Academic literature on the topic 'Nano-Ion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nano-Ion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nano-Ion"

1

Kang, Hyeon-Cheol, Han-Seong Yun, Bong-Jo Sung, Sung-Hwa Lee, Jang-Woo Lee, Yong-Bae Seo, and Myung-Suk Lee. "Reduction Effect of Microorganisms by Nano Plasma ion (NPi)." Journal of Life Science 21, no. 12 (December 31, 2011): 1710–15. http://dx.doi.org/10.5352/jls.2011.21.12.1710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Taylor, M. L., R. D. Franich, A. Alves, P. Reichart, D. N. Jamieson, and P. N. Johnston. "Ion transmission through nano-apertures." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 249, no. 1-2 (August 2006): 752–55. http://dx.doi.org/10.1016/j.nimb.2006.03.132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Yang, Yong Gang Li, Michael P. Short, Chung-Soo Kim, Karl K. Berggren, and Ju Li. "Nano-beam and nano-target effects in ion radiation." Nanoscale 10, no. 4 (2018): 1598–606. http://dx.doi.org/10.1039/c7nr08116b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Junyao, Lu-lu Han, and Zheng Xu. "Nano-electrokinetic ion concentration in the ion enrichment zone." Microsystem Technologies 25, no. 2 (June 13, 2018): 711–17. http://dx.doi.org/10.1007/s00542-018-3999-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dolgonosov, Anatoly M., Ruslan Kh Khamizov, and Nadezhda K. Kolotilina. "Nano-ion-exchangers - a new class of reactive materials." Сорбционные и хроматографические процессы 18, no. 6 (December 6, 2018): 794–809. http://dx.doi.org/10.17308/sorpchrom.2018.18/607.

Full text
Abstract:
Nano-sized particles of functional polymers i.e. nano-ion-exchangers (NIEX), are unusual objects which simultaneously behave as the hyper-charged ions and the solid ion exchangers. Due to similar charges, they form very stable colloidal systems. This paper is devoted to theoretical and practical study of the proper- ties of nano-exchangers, methods for their preparation, the technique of experiments being practically un- known, and the opportunities for their application. The results of dynamic experiments are given for sorption of nano-exchangers and the ions of back- ground solutions on the beds of macro-particles of usual cationic and anionic resins. It is shown how to ob- tain the NIEX hydrosols with the desired ionic composition, and the concept of the standard state hydrosol is defined. The possibility for solid-phase exchange of counter ions between contacting particles of the same polarity is demonstrated. The possibilities and advantages of using nano-ion-exchangers in chemical analysis are demonstrat- ed by different examples: preparation of separating phases for ion chromatography, application as modifier in capillary electrophoresis and using in photo-luminescence. The prospects of nano-ion-exchangers for drug delivery are also shown.
APA, Harvard, Vancouver, ISO, and other styles
6

Jensen, H., and G. Sorensen. "Ion bombardment of nano-particle coatings." Surface and Coatings Technology 84, no. 1-3 (October 1996): 500–505. http://dx.doi.org/10.1016/s0257-8972(95)02820-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gierak, J., D. Mailly, G. Faini, J. L. Pelouard, P. Denk, F. Pardo, J. Y. Marzin, et al. "Nano-fabrication with focused ion beams." Microelectronic Engineering 57-58 (September 2001): 865–75. http://dx.doi.org/10.1016/s0167-9317(01)00443-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Holzapfel, Michael, Hilmi Buqa, Laurence J. Hardwick, Matthias Hahn, Andreas Würsig, Werner Scheifele, Petr Novák, Rüdiger Kötz, Claudia Veit, and Frank-Martin Petrat. "Nano silicon for lithium-ion batteries." Electrochimica Acta 52, no. 3 (November 2006): 973–78. http://dx.doi.org/10.1016/j.electacta.2006.06.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Yogesh, N. Sharma, G. V. Subba Rao, and B. V. R. Chowdari. "Studies on Nano-CaO·SnO2and Nano-CaSnO3as Anodes for Li-Ion Batteries." Chemistry of Materials 20, no. 21 (November 11, 2008): 6829–39. http://dx.doi.org/10.1021/cm8020098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miralami, Raheleh, John G. Sharp, Fereydoon Namavar, Curtis W. Hartman, Kevin L. Garvin, and Geoffrey M. Thiele. "Effects of nano-engineered surfaces on osteoblast adhesion, growth, differentiation, and apoptosis." Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems 234, no. 1-2 (December 3, 2019): 59–66. http://dx.doi.org/10.1177/2397791419886778.

