Academic literature on the topic 'Nano fibrils of cellulose'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nano fibrils of cellulose.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nano fibrils of cellulose"
Hrabalova, Marta, Manfred Schwanninger, Rupert Wimmer, Adriana Gregorova, Tanja Zimmermann, and Norbert Mundigler. "Fibrillation of flax and wheat straw cellulose: Effects on thermal, morphological, and viscoelastic properties of poly(vinylalcohol)/fibre composites." BioResources 6, no. 2 (March 23, 2011): 1631–47. http://dx.doi.org/10.15376/biores.6.2.1631-1647.
Full textChen, Wen Shuai, Hai Peng Yu, Peng Chen, Nai Xiang Jiang, Jiang Hua Shen, Yi Xing Liu, and Qing Li. "Preparation and Morphological Characteristics of Cellulose Micro/Nano Fibrils." Materials Science Forum 675-677 (February 2011): 255–58. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.255.
Full textWu, Yan, Zhi Hui Wu, and Ji Lei Zhang. "Preparation of Cellulose Micro/Nano Fibrils by Sonochemical Method and its Morphological Characterization." Key Engineering Materials 562-565 (July 2013): 864–68. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.864.
Full textIoelovich, Michael. "Cellulose as a nanostructured polymer: A short review." BioResources 3, no. 4 (October 30, 2008): 1403–18. http://dx.doi.org/10.15376/biores.3.4.ioelovich.
Full textFigovsky, Oleg, and Michael Ioelovich. "Nano Structure and Properties of Beta–D-Poly-Glucopyranose." Advanced Materials Research 123-125 (August 2010): 739–42. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.739.
Full textWang, Xin, Yan Wu, and Jin Tian Huang. "Investigation of Morphology of Vetier (Vetiveria zizanioides) Cellulose Micro/Nano Fibrils Isolated by High Intensity Ultrasonication." Advanced Materials Research 284-286 (July 2011): 796–800. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.796.
Full textPitkänen, Marja, Heli Kangas, Ossi Laitinen, Asko Sneck, Panu Lahtinen, Maria Soledad Peresin, and Jouko Niinimäki. "Characteristics and safety of nano-sized cellulose fibrils." Cellulose 21, no. 6 (September 4, 2014): 3871–86. http://dx.doi.org/10.1007/s10570-014-0397-x.
Full textSalari, Maryam, Dimitrios Bitounis, Kunal Bhattacharya, Georgios Pyrgiotakis, Zhenyuan Zhang, Emilia Purington, William Gramlich, et al. "Development & characterization of fluorescently tagged nanocellulose for nanotoxicological studies." Environmental Science: Nano 6, no. 5 (2019): 1516–26. http://dx.doi.org/10.1039/c8en01381k.
Full textWu, Yan, Zhi Hui Wu, Xu Jun Zhang, Ji Lei Zhang, and Xiao Xing Yan. "Influence of Sonomechanical Treatment on the Structure of Cellulose Micro/Nano Fibrils." Key Engineering Materials 609-610 (April 2014): 526–30. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.526.
Full textWang, Xin, Yan Wu, and Jin Tian Huang. "Research on Performance of Vetier (Vetiveria zizanioides) Cellulose Micro/Nano Fibrils Isolated by High Intensity Ultrasonication." Advanced Materials Research 393-395 (November 2011): 1405–8. http://dx.doi.org/10.4028/www.scientific.net/amr.393-395.1405.
Full textDissertations / Theses on the topic "Nano fibrils of cellulose"
Hernandez, Zurine. "Conditions required for spinning continuous fibres from cellulose nano-fibrils." Thesis, Edinburgh Napier University, 2012. http://researchrepository.napier.ac.uk/Output/5286.
Full textFalcoz-Vigne, Léa. "Caractérisation et modélisation des interactions cellulose - hémicelluloses au sein des microfibrilles de cellulose (MFC)." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV091/document.
