronchopulmonary Dysplasia Prediction Using Naive Bayes Classifier." In Advances in Intelligent Systems and Computing, 281–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64474-5_23.
Full textKhan, Faheem Nawaz, Adnan Ali, Imtiaz Hussain, Nadeem Sarwar, and Hamaad Rafique. "Repairing Broken Links Using Naive Bayes Classifier." In Communications in Computer and Information Science, 461–72. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6052-7_40.
Full textZhu, Wang-bin, Ya-ping Lin, Mu Lin, and Zhi-ping Chen. "Removing Smoothing from Naive Bayes Text Classifier." In Advances in Web-Age Information Management, 713–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11563952_69.
Full textKhanna, Dishant, and Arunima Sharma. "Kernel-Based Naive Bayes Classifier for Medical Predictions." In Advances in Intelligent Systems and Computing, 91–101. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7566-7_10.
Full textTalukdar, Gitimoni, Pranjal Protim Borah, and Arup Baruah. "Assamese Named Entity Recognition System Using Naive Bayes Classifier." In Communications in Computer and Information Science, 35–43. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1810-8_4.
Full textLi, Na, and Jin Han. "The Application of Naive Bayes Classifier in Name Disambiguation." In Cloud Computing and Security, 611–18. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68542-7_52.
Full textLópez-Cruz, Pedro L., Concha Bielza, and Pedro Larrañaga. "The von Mises Naive Bayes Classifier for Angular Data." In Advances in Artificial Intelligence, 145–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25274-7_15.
Full textYin, Ling, and Richard Power. "Adapting the Naive Bayes Classifier to Rank Procedural Texts." In Lecture Notes in Computer Science, 179–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11735106_17.
Full textMuneeswari, G., D. Daniel, and K. Natarajan. "Activity Classifier: A Novel Approach Using Naive Bayes Classification." In Inventive Computation Technologies, 323–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33846-6_37.
Full textConference papers on the topic "Naive bayes classifier"
Azeraf, Elie, Emmanuel Monfrini, and Wojciech Pieczynski. "Improving Usual Naive Bayes Classifier Performances with Neural Naive Bayes based Models." In 11th International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0010890400003122.
Full textSurya, Prabha PM, and B. Subbulakshmi. "Sentimental Analysis using Naive Bayes Classifier." In 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). IEEE, 2019. http://dx.doi.org/10.1109/vitecon.2019.8899618.
Full textYang, Feng-Jen. "An Implementation of Naive Bayes Classifier." In 2018 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2018. http://dx.doi.org/10.1109/csci46756.2018.00065.
Full textMORAES, R. M., and L. S. MACHADO. "A FUZZY EXPONENTIAL NAIVE BAYES CLASSIFIER." In Conference on Uncertainty Modelling in Knowledge Engineering and Decision Making (FLINS 2016). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813146976_0035.
Full textde Moraes, Ronei Marcos, Elaine Anita de Melo Gomes Soares, and Liliane dos Santos Machado. "A Fuzzy Gamma Naive Bayes classifier." In Conference on Data Science and Knowledge Engineering for Sensing Decision Support (FLINS 2018). WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813273238_0088.
Full textMartinez-Arroyo, M., and L. E. Sucar. "Learning an Optimal Naive Bayes Classifier." In 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.748.
Full textMartinez-Arroyo, M., and L. E. Sucar. "Learning an Optimal Naive Bayes Classifier." In 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.749.
Full textChen, Lei, Wei Lu, Liqiang Wang, Ergude Bao, Weiwei Xing, Yong Yang, and Victor Yuan. "Optimizing MapReduce Partitioner Using Naive Bayes Classifier." In 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). IEEE, 2017. http://dx.doi.org/10.1109/dasc-picom-datacom-cyberscitec.2017.138.
Full textBina, Bahareh, Oliver Schulte, and Hassan Khosravi. "LNBC: A Link-Based Naive Bayes Classifier." In 2009 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2009. http://dx.doi.org/10.1109/icdmw.2009.116.
Full textManap, Hany Hazfiza, Nooritawati Md Tahir, and R. Abdullah. "Anomalous gait detection using Naive Bayes classifier." In 2012 IEEE Symposium on Industrial Electronics and Applications (ISIEA 2012). IEEE, 2012. http://dx.doi.org/10.1109/isiea.2012.6496664.
Full text