Full text
Abstract:
Modifying implant surfaces to improve their biocompatibility by enhancing osteoblast activation, growth, differentiation, and induction of greater bone formation with stronger attachments should result in improved outcomes for total joint replacement surgeries. This study tested the hypothesis that nano-structured surfaces, produced by the ion beam-assisted deposition method, enhance osteoblast adhesion, growth, differentiation, bone formation, and maturation. The ion beam-assisted deposition technique was employed to deposit zirconium oxide films on glass substrates. The effects of the ion beam-assisted deposition technique on cellular functions were investigated by comparing adhesion, proliferation, differentiation, and apoptosis of the human osteosarcoma cell line SAOS-2 on coated versus uncoated surfaces. Ion beam-assisted deposition nano-coatings enhanced initial cell adhesion assessed by the number of 4′,6-diamidino-2-phenylindole–stained nuclei on zirconium oxide nano-coated surfaces compared to glass surfaces. This nano-modification also increased cell proliferation as measured by mitochondrial dehydrogenase activity. Moreover, the ion beam-assisted deposition technique improved cell differentiation as determined by the formation of mineralized bone nodules and by the rate of calcium deposition, both of which are in vitro indicators of the successful bone formation. However, programmed cell death assessed by Annexin V staining and flow cytometry was not statistically significantly different between nano-surfaces and glass surfaces. Overall, the results indicate that nano-crystalline zirconium oxide surfaces produced by the ion beam-assisted deposition technique are superior to uncoated surfaces in supporting bone cell adhesion, proliferation, and differentiation. Thus, surface properties altered by the ion beam-assisted deposition technique enhanced bone formation and may increase the biocompatibility of bone cell–associated surfaces.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nano-Ion"

1

Toyoda, Noriaki. "Nano-Processing with Gas Cluster Ion Beams." Kyoto University, 1999. http://hdl.handle.net/2433/8951.

Full text
Abstract:
学位授与年月日: 1999-03-23 ; 学位の種類: 新制・課程博士 ; 学位記番号: 1823
In this thesis, fundamental properties of gas cluster ion beams and their non-linear irradiation effects are studied. Applications in the fabrication of nano-structures (nano-processes) are demonstrated, as based on knowledge of the interactions between clusters and solid surfaces. In chapter 2, a cluster source which provides an intense neutral cluster beam by supersonic expansion from a Laval nozzle is described, and the high current cluster ion beam equipment is explained. By optimization of both ionization and transport conditions of the cluster beam, a high cluster ion current density of a few μA/cm2 was achieved. The detailed cluster size distribution following a supersonic expansion and the characteristics of the cluster beams are discussed in chapter 3 based on data obtained with a high resolution time of flight mass spectrometer. The formation of inert, reactive and complex gas clusters was verified, and their average cluster size was 2000atoms/cluster. With increasing cluster size, the ionization and collision cross-section increased, however, the kinetic energy of the impact was compensated by the cohesive energy of a large cluster. In chapter 4, interactions of cluster and target atoms in an energetic cluster ion impact are discussed. Most of the kinetic energy of cluster ions was deposited with high density on the surface regions of the targets, and subsequently, multiple collisions between targets and clusters occurred. This dense energy deposition resulted in intrinsic non-linear sputtering effects, such as high yield sputtering and crater formation, which could not be explained by the summation of the irradiation effects induced by the same number of monomer ions. The lateral sputtering effect, which is explained in that many sputtered atoms with cluster ions are emitted in the horizontal direction on the surface plane, was clarified experimentally for the first time, and this was verified by STM observations of single traces of cluster ion impacts. In chapter 5, an enhancement of the sputtering effects with reactive cluster ion beams and their applications are discussed. Since the impact area of the target by a cluster ion occurred under high temperature and high pressure conditions, chemical reactions on the target surface were enhanced. In the case of reactive cluster ion irradiation, dissociation of reactive molecules and clusters occurred simultaneously, and subsequently, enhancement of the etching rate was observed as a consequence of the production of volatile materials. Reactive cluster ion etching could be applied for Si fine pattern etching, and it provided solutions for charging up, isotropic etching, microloading and radiation damage problems. In chapter 6, the surface smoothing effect and mechanisms with cluster ions are discussed. The cluster ion exhibited marked surface smoothing effects and it was made clear from both experimental and simulation results that the lateral sputtering effect was significant for surface smoothing. Very smooth surfaces of CVD diamond films and SiC single crystal substrates were obtained using the gas cluster ion beam processing; these materials are difficult to etch using conventional processes. From these results, it can be summarized that gas cluster ion beam processing is effective in the fabrication of nano-structures and applications in the industrial field are expected.
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第7843号
工博第1823号
新制||工||1140(附属図書館)
UT51-99-G437
京都大学大学院工学研究科電子物性工学専攻
(主査)教授 山田 公, 教授 橘 邦英, 教授 今西 信嗣
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
2