Full textThe study was motivated by the necessity to reduce the high energy costs of Micro-Fibrillated Cellulose (MFC) production, which is a limiting factor for its industrial development and aimed at understanding the cellulose/hemicelluloses interaction within this system. MFC resulting from different chemical pulps were characterized by solid-state NMR spectroscopy to get information on the hemicelluloses content and molecular conformation. By optimizing an extraction protocol, more than 60% of the residual hemicelluloses were extracted from birch kraft MFC and characterized as a high purity homopolymer of β-1,4 linked xylan of DP 75.Turbidimetry was used to qualify the quality of the suspensions, which strongly depended on the pulping and drying history. Positive correlations between the state of dispersion, specific surface and mechanical properties of MFC-reinforced handsheets were evidenced.Cellulose/xylan interactions were investigated using solid-state NMR and atomistic molecular dynamics (MD) simulation. NMR spectra confirmed that xylan in contact with cellulose altered its conformation, from the three-fold helix to a presumable cellulose-like two-fold one. In combination with specific surface area measurements, the conformational change was shown to happen only for the first layer of xylan adsorbed in direct interaction with the cellulose surface. MD simulations showed that adsorbed xylan tends to align parallel to the cellulose chain direction fully extended. Interaction energy between xylan chain and cellulose surface estimated with MD was 9kJ/xylose. Then a three-layers system made of xylan between two cellulose films were built to perform adhesion tests that showed strong adhesion between xylan and cellulose surfaces. Xylanase was proposed as a pulp pretreatment for MFC production
Guezennec, Céline. "Développement de nouveaux matériaux d'emballage à partir de micro- et nano-fibrilles de cellulose." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENI067/document.
Full textDevelopment of new packaging materials based on micro- and nano-fibrillated cellulose. The micro- and nanofibrillated cellulose (MFC/NFC) are nanomaterials from revewable resource with a high interest and partly for the packaging development. MFC combined both interesting properties (high tensile strength, good barrier to oxygen and grease, good transparency) and the advantages of natural cellulose source. The objective of this thesis was to develop a barrier packaging board based on MFC/NFC by coating processes. Firstly, the study focussed on the characterisation of the MFC suspensions, on the manufacturing of MFC self-standing films and on the determination of their properties. Secondly, the development of MFC based composites was studied as model films. The last part was devoted to the introduction of MFC in coating colours in order to develop a barrier layer at the board surface. Trials at pilot scale demonstrated the industrial feasibility of this product. The potential of the use of MFC/NFC was demonstrated to be used as a drying additive and a main composant of barrier layer. Keywords: Micro- and nanofibrillated cellulose, barrier layer, coating processes
Jimenez, Saelices Clara. "Développement de matériaux super-isolants thermiques à partir de nano-fibres de cellulose." Thesis, Lorient, 2016. http://www.theses.fr/2016LORIS417/document.
Full textThe objective of this thesis is the preparation of renewable aerogels having thermal super-insulating properties. To do it, we designed new aerogels from nanofibrillated cellulose (NFC) by freeze-drying. This technique is simple and has the advantage of not using organic solvents. First of all, the parameters playing a role on the aerogel morphology and physico-chemical properties of the aerogels were analyzed to get the best thermal insulating properties. Using 2 wt% NFC suspensions, without addition of salts, keeping the initial pH, the obtained freeze-dried aerogels in alumina molds at -80 °C have a thermal conductivity of 0.024 W/m.K. In order to reduce the pore size and to improve the thermal insulating properties by Knudsen effect, a new drying technique was proposed: the spray freeze-drying. Aerogels prepared in the same experimental conditions with this technique have thermal super-insulating properties (0.018 W/m.K) thanks to the nanostructuration of the porous network. Finally, a new device was designed to characterize more precisely the thermal properties of aerogels. This is an impulsive transient device, which can estimate simultaneously the contribution of solid and gas conduction, the radiative effect and thermal diffusivity using a simple theoretical model. This device will allow studying complex heat transfer through porous semi-transparent materials such as aerogels
Guezennec, Celine. "Développement de nouveaux matériaux d'emballage à partir de micro- et nano-fibrilles de cellulose." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00870839.
