Academic literature on the topic 'Nano-Ion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nano-Ion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nano-Ion"
Kang, Hyeon-Cheol, Han-Seong Yun, Bong-Jo Sung, Sung-Hwa Lee, Jang-Woo Lee, Yong-Bae Seo, and Myung-Suk Lee. "Reduction Effect of Microorganisms by Nano Plasma ion (NPi)." Journal of Life Science 21, no. 12 (December 31, 2011): 1710–15. http://dx.doi.org/10.5352/jls.2011.21.12.1710.
Full textTaylor, M. L., R. D. Franich, A. Alves, P. Reichart, D. N. Jamieson, and P. N. Johnston. "Ion transmission through nano-apertures." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 249, no. 1-2 (August 2006): 752–55. http://dx.doi.org/10.1016/j.nimb.2006.03.132.
Full textYang, Yang, Yong Gang Li, Michael P. Short, Chung-Soo Kim, Karl K. Berggren, and Ju Li. "Nano-beam and nano-target effects in ion radiation." Nanoscale 10, no. 4 (2018): 1598–606. http://dx.doi.org/10.1039/c7nr08116b.
Full textWang, Junyao, Lu-lu Han, and Zheng Xu. "Nano-electrokinetic ion concentration in the ion enrichment zone." Microsystem Technologies 25, no. 2 (June 13, 2018): 711–17. http://dx.doi.org/10.1007/s00542-018-3999-7.
Full textDolgonosov, Anatoly M., Ruslan Kh Khamizov, and Nadezhda K. Kolotilina. "Nano-ion-exchangers - a new class of reactive materials." Сорбционные и хроматографические процессы 18, no. 6 (December 6, 2018): 794–809. http://dx.doi.org/10.17308/sorpchrom.2018.18/607.
Full textJensen, H., and G. Sorensen. "Ion bombardment of nano-particle coatings." Surface and Coatings Technology 84, no. 1-3 (October 1996): 500–505. http://dx.doi.org/10.1016/s0257-8972(95)02820-x.
Full textGierak, J., D. Mailly, G. Faini, J. L. Pelouard, P. Denk, F. Pardo, J. Y. Marzin, et al. "Nano-fabrication with focused ion beams." Microelectronic Engineering 57-58 (September 2001): 865–75. http://dx.doi.org/10.1016/s0167-9317(01)00443-9.
Full textHolzapfel, Michael, Hilmi Buqa, Laurence J. Hardwick, Matthias Hahn, Andreas Würsig, Werner Scheifele, Petr Novák, Rüdiger Kötz, Claudia Veit, and Frank-Martin Petrat. "Nano silicon for lithium-ion batteries." Electrochimica Acta 52, no. 3 (November 2006): 973–78. http://dx.doi.org/10.1016/j.electacta.2006.06.034.
Full textSharma, Yogesh, N. Sharma, G. V. Subba Rao, and B. V. R. Chowdari. "Studies on Nano-CaO·SnO2and Nano-CaSnO3as Anodes for Li-Ion Batteries." Chemistry of Materials 20, no. 21 (November 11, 2008): 6829–39. http://dx.doi.org/10.1021/cm8020098.
Full textMiralami, Raheleh, John G. Sharp, Fereydoon Namavar, Curtis W. Hartman, Kevin L. Garvin, and Geoffrey M. Thiele. "Effects of nano-engineered surfaces on osteoblast adhesion, growth, differentiation, and apoptosis." Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems 234, no. 1-2 (December 3, 2019): 59–66. http://dx.doi.org/10.1177/2397791419886778.
Full textDissertations / Theses on the topic "Nano-Ion"
Toyoda, Noriaki. "Nano-Processing with Gas Cluster Ion Beams." Kyoto University, 1999. http://hdl.handle.net/2433/8951.
