Academic literature on the topic 'Named entity recognition legal documents transformer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Named entity recognition legal documents transformer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Named entity recognition legal documents transformer"
Yulianti, Evi, Naradhipa Bhary, Jafar Abdurrohman, Fariz Wahyuzan Dwitilas, Eka Qadri Nuranti, and Husna Sarirah Husin. "Named entity recognition on Indonesian legal documents: a dataset and study using transformer-based models." International Journal of Electrical and Computer Engineering (IJECE) 14, no. 5 (2024): 5489. http://dx.doi.org/10.11591/ijece.v14i5.pp5489-5501.
Full textDong, Hongsong, Yuehui Kong, Wenlian Gao, and Jihua Liu. "Named Entity Recognition for Public Interest Litigation Based on a Deep Contextualized Pretraining Approach." Scientific Programming 2022 (October 11, 2022): 1–14. http://dx.doi.org/10.1155/2022/7682373.
Full textAejas, Bajeela, Abdelhak Belhi, and Abdelaziz Bouras. "Using AI to Ensure Reliable Supply Chains: Legal Relation Extraction for Sustainable and Transparent Contract Automation." Sustainability 17, no. 9 (2025): 4215. https://doi.org/10.3390/su17094215.
Full textAjay Mukund, S., and K. S. Easwarakumar. "Optimizing Legal Text Summarization Through Dynamic Retrieval-Augmented Generation and Domain-Specific Adaptation." Symmetry 17, no. 5 (2025): 633. https://doi.org/10.3390/sym17050633.
Full textLu, Rui, and Linying Li. "Named Entity Recognition Method of Chinese Legal Documents Based on Parallel Instance Query Network." International Journal of Digital Crime and Forensics 16, no. 1 (2025): 1–19. https://doi.org/10.4018/ijdcf.367470.
Full textBaviskar, Dipali, Swati Ahirrao, and Ketan Kotecha. "Multi-Layout Invoice Document Dataset (MIDD): A Dataset for Named Entity Recognition." Data 6, no. 7 (2021): 78. http://dx.doi.org/10.3390/data6070078.
Full textNastou, Katerina, Mikaela Koutrouli, Sampo Pyysalo, and Lars Juhl Jensen. "Improving dictionary-based named entity recognition with deep learning." Bioinformatics 40, Supplement_2 (2024): ii45—ii52. http://dx.doi.org/10.1093/bioinformatics/btae402.
Full textMazur, Pawel, and Robert Dale. "Handling conjunctions in named entities." Lingvisticæ Investigationes. International Journal of Linguistics and Language Resources 30, no. 1 (2007): 49–68. http://dx.doi.org/10.1075/li.30.1.05maz.
Full textvan Toledo, Chaïm, Friso van Dijk, and Marco Spruit. "Dutch Named Entity Recognition and De-Identification Methods for the Human Resource Domain." International Journal on Natural Language Computing 9, no. 6 (2020): 23–34. http://dx.doi.org/10.5121/ijnlc.2020.9602.
Full textZhao, Liupeng. "Legal Impact of Digital Information Technology on the Chain of Evidence in Criminal Cases." Journal of Combinatorial Mathematics and Combinatorial Computing 123, no. 1 (2024): 103–21. https://doi.org/10.61091/jcmcc123-08.
Full textDissertations / Theses on the topic "Named entity recognition legal documents transformer"
Andersson-Säll, Tim. "Transforming Legal Entity Recognition." Thesis, Uppsala universitet, Statistiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447240.
Full textConstum, Thomas. "Extractiοn d'infοrmatiοn dans des dοcuments histοriques à l'aide de grands mοdèles multimοdaux". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR083.
Full textBook chapters on the topic "Named entity recognition legal documents transformer"
Vardhan, Harsh, Nitish Surana, and B. K. Tripathy. "Named-Entity Recognition for Legal Documents." In Advances in Intelligent Systems and Computing. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3383-9_43.