Full textPhillips, Justin. "Dextrin nanocomposites and deep eutectic solvents as matrices for solid dosage forms." Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/81724.
Full textDissertation (MEng (Chemical Engineering))--University of Pretoria, 2019.
PAMSA
Department of Science and Innovation under Grant DST/CON 0004/2019
Chemical Engineering
MEng (Chemical Engineering)
Unrestricted
Håkansson, Karl. "Orientation of elongated, macro and nano-sized particles in macroscopic flows." Doctoral thesis, KTH, Strömningsfysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-150493.
Full textQC 20140908
Foruzanmehr, Mohammadreza. "Greffage d’un film mince de nano-TiO2 sur les fibres naturelles cellulosiques pour le renforcement de biocomposites polymériques." Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/9477.
Full textRésumé : Les matériaux naturels retiennent actuellement toute l’attention dans de nombreuses applications et ceci, car ils sont biodégradables et proviennent de ressources renouvelables telles que les plantes (le lin, le chanvre, le jute, etc.). De plus, du fait de leur faible coût et de leur faible densité, les fibres naturelles cellulosiques sont d’excellents candidats pour le renforcement des composites polymères bio-sourcés. Cependant, malgré leurs nombreux avantages, leur caractère hydrophile - résultant de la présence de fonctions hydroxyle dans leur structure - limite leur application dans les matrices polymères. Ceci est dû à la faible mouillabilité existant entre les fibres cellulosiques et les matrices polymériques (généralement hydrophobes) causant une faible adhésion et une mauvaise dispersion des fibres dans la matrice. De nombreuses tentatives de modification des propriétés de surface des fibres naturelles par des traitements physiques, chimiques, ainsi que physico-chimiques ont été effectuées. Cependant, ces traitements se sont révélés incapables de guérir les défauts intrinsèques présents à la surface des fibres et d’améliorer leur résistance à l'humidité et aux alcalis. Une solution permettant d’atteindre les objectifs mentionnés serait la création d’un film mince à la surface des fibres. Cette étude vise tout d'abord à fonctionnaliser les fibres de lin par une oxydation sélective des fonctions hydroxyle présentes sur la cellulose. Cette oxydation permet la création d’une meilleure adhésion entre la surface des fibres et les couches minces amphiphiles de TiO[indice inférieur 2] créées par la technique sol-gel. En effet, le procédé sol-gel est une méthode dite douce capable de créer une fine couche d'oxydes métalliques à la surface d’un substrat. Dans l'étape suivante, l'effet de l'oxydation sur l'adhésion interfaciale entre la couche de TiO[indice inférieur 2] et la fibre, et donc sur les propriétés physiques et mécaniques de la fibre, a été caractérisé. Enfin, les fibres recouvertes de TiO[indice inférieur 2] avec et sans oxydation préalable ont été utilisées pour renforcer l’acide polylactique (PLA). Des tests de traction, d’impact et de cisaillement ont été réalisés afin de caractériser les propriétés mécaniques des composites. De plus, de la calorimétrie différentielle à balayage (DSC), des mesures d'absorption d'humidité ainsi que des analyses thermogravimétrique (ATG) et mécanique dynamique (DMA) ont été effectuées dans le but de déterminer les propriétés physiques des composites. Les résultats ont montré une augmentation significative des propriétés physiques et mécaniques des fibres de lin recouvertes de TiO[indice inférieur 2], en particulier lorsque les fibres ont été préalablement oxydées. De plus, ces fibres à la fois oxydées et greffées de TiO[indice inférieur 2] ont causé de grands changements lorsque utilisées dans le renforcement du PLA. En effet, une meilleure résistance au cisaillement interlaminaire et une diminution de la quantité d’eau absorbée est obtenue en comparaison avec les échantillons de référence.
Lin, Xiaofeng. "Toward nanofiltration membranes with layer-by-layer assembled and nano-reinforced separation layers." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE012/document.