Full textIn this thesis, fundamental properties of gas cluster ion beams and their non-linear irradiation effects are studied. Applications in the fabrication of nano-structures (nano-processes) are demonstrated, as based on knowledge of the interactions between clusters and solid surfaces. In chapter 2, a cluster source which provides an intense neutral cluster beam by supersonic expansion from a Laval nozzle is described, and the high current cluster ion beam equipment is explained. By optimization of both ionization and transport conditions of the cluster beam, a high cluster ion current density of a few μA/cm2 was achieved. The detailed cluster size distribution following a supersonic expansion and the characteristics of the cluster beams are discussed in chapter 3 based on data obtained with a high resolution time of flight mass spectrometer. The formation of inert, reactive and complex gas clusters was verified, and their average cluster size was 2000atoms/cluster. With increasing cluster size, the ionization and collision cross-section increased, however, the kinetic energy of the impact was compensated by the cohesive energy of a large cluster. In chapter 4, interactions of cluster and target atoms in an energetic cluster ion impact are discussed. Most of the kinetic energy of cluster ions was deposited with high density on the surface regions of the targets, and subsequently, multiple collisions between targets and clusters occurred. This dense energy deposition resulted in intrinsic non-linear sputtering effects, such as high yield sputtering and crater formation, which could not be explained by the summation of the irradiation effects induced by the same number of monomer ions. The lateral sputtering effect, which is explained in that many sputtered atoms with cluster ions are emitted in the horizontal direction on the surface plane, was clarified experimentally for the first time, and this was verified by STM observations of single traces of cluster ion impacts. In chapter 5, an enhancement of the sputtering effects with reactive cluster ion beams and their applications are discussed. Since the impact area of the target by a cluster ion occurred under high temperature and high pressure conditions, chemical reactions on the target surface were enhanced. In the case of reactive cluster ion irradiation, dissociation of reactive molecules and clusters occurred simultaneously, and subsequently, enhancement of the etching rate was observed as a consequence of the production of volatile materials. Reactive cluster ion etching could be applied for Si fine pattern etching, and it provided solutions for charging up, isotropic etching, microloading and radiation damage problems. In chapter 6, the surface smoothing effect and mechanisms with cluster ions are discussed. The cluster ion exhibited marked surface smoothing effects and it was made clear from both experimental and simulation results that the lateral sputtering effect was significant for surface smoothing. Very smooth surfaces of CVD diamond films and SiC single crystal substrates were obtained using the gas cluster ion beam processing; these materials are difficult to etch using conventional processes. From these results, it can be summarized that gas cluster ion beam processing is effective in the fabrication of nano-structures and applications in the industrial field are expected.
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第7843号
工博第1823号
新制||工||1140(附属図書館)
UT51-99-G437
京都大学大学院工学研究科電子物性工学専攻
(主査)教授 山田 公, 教授 橘 邦英, 教授 今西 信嗣
学位規則第4条第1項該当
Jung, Daniel. "Ion acceleration from relativistic laser nano-target interaction." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-140744.
Full textHohenschutz, Max. "Nano-ions in interaction with non-ionic surfactant self-assemblies." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS064.
Full textNanometer-sized ions (nano-ions), such as ionic boron clusters, polyoxometalates (POMs) and large organic ions, have spawned remarkable interest in recent years due to their ability to adsorb or bind to electrically neutral chemical systems, such as macrocyclic host molecules, colloidal nano-particles, surfactants and polymers etc. The underlying adsorption or binding processes were shown to be driven by a solvent-mediated phenomenon, the chaotropic effect, which drives the nano-ion from the water bulk towards an interface. Thus, hydration water of the ion and the interface is released into the bulk resulting in a bulk water structure recovery. This effect is particularly strong for nano-ions. Therefore, they were termed superchaotropic or hydrophobic ions as an extension to classical (weakly) chaotropic ions such as SCN-. All commonly studied superchaotropes, though chemically diverse, share physical characteristics such as low charge density and high polarizability. Herein, the effects of nano-ions on ethoxylated non-ionic surfactant self-assemblies, micellar and bilayer