Jung, Daniel. "Ion acceleration from relativistic laser nano-target interaction." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-140744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hohenschutz, Max. "Nano-ions in interaction with non-ionic surfactant self-assemblies." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS064.

Full text
Abstract:
Les ions de taille nanométrique (nano-ions), tels que les clusters ioniques de bore, les polyoxométalates (POM) et les grands ions organiques, ont suscité un intérêt remarquable ces dernières années en raison de leur capacité à s’adsorber ou se lier à des systèmes chimiques électriquement neutres, tels que les molécules hôtes macrocycliques, les nanoparticules, les tensioactifs et les polymères, etc. Il a été démontré que ces processus d'adsorption ou de liaison sont induits par un phénomène médié par solvant, l'effet chaotropique, qui pousse le nano-ion de la masse d'eau vers une interface. Ainsi, l'eau d'hydratation de l'ion et de l'interface est libérée dans la masse d'eau, ce qui entraîne une restitution de la structure intrinsèque de l'eau. Cet effet est particulièrement fort pour les nano-ions. Ils sont par conséquent appelés ions superchaotropiques ou hydrophobes dans le prolongement des ions classiques (faiblement) chaotropiques tels que le SCN-. Tous les superchaotropes couramment étudiés, bien que chimiquement divers, partagent des caractéristiques physiques telles qu'une faible densité de charge et une grande polarisabilité. Les effets des nano-ions sur les auto-assemblages de tensioactifs non ioniques éthoxylés, les phases micellaires et bicouches, sont ici élucidés pour tirer des conclusions sur leur nature chaotropique et/ou hydrophobe. En combinant la diffusion aux petits angles des neutrons et des rayons X (SANS et SAXS), et les diagrammes de phase, les systèmes tensioactifs non ioniques/nano-ion sont examinés et comparés, du nanomètre à l'échelle macroscopique. Ainsi, il est montré que tous les nano-ions étudiés induisent un chargement électrique des assemblages de tensioactifs ainsi qu'une déshydratation des têtes de tensioactif non-ionique. En outre, les ions chaotropiques ou hydrophobes diffèrent dans leurs effets sur la forme micellaire. Les ions chaotropiques entraînent les micelles allongées de tensioactif non-ionique vers les micelles sphériques (augmentation de la courbure), tandis que les ions hydrophobes provoquent une transition vers les phases bicouches (diminution de la courbure). Il est conclu que les nano-ions superchaotropiques agissent comme des tensioactifs ioniques car leur ajout à des systèmes de tensioactifs non ioniques provoque un effet de charge. Cependant, les nano-ions et les tensioactifs ioniques sont fondamentalement différents par leur association avec l'ensemble des tensioactifs non ioniques. Le nano-ion s'adsorbe sur les têtes des tensioactifs non ioniques par effet chaotropique, tandis que le tensioactif ionique s'ancre dans les micelles entre les queues des tensioactifs non ioniques par effet hydrophobe. La comparaison des effets de l'ajout de nano-ions ou de tensioactifs ioniques à des tensioactifs non ioniques a été approfondie sur les mousses. Les mousses ont été étudiées en ce qui concerne l'épaisseur du film de mousse, le drainage dans le temps et la stabilité, respectivement en utilisant la SANS, l'analyse d'image et la conductométrie. Le POM superchaotropique testé (SiW12O404-, SiW) ne mousse pas dans l'eau contrairement au SDS classique de tensioactif ionique. Néanmoins, l'ajout de petites quantités de SiW ou de SDS à une solution moussante de tensioactif non ionique a permis d'obtenir des mousses plus humides avec une durée de vie plus longue. Entre-temps, l'épaisseur du film de mousse (déterminée en SANS) est augmentée en raison de la charge électrique des monocouches de tensioactifs non ioniques dans le film de mousse. Il est conclu que le comportement remarquable des nano-ions - ici sur les systèmes tensioactifs non ioniques - peut être étendu aux systèmes colloïdaux, tels que les mousses, les polymères, les protéines ou les nanoparticules. Cette thèse démontre que le comportement superchaotropique des nano-ions est un outil polyvalent qui peut être utilisé dans de nouvelles formulations de matériaux et d'applications de la matière molle