Full textThis thesis work was devoted to the development of a novel and efficient nanofiltration membrane with improved properties (high flux and high retention, good mechanical strength) by coating Layer-by-Layer (LbL) assembled films onto porous membrane support. After having systematically studied the growth mechanism of LbL-assembled films of chosen polyelectrolytes and the relationship between the structures of these films and the membrane performance of the resulting NF membranes, we successfully identified the best multilayer structures for constructing nanofiltration membranes (NF) of reference with optimal membrane performance. Furthermore, taking advantages of the LbL-assembly, we successfully introduced LbL-assembled lateral diffusion layer that is made of either cellulose nanofibrils or carbon nanotubes, which in turn led to membranes with 30% higher flux. In addition, the LbL-assembled films of chitosan and cellulose nanofibrils showed surprisingly strong tensile strength of up to 450 MPa and a high Young modulus of up to 50 GPa
Privas, Edwige. "Matériaux ligno-cellulosiques : "Élaboration et caractérisation"." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2013. http://pastel.archives-ouvertes.fr/pastel-00933754.
Full textBooks on the topic "Nano fibrils of cellulose"
Kalia, Susheel, B. S. Kaith, and Inderjeet Kaur, eds. Cellulose Fibers: Bio- and Nano-Polymer Composites. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7.
Full textS, Kaith B., Kaur Inderjeet, and SpringerLink (Online service), eds. Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textKaur, Inderjeet, Susheel Kalia, and B. S. Kaith. Cellulose Fibers : Bio- and Nano-Polymer Composites: Green Chemistry and Technology. Springer, 2016.
Find full textKaur, Inderjeet, Susheel Kalia, and B. S. Kaith. Cellulose Fibers : Bio- and Nano-Polymer Composites: Green Chemistry and Technology. Springer, 2011.
Find full textBook chapters on the topic "Nano fibrils of cellulose"
Thomas, S., S. A. Paul, L. A. Pothan, and B. Deepa. "Natural Fibres: Structure, Properties and Applications." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 3–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_1.
Full textLee, Koon-Yang, Anne Delille, and Alexander Bismarck. "Greener Surface Treatments of Natural Fibres for the Production of Renewable Composite Materials." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 155–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_6.
Full textSodipo, Bashiru Kayode, and Folahan Abdul Wahab Taiwo Owolabi. "Extraction of Nano Cellulose Fibres and Their Eco-friendly Polymer Composite." In Sustainable Polymer Composites and Nanocomposites, 245–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05399-4_8.
Full textSodipo, Bashiru Kayode, and Folahan Abdul Wahab Taiwo Owolabi. "Correction to: Extraction of Nano Cellulose Fibres and Their Eco-friendly Polymer Composite." In Sustainable Polymer Composites and Nanocomposites, E1. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05399-4_48.
Full textLiu, Dongyan, Yu Dong, and Guoxin Sui. "Isolation of Cellulose Nanowhiskers and Their Nanocomposites." In Nano-size Polymers, 155–77. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39715-3_5.
Full textZimmermann, Tanja, Evelyn Pöhler, Thomas Geiger, Jürg Schleuniger, Patrick Schwaller, and Klaus Richter. "Cellulose Fibrils: Isolation, Characterization, and Capability for Technical Applications." In ACS Symposium Series, 33–47. Washington, DC: American Chemical Society, 2006. http://dx.doi.org/10.1021/bk-2006-0938.ch004.
Full textCherian, Bibin Mathew, Alcides Lopes Leao, Sivoney Ferreira de Souza, Sabu Thomas, Laly A. Pothan, and M. Kottaisamy. "Cellulose Nanocomposites for High-Performance Applications." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 539–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_21.
Full textPandey, J. K., D. R. Saini, and S. H. Ahn. "Degradation of Cellulose-Based Polymer Composites." In Cellulose Fibers: Bio- and Nano-Polymer Composites, 507–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17370-7_19.
Full textSrinivasababu, Nadendla, and Kopparthi Phaneendra Kumar. "Synthesis of Nanocellulose Fibrils/Particles from Cellulose Fibres Through Sporadic Homogenization." In Lecture Notes in Mechanical Engineering, 893–902. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5463-6_79.