phases, are elucidated to draw conclusions on their chaotropic and/or hydrophobic nature. By combining small angle scattering of neutrons and x-rays (SANS and SAXS), and phase diagrams, non-ionic surfactant/nano-ion systems are examined and compared, from the nanometer to the macroscopic scale. Thus, all studied nano-ions are found to induce a charging of the surfactant assemblies along with a dehydration of the non-ionic surfactant head groups. Furthermore, chaotropic and hydrophobic ions differ in their effects on the micellar shape. Superchaotropic ions drive the elongated non-ionic surfactant micelles towards spherical micelles (increase in curvature), whereas hydrophobic ions cause a transition towards bilayer phases (decrease in curvature). It is concluded that superchaotropic nano-ions act like ionic surfactants because their addition to non-ionic surfactant systems causes a charging effect. However, nano-ions and ionic surfactants are fundamentally different by their association with the non-ionic surfactant assembly. The nano-ion adsorbs to the non-ionic surfactant heads by the chaotropic effect, while the ionic surfactant anchors into the micelles between the non-ionic surfactant tails by the hydrophobic effect. The comparison of the effects of adding nano-ions or ionic surfactant to non-ionic surfactant was further investigated on foams. The foams were investigated regarding foam film thickness, drainage over time and stability, respectively using SANS, image analysis and conductometry. The tested superchaotropic POM (SiW12O404-, SiW) does not foam in water in contrast to the classical ionic surfactant SDS. Nevertheless, addition of small amounts of SiW or SDS to a non-ionic surfactant foaming solution resulted in wetter foams with longer lifetimes. Meanwhile, the foam film thickness (determined in SANS) is increased due to the electric charging of the non-ionic surfactant monolayers in the foam film. It is concluded that the remarkable behavior of nano-ions – herein on non-ionic surfactant systems – can be extended to colloidal systems, such as foams, polymers, proteins or nanoparticles. This thesis demonstrates that the superchaotropic behavior of nano-ions is a versatile tool to be used in novel formulations of soft matter materials and applications
Castro, Olivier de. "Development of a Versatile High-Brightness Electron Impact Ion Source for Nano-Machining, Nano-Imaging and Nano-Analysis." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS468/document.
Full textHigh brightness low energy spread (ΔE) ion sources are needed for focused ion beam nano-applications in order to get a high lateral resolution while having sufficiently high ion beam currents to obtain reasonable erosion rates and large secondary electron/ion yields. The objectives of this thesis are: the design of an electron impact ion source, a reduced brightness Br of 10³ – 10⁴ A m⁻² sr⁻ ¹ V⁻ ¹ with an energy distribution spread ΔE ≲ 1 eV and a versatile ion species choice. In a first evaluated concept an electron beam is focussed in between two parallel plates spaced by ≲1 mm. A micron sized ionisation volume is created above an extraction aperture of a few tens of µm. By using a LaB₆ electron emitter and the ionisation region with a pressure around 0.1 mbar, Br is close to 2.10² A m⁻² sr ⁻ ¹ V ⁻ ¹ with source sizes of a few µm, ionic currents of a few nA for Ar⁺/Xe⁺/O₂ ⁺ and the energy spread being ΔE < 0.5 eV. The determined Br value is still below the minimum targeted value and furthermore the main difficulty is that the needed operation pressure for the LaB₆ emitter cannot be achieved across the compact electron column and therefore a prototype has not been constructed. The second evaluated source concept is based on the idea to obtain a high current ion beam having a source size and half-opening beam angle similar to the first concept, but changing the electron gas interaction and the ion collection. Theoretical and experimental studies are used to evaluate the performance of this second source concept and its usefulness for focused ion beam nano-applications
Perre, Emilie. "Nano-structured 3D Electrodes for Li-ion Micro-batteries." Doctoral thesis, Uppsala universitet, Institutionen för materialkemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-119485.
Full textEvanoff, Kara. "Highly structured nano-composite anodes for secondary lithium ion batteries." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53388.
Full textRoshchupkina, Olga. "Ion beam induced structural modifications in nano-crystalline permalloy thin films." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-114158.
Full textSun, Jining. "Deterministic fabrication of micro- and nano-structures by focused ion beam." Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2528.
Full textReinert, Tilo. "Focussed MeV-Ion Micro- and Nano-Beams in the Life Sciences." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-197802.