Nanometer-sized ions (nano-ions), such as ionic boron clusters, polyoxometalates (POMs) and large organic ions, have spawned remarkable interest in recent years due to their ability to adsorb or bind to electrically neutral chemical systems, such as macrocyclic host molecules, colloidal nano-particles, surfactants and polymers etc. The underlying adsorption or binding processes were shown to be driven by a solvent-mediated phenomenon, the chaotropic effect, which drives the nano-ion from the water bulk towards an interface. Thus, hydration water of the ion and the interface is released into the bulk resulting in a bulk water structure recovery. This effect is particularly strong for nano-ions. Therefore, they were termed superchaotropic or hydrophobic ions as an extension to classical (weakly) chaotropic ions such as SCN-. All commonly studied superchaotropes, though chemically diverse, share physical characteristics such as low charge density and high polarizability. Herein, the effects of nano-ions on ethoxylated non-ionic surfactant self-assemblies, micellar and bilayer phases, are elucidated to draw conclusions on their chaotropic and/or hydrophobic nature. By combining small angle scattering of neutrons and x-rays (SANS and SAXS), and phase diagrams, non-ionic surfactant/nano-ion systems are examined and compared, from the nanometer to the macroscopic scale. Thus, all studied nano-ions are found to induce a charging of the surfactant assemblies along with a dehydration of the non-ionic surfactant head groups. Furthermore, chaotropic and hydrophobic ions differ in their effects on the micellar shape. Superchaotropic ions drive the elongated non-ionic surfactant micelles towards spherical micelles (increase in curvature), whereas hydrophobic ions cause a transition towards bilayer phases (decrease in curvature). It is concluded that superchaotropic nano-ions act like ionic surfactants because their addition to non-ionic surfactant systems causes a charging effect. However, nano-ions and ionic surfactants are fundamentally different by their association with the non-ionic surfactant assembly. The nano-ion adsorbs to the non-ionic surfactant heads by the chaotropic effect, while the ionic surfactant anchors into the micelles between the non-ionic surfactant tails by the hydrophobic effect. The comparison of the effects of adding nano-ions or ionic surfactant to non-ionic surfactant was further investigated on foams. The foams were investigated regarding foam film thickness, drainage over time and stability, respectively using SANS, image analysis and conductometry. The tested superchaotropic POM (SiW12O404-, SiW) does not foam in water in contrast to the classical ionic surfactant SDS. Nevertheless, addition of small amounts of SiW or SDS to a non-ionic surfactant foaming solution resulted in wetter foams with longer lifetimes. Meanwhile, the foam film thickness (determined in SANS) is increased due to the electric charging of the non-ionic surfactant monolayers in the foam film. It is concluded that the remarkable behavior of nano-ions – herein on non-ionic surfactant systems – can be extended to colloidal systems, such as foams, polymers, proteins or nanoparticles. This thesis demonstrates that the superchaotropic behavior of nano-ions is a versatile tool to be used in novel formulations of soft matter materials and applications
APA, Harvard, Vancouver, ISO, and other styles
4

Castro, Olivier de. "Development of a Versatile High-Brightness Electron Impact Ion Source for Nano-Machining, Nano-Imaging and Nano-Analysis." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS468/document.