Full textLee, Sang Hwan, S. Y. Lee, Mi Suk Cho, Jae Do Nam, Hyouk Ryeol Choi, Ja Choon Koo, and Young Kwan Lee. "Renewable Resource Using Cellulose Derivatives by Melt Process." In Experimental Mechanics in Nano and Biotechnology, 847–50. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-415-4.847.
Full textConference papers on the topic "Nano fibrils of cellulose"
Illera, Danny, Chatura Wickramaratne, Diego Guillen, Chand Jotshi, Humberto Gomez, and D. Yogi Goswami. "Stabilization of Graphene Dispersions by Cellulose Nanocrystals Colloids." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87830.
Full textLal, Jyotsana, Ross Harder, and Lee Makowski. "X-ray coherent diffraction imaging of cellulose fibrils in situ." In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6090096.
Full textKarlovits, Igor. "Lignocellulosic bio-refinery downstream products in future packaging applications." In 10th International Symposium on Graphic Engineering and Design. University of Novi Sad, Faculty of technical sciences, Department of graphic engineering and design,, 2020. http://dx.doi.org/10.24867/grid-2020-p2.
Full textZhang, Yan, Leiming Yu, David Kaeli, and Lee Makowski. "Fast simulation of X-ray diffraction patterns from cellulose fibrils using GPUs." In 2014 40th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2014. http://dx.doi.org/10.1109/nebec.2014.6972999.
Full textPostek, Michael T., Andras Vladar, John Dagata, Natalia Farkas, Bin Ming, Ronald Sabo, Theodore H. Wegner, and James Beecher. "Cellulose nanocrystals the next big nano-thing?" In NanoScience + Engineering, edited by Michael T. Postek and John A. Allgair. SPIE, 2008. http://dx.doi.org/10.1117/12.797575.
Full textLai, Yuli, Pasi Kallio, Hao Zhang, Hui Xie, Yasuhito Sugano, and Johan Bobacka. "Study of adhesion force between cellulose micro-sphere and cellulose membrane." In 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2016. http://dx.doi.org/10.1109/3m-nano.2016.7824941.
Full textCetinkaya, Toygun, Ant Yucesoy, and O. Burak Ozdoganlar. "Micromachinability of Biodissolvable Carboxymethyl Cellulose (CMC)." In WCMNM 2018 World Congress on Micro and Nano Manufacturing. Singapore: Research Publishing Services, 2018. http://dx.doi.org/10.3850/978-981-11-2728-1_91.
Full textKim, Jaehwan, Hyun-U. Ko, Jung Woong Kim, Sunanda Roy, Jungho Park, and Eun Sik Choi. "Fabrication and characteristics of cellulose nanofiber films." In Nano-, Bio-, Info-Tech Sensors and 3D Systems, edited by Vijay K. Varadan. SPIE, 2018. http://dx.doi.org/10.1117/12.2296839.
Full textTANG, JIE, GUANG YANG, JIAN ZHANG, HUAIZHI GENG, BAO GAO, LU-CHANG QIN, OTTO ZHOU, and ORLIN D. VELEV. "ASSEMBLY AND APPLICATION OF CARBON NANOTUBE FIBRILS WITH CONTROLLED AND VARIABLE LENGTHS BY DIELECTROPHORESIS." In Clusters and Nano-Assemblies - Physical and Biological Systems. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701879_0023.
Full textRoy, Sunanda, Hyun Chan Kim, Le Van Hai, and Jaehwan Kim. "Novel superhydrophobic cellulose coating and its multifunctional applications." In Nano-, Bio-, Info-Tech Sensors and 3D Systems, edited by Jaehwan Kim. SPIE, 2019. http://dx.doi.org/10.1117/12.2513876.
Full textReports on the topic "Nano fibrils of cellulose"
Walker, Larry P. ,. Bergstrom, Gary, Stephane Corgie, Harold Craighead, Donna Gibson, and David Wilson. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1016086.
Full text