Full textDie vorliegende Arbeit etabliert für Anwendungen in den Lebenswissenschaften den Einsatz hochfokussierter MeV-Ionenstrahlen für nuklear-mikroskopische Methoden der quantitativen Spurenelementanalyse, der 2D- und 3D-Dichtemikroskopie sowie für die gezielte Bestrahlung einzelner lebender Zellen für radiobiologische Experimente. Zur Anwendung kamen die Methoden ortsaufgelöste Protonen induzierte Röntgenfluoreszenzanalyse (particle induced X-ray emission - PIXE), Spektrometrie rückgestreuter Ionen (Rutherford backscattering spectrometry - RBS) und Rastertransmissionsionenmikroskopie (scanning transmission ion microscopy - STIM). Durch eine gezielte Weiterentwicklung des bestehenden Ionenstrahlmikroskops, der Hochenergie Ionennanosonde LIPSION, konnte die Ortsauflösung für Spurenelementanalyse auf unter 300 nm verbessert werden, beziehungsweise die Sensitivität für Metallionen in biologischen Proben auf unter 200 ng/g (3 µmol/l) bei einer Ortsauflösung von 1 µm verbessert werden. Die Habilitationsschrift umfasst eine kurze allgemeine Einleitung einschließlich der Motivation für den Einsatz fokussierter MeV-Ionenstrahlen sowie einen Überblick über die Anwendungsgebiete und aktuellen Forschungsschwerpunkte. Danach werden kurz die Grundlagen der Technik und Methoden vorgestellt, gefolgt von einer Abschätzung der Auflösungsgrenzen für Elementanalysen und Einzelionentechniken. Danach werden ausgewählte Anwendungen aus verschiedenen Forschungsgebieten vorgestellt. Das erstes Beispiel ist aus der Umweltforschung. Es wird dargestellt, wie mittels ortsaufgelöster Elementspektroskopie eine Abschätzung der Feinstaubbelastung nach Beiträgen einzelner Verursacherquellen erfolgen kann. Dann folgt als Beispiel eine ortsaufgelöste Analyse der Verteilung von Nanopartikeln aus Sonnencremes in Hautquerschnitten zur Risikoabschätzung der Anwendungen von Nanotechnologie in kosmetischen Produkten. Desweiteren werden Studien der Spurenelementverteilung, speziell der von gebundenen Metallionen, in Hirnschnitten auf zellulärer und subzellulärer Ebene erläutert. Das anschließende Beispiel erläutert die Anwendung niedriger Energiedosen in der Radiobiologie anhand des Beschusses einzelner lebender Zellen mit abgezählten einzelnen Ionen. Als letztes Beispiel wird die Anwendung hochfokussierter Ionenstrahlen für die Mikrotomographie gezeigt. Abschließend folgt eine zusammenfassende Bewertung der vorgestellten Anwendungen mit einem Ausblick auf weitere Anwendungen und methodische Entwicklungen. Der Arbeit sind die relevanten Veröffentlichungen mit Beteiligung des Autors als Anhang beigefügt
Bin, Jianhui. "Laser-driven ion acceleration from carbon nano-targets with Ti:Sa laser systems." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-185199.
Full textBooks on the topic "Nano-Ion"
Daryush, Ila, ed. Ion beams and nano-engineering: Symposium held April 14-17, 2009, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2010.
Find full textKeskinbora, Kahraman. Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography. SPIE, 2019. http://dx.doi.org/10.1117/3.2531118.
Full textKrywawych, Steve. Metabolic Acidosis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0081.
Full textGallop, J., and L. Hao. Superconducting Nanodevices. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.17.
Full textBook chapters on the topic "Nano-Ion"
Tu, Jiawei, Hao Wan, and Ping Wang. "Micro/Nano Electrochemical Sensors for Ion Sensing." In Micro/Nano Cell and Molecular Sensors, 187–227. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1658-5_8.
Full textDutta, Prasit Kumar, Abhinanada Sengupta, Vishwas Goel, P. Preetham, Aakash Ahuja, and Sagar Mitra. "Nano-/Micro-engineering for Future Li–Ion Batteries." In Energy, Environment, and Sustainability, 141–76. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3269-2_7.
Full textKrishnan, Rahul, Rahul Mukherjee, Toh-Ming Lu, and Nikhil Koratkar. "Nano-engineered Silicon Anodes for Lithium-Ion Rechargeable Batteries." In Nanotechnology for Lithium-Ion Batteries, 43–66. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-4605-7_3.
Full textYamaki, Jun-ichi. "Positive Electrodes of Nano-Scale for Lithium-Ion Batteries (Focusing on Nano-Size Effects)." In Nanoscale Technology for Advanced Lithium Batteries, 7–22. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8675-6_2.
Full textNagase, Takashi. "Nano-gap Electrodes Developed Using Focused Ion Beam Technology." In Handbook of Manufacturing Engineering and Technology, 1513–28. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-4670-4_69.
Full textPfleging, Wilhelm, Petronela Gotcu, Peter Smyrek, Yijing Zheng, Joong Kee Lee, and Hans Jürgen Seifert. "Lithium-Ion Battery—3D Micro-/Nano-Structuring, Modification and Characterization." In Laser Micro-Nano-Manufacturing and 3D Microprinting, 313–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_11.