Full text
Abstract:
Les nano-applications utilisant des faisceaux d'ions focalisés nécessitent des sources d'ions à haute brillance avec une faible dispersion en énergie (ΔE) ce qui permet une excellente résolution latérale et un courant d'ions suffisamment élevé pour induire des vitesses d'érosion raisonnables et des rendements élevés d'émission électronique et ionique. Les objectifs de cette thèse sont le développement d'une source d'ions basée sur l'impact électronique ayant une brillance réduite Br de 10³ – 10⁴ A m⁻² sr ⁻ ¹ V⁻ ¹, une dispersion en énergie ΔE ≲ 1 eV et un choix polyvalent d'ions. Le premier concept évalué consiste à focaliser un faisceau d'électrons à une énergie de 1 keV entre deux électrodes parallèles distant de moins d'un millimètre. Le volume d'ionisation « micrométrique » est formé au-dessus d'une ouverture d'extraction de quelques dizaines de µm. En utilisant un émetteur d'électrons LaB₆ et une pression de 0.1 mbar dans la région d'ionisation, Br est proche de 2.10² A m⁻² sr ⁻ ¹ V ⁻ ¹ avec des tailles de source de quelques µm, des courants de quelques nA pour Ar⁺/Xe⁺/O₂ ⁺ et une dispersion en énergie ΔE < 0.5 eV. La brillance réduite Br est encore en dessous de la valeur minimum de notre objectif et la pression de fonctionnement très faible nécessaire pour l'émetteur LaB₆ ne peut être obtenue avec une colonne d'électrons compacte, donc ce prototype n'a pas été construit.Le deuxième concept de source d'ions évalué est basé sur l’idée d’obtenir un faisceau ionique à fort courant avec une taille de source et un demi-angle d’ouverture similaire aux résultats du premier concept de source, mais en changeant l’interaction électron-gaz et la collection des ions. Des études théoriques et expérimentales sont utilisées pour l’évaluation de la performance de ce deuxième concept et de son utilité pour les nano-applications basées sur des faisceaux d'ions focalisés
High brightness low energy spread (ΔE) ion sources are needed for focused ion beam nano-applications in order to get a high lateral resolution while having sufficiently high ion beam currents to obtain reasonable erosion rates and large secondary electron/ion yields. The objectives of this thesis are: the design of an electron impact ion source, a reduced brightness Br of 10³ – 10⁴ A m⁻² sr⁻ ¹ V⁻ ¹ with an energy distribution spread ΔE ≲ 1 eV and a versatile ion species choice. In a first evaluated concept an electron beam is focussed in between two parallel plates spaced by ≲1 mm. A micron sized ionisation volume is created above an extraction aperture of a few tens of µm. By using a LaB₆ electron emitter and the ionisation region with a pressure around 0.1 mbar, Br is close to 2.10² A m⁻² sr ⁻ ¹ V ⁻ ¹ with source sizes of a few µm, ionic currents of a few nA for Ar⁺/Xe⁺/O₂ ⁺ and the energy spread being ΔE < 0.5 eV. The determined Br value is still below the minimum targeted value and furthermore the main difficulty is that the needed operation pressure for the LaB₆ emitter cannot be achieved across the compact electron column and therefore a prototype has not been constructed. The second evaluated source concept is based on the idea to obtain a high current ion beam having a source size and half-opening beam angle similar to the first concept, but changing the electron gas interaction and the ion collection. Theoretical and experimental studies are used to evaluate the performance of this second source concept and its usefulness for focused ion beam nano-applications
APA, Harvard, Vancouver, ISO, and other styles
5

Perre, Emilie. "Nano-structured 3D Electrodes for Li-ion Micro-batteries." Doctoral thesis, Uppsala universitet, Institutionen för materialkemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-119485.