Full textLeitner, Elena, Georg Rehm, and Julian Moreno-Schneider. "Fine-Grained Named Entity Recognition in Legal Documents." In Lecture Notes in Computer Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33220-4_20.
Full textZhang, Xinrui, and Xudong Luo. "A Machine-Reading-Comprehension Method for Named Entity Recognition in Legal Documents." In Communications in Computer and Information Science. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1645-0_19.
Full textAlbuquerque, Hidelberg O., Ellen Souza, Adriano L. I. Oliveira, et al. "On the Assessment of Deep Learning Models for Named Entity Recognition of Brazilian Legal Documents." In Progress in Artificial Intelligence. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-49011-8_8.
Full textN., Shyamala Devi, and Grace Hannah J. "Sentiment-Based Summarization of Legal Documents Using Natural Language Processing (NLP) Techniques." In Advances in Information Security, Privacy, and Ethics. IGI Global, 2024. https://doi.org/10.4018/979-8-3693-6665-3.ch001.
Full textConference papers on the topic "Named entity recognition legal documents transformer"
Bhandari, Ayush, Priyanshu Giriyan, Prathamesh Gawade, and Aarti Sahitya. "Evaluating Transformer Models for Named Entity Recognition in Indian Legal Texts." In 2025 3rd International Conference on Disruptive Technologies (ICDT). IEEE, 2025. https://doi.org/10.1109/icdt63985.2025.10986633.
Full textVerwer, Nico. "Plain text processingin structured documents." In Declarative Amsterdam. John Benjamins, 2020. http://dx.doi.org/10.1075/da.2020.verwer.plain-text-processing.
Full textLi, Xiaolin, Zhuohao Chen, Gang Xu, and Bowen Huang. "Named entity recognition of legal documents based on cascade model." In 2021 International Symposium on Computer Technology and Information Science (ISCTIS). IEEE, 2021. http://dx.doi.org/10.1109/isctis51085.2021.00073.
Full textYuan, Zhenzhen, and Hong Zhang. "Improving Named Entity Recognition of Chinese Legal Documents by Lexical Enhancement." In 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, 2021. http://dx.doi.org/10.1109/icaica52286.2021.9498036.
Full textda Silva, F. X. B., G. M. C. Guimarães, R. M. Marcacini, et al. "Named Entity Recognition Approaches Applied to Legal Document Segmentation." In Symposium on Knowledge Discovery, Mining and Learning. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/kdmile.2022.227949.
Full textZhang, Xinrui, Xudong Luo, and Jiaye Wu. "A RoBERTa-GlobalPointer-Based Method for Named Entity Recognition of Legal Documents." In 2023 International Joint Conference on Neural Networks (IJCNN). IEEE, 2023. http://dx.doi.org/10.1109/ijcnn54540.2023.10191275.
Full textSamarawickrama, Chamodi, Melonie de Almeida, Nisansa de Silva, Gathika Ratnayaka, and Amal Shehan Perera. "Party Identification of Legal Documents using Co-reference Resolution and Named Entity Recognition." In 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS). IEEE, 2020. http://dx.doi.org/10.1109/iciis51140.2020.9342720.
Full textShi, Jianwei, Kai Zheng, ZhiHua Zhang, and Qi Liu. "A Named Entity Recognition Method Based on Deep Learning For Chinese Legal Documents." In 2022 7th International Conference on Image, Vision and Computing (ICIVC). IEEE, 2022. http://dx.doi.org/10.1109/icivc55077.2022.9887060.
Full textTrias, Fernando, Hongming Wang, Sylvain Jaume, and Stratos Idreos. "Named Entity Recognition in Historic Legal Text: A Transformer and State Machine Ensemble Method." In Proceedings of the Natural Legal Language Processing Workshop 2021. Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.nllp-1.18.
Full textKeshavarz, Hossein, Zografoula Vagena, Pigi Kouki, et al. "Named Entity Recognition in Long Documents: An End-to-end Case Study in the Legal Domain." In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022. http://dx.doi.org/10.1109/bigdata55660.2022.10020873.
Full text