Full textSoldera, Flavio Andrés, Fernando Adrián Lasagni, and Frank Mücklich. "Nano Characterization of Structures by Focused Ion Beam (FIB) Tomography." In Fabrication and Characterization in the Micro-Nano Range, 171–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17782-8_8.
Full textJulien, C. M., and A. Mauger. "Nano Aspect of Vibration Spectra Methods in Lithium-Ion Batteries." In Nanoscale Technology for Advanced Lithium Batteries, 167–206. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8675-6_13.
Full textTatsumi, Kuniaki. "Nano Aspects of Advanced Positive Electrodes for Lithium-Ion Batteries." In Nanoscale Technology for Advanced Lithium Batteries, 23–30. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8675-6_3.
Full textAbe, Takeshi, and Zempachi Ogumi. "Nano-Aspects of Carbon Negative Electrodes for Li Ion Batteries." In Nanoscale Technology for Advanced Lithium Batteries, 31–40. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8675-6_4.
Full textConference papers on the topic "Nano-Ion"
Bhattacharjee, S., P. Karmakar, A. K. Sinha, A. Chakrabarti, Alka B. Garg, R. Mittal, and R. Mukhopadhyay. "Magnetic Nano Anisotropy by Ion Irradiation." In SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3606006.
Full textOkuyama, Kikuo. "Ion and nano-particle measurement in ion-induced nucleation process." In The 15th international conference on nucleation and atmospheric aerosols. AIP, 2000. http://dx.doi.org/10.1063/1.1361954.
Full textTAKAMI, T., J. WAN SON, JOO-KYUNG LEE, BAE HO PARK, and T. KAWAI. "NANO-PIPETTE PROBE WITH SEPARATIVE ION DETECTION." In Proceedings of International Conference Nanomeeting – 2011. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814343909_0126.
Full textSeki, T., and J. Matsuo. "High-Speed Nano-Processing with Cluster Ion Beams." In ION IMPLANTATION TECHNOLOGY: 16th International Conference on Ion Implantation Technology - IIT 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2401498.
Full textCordova, Stephen, Za Johnson, and G. G. Amatucci. "Nano Scale Based Cathode for Lithium Ion Batteries." In 6th International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5764.
Full textChen, Ping, Mengyue Wu, Paul F. A. Alkemade, and Huub W. M. Salemink. "Nano-holes fabricated by Ion Beam Induced Deposition." In 2007 Digest of papers Microprocesses and Nanotechnology. IEEE, 2007. http://dx.doi.org/10.1109/imnc.2007.4456165.
Full textJohn, Bibin, C. P. Sandhya, and C. Gouri. "Nano-structured anode materials for lithium-ion batteries." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-41.
Full textSato, K., I. Okamoto, Y. Kitamoto, and S. Ishida. "Oblique ion nano-texturing technology for longitudinal recording media." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464302.
Full textSatake, Shin-Ichi, and Jun Taniguchi. "Water-Evaporation Characteristics of Nano-Structure Surface." In ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/enic2008-53082.
Full textKrishnamurthy, Vikram, Kai Yiu Luk, Bruce Cornell, and Don Martin. "Real-Time Molecular Detectors using Gramicidin Ion Channel Nano-Biosensors." In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07. IEEE, 2007. http://dx.doi.org/10.1109/icassp.2007.366701.
Full textReports on the topic "Nano-Ion"
Harmer, M. P. A Focused-Ion Beam (FIB) Nano-Fabrication and Characterization Facility. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada408750.
Full textDaniel, Claus, Beth L. Armstrong, L. Curt Maxey, Adrian S. Sabau, Hsin Wang, Patrick Hagans, and Sue Babinec. Final Report - Recovery Act - Development and application of processing and process control for nano-composite materials for lithium ion batteries. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1095726.
Full textWu, Qihua, Kathryn Kremer, Yongqing Jiang, Stephen Gibbons, and Anthony Bednar. Determination of metal ion contents in nanomaterials solution using inductively coupled plasma – mass spectrometry (ICP-MS) : nano risk SOP-P. Engineer Research and Development Center (U.S.), May 2019. http://dx.doi.org/10.21079/11681/32729.
Full textDaniel, C., B. Armstrong, C. Maxey, A. Sabau, H. Wang, P. Hagans, and S. and Babinec. CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1059845.
Full text