Full text
Abstract:
A new challenging application for Li-ion battery has arisen from the rapid development of micro-electronics. Powering Micro-ElectroMechanical Systems (MEMS) such as autonomous smart-dust nodes using conventional Li-ion batteries is not possible. It is not only new batteries based on new materials but there is also a need of modifying the actual battery design. In this context, the conception of 3D nano-architectured Li-ion batteries is explored. There are several micro-battery concepts that are studied; however in this thesis, the focus is concentrated on one particular architecture that can be described as the successive deposition of battery components (active material, electrolyte, active material) on free-standing arrays of nano-sized columns of a current collector. After a brief introduction about Li-ion batteries and 3D micro-batteries, the electrodeposition of Al through an alumina template using an ionic liquid electrolyte to form free-standing columns of Al current collector is described. The crucial deposition parameters influencing the nucleation and growth of the Al nano-rods are discussed. The deposition of active electrode material on the nano-structured current collector columns is described for 2 distinct active materials deposited using different techniques. Deposition of TiO2 using Atomic Layer Deposition (ALD) as active material on top of the nano-structured Al is also presented. The obtained deposits present high uniformity and high covering of the specific surface of the current collector. When cycled versus lithium and compared to planar electrodes, an increase of the capacity was proven to be directly proportional to the specific area gained from shifting from a 2D to a 3D construction. Cu2Sb 3D electrodes were prepared by the electrodeposition of Sb onto a nano-structured Cu current collector followed by an annealing step forcing the alloying between the current collector and Sb. The volume expansion observed during Sb alloying with Li is buffered by the Cu matrix and thus the electrode stability is greatly enhanced (from only 20 cycles to more than 120 cycles). Finally, the deposition of a hybrid polymer electrolyte onto the developed 3D electrodes is presented. Even though the deposition is not conformal and that issues of capacity fading need to be addressed, preliminary results attest that it is possible to cycle the obtained 3D electrode-electrolyte versus lithium without the appearance of short-circuits.
APA, Harvard, Vancouver, ISO, and other styles
6

Evanoff, Kara. "Highly structured nano-composite anodes for secondary lithium ion batteries." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53388.

Full text
Abstract:
Interest in high performance portable energy devices for electronics and electric vehicles is the basis for a significant level of activity in battery research in recent history. Li-ion batteries are of particular interest due to their high energy density, decreasing cost, and adaptable form factor. A common goal of researchers is to develop new materials that will lower the cost and weight of Li-ion batteries while simultaneously improving the performance. There are several approaches to facilitate improved battery system-level performance including, but not limited to, the development of new material structures and/or chemistries, manufacturing techniques, and cell management. The performed research sought to enhance the understanding of structure-property relationships of carbon-containing composite anode materials in a Li-ion cell through extensive materials and anode performance characterization. The approach was to focus on the development of new electrode material designs to yield higher energy and power characteristics, as well as increased thermal and electrical conductivities or mechanical strength, using techniques that could be scaled for large volume manufacturing. Here, three different electrode architectures of nanomaterial composites were synthesized and characterized. Each electrode structure consisted of a carbon substrate that was conformally coated with a high Li capacity material. The dimensionality and design for each structure was unique, with each offering different advantages. The addition of an external coating to further increase the stability of high capacity materials was also investigated.
APA, Harvard, Vancouver, ISO, and other styles
7

Roshchupkina, Olga. "Ion beam induced structural modifications in nano-crystalline permalloy thin films." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-114158.

Full text
Abstract:
In the last years, there is a rise of interest in investigation and fabrication of nanometer sized magnetic structures due to their various applications (e.g. for data storage or micro sensors). Over the last several decades ion beam implantation became an important tool for the modification of materials and in particular for the manipulation of magnetic properties. Nanopatterning and implantation can be done simultaneously using focused-ion beam (FIB) techniques. FIB implantation and standard ion implantation differ in their beam current densities by 7 orders of magnitude. This difference can strongly influence the structural and magnetic properties, e.g. due to a rise of the local temperature in the sample during ion implantation. In previous investigations both types of implantation techniques were studied separately. The aim of the current research was to compare both implantation techniques in terms of structural changes and changes in magnetic properties using the same material system. Moreover, to separate any possible annealing effects from implantation ones, the influence of temperature on the structural and magnetic properties were additionally investigated. For the current study a model material system which is widely used for industrial applications was chosen: a 50 nm thick non-ordered nano-crystalline permalloy (Ni81Fe19) film grown on a SiO2 buffer layer based onto a (100)-oriented Si substrate. The permalloy films were implanted with a 30 keV Ga+ ion beam; and also a series of as-deposited permalloy films were annealed in an ultra-high vacuum (UHV) chamber. Several investigation techniques were applied to study the film structure and composition, and were mostly based on non-destructive X-ray investigation techniques, which are the primary focus of this work. Besides X-ray diffraction (XRD), providing the long-range order crystal structural information, extended X-ray absorption fine structure (EXAFS) measurements to probe the local structure were performed. Moreover, the film thickness, surface roughness, and interface roughness were obtained from the X-ray reflectivity (XRR) measurements. Additionally cross-sectional transmission electron microscope (XTEM) imaging was used for local structural characterizations. The Ga depth distribution of the samples implanted with a standard ion implanter was measured by the use of Auger electron spectroscopy (AES) and Rutherford backscattering (RBS), and was compared with theoretical TRIDYN calculation. The magnetic properties were characterized via polar magneto-optic Kerr effect (MOKE) measurements at room temperature. It was shown that both implantation techniques lead to a further material crystallization of the partially amorphous permalloy material (i.e. to an increase of the amount of the crystalline material), to a crystallite growth and to a material texturing towards the (111) direction. For low ion fluences a strong increase of the amount of the crystalline material was observed, while for high ion fluences this rise is much weaker. At low ion fluences XTEM images show small isolated crystallites, while for high ones the crystallites start to grow through the entire film. The EXAFS analysis shows that both Ni and Ga atom surroundings have a perfect near-order coordination corresponding to an fcc symmetry. The lattice parameter for both implantation techniques increases with increasing ion fluence according to the same linear law. The lattice parameters obtained from the EXAFS measurements for both implantation types are in a good agreement with the results obtained from the XRD measurements. Grazing incidence XRD (GIXRD) measurements of the samples implanted with a standard ion implanter show an increasing value of microstrain with increasing ion fluence (i.e. the lattice parameter variation is increasing with fluence). Both types of implantation result in an increase of the surface and the interface roughness and demonstrate a decrease of the saturation polarization with increasing ion fluence. From the obtained results it follows that FIB and standard ion implantation influence structure and magnetic properties in a similar way: both lead to a material crystallization, crystallite growth, texturing and decrease of the saturation polarization with increasing ion fluence. A further crystallization of the highly defective nano-crystalline material can be simply understood as a result of exchange processes induced by the energy transferred to the system during the ion implantation. The decrease of the saturation polarization of the implanted samples is mainly attributed to the simple presence of the Ga atoms on the lattice sites of the permalloy film itself. For the annealed samples more complex results were found. The corresponding results can be separated into two temperature regimes: into low (≤400°C) and high (>400°C) temperatures. Similar to the implanted samples, annealing results in a material crystallization with large crystallites growing through the entire film and in a material texturing towards the (111) direction. The EXAFS analysis shows a perfect near-order coordination corresponding to an fcc symmetry. The lattice parameter of the annealed samples slightly decreases at low annealing temperatures, reaches its minimum at about ~400°C and slightly rises at higher ones. From the GIXRD measurements it can be observed that the permalloy material at temperatures above >400°C reaches its strain-free state. On the other hand, the film roughness increases with increasing annealing temperature and a de-wetting of the film is observed at high annealing temperatures. Regardless of the material crystallization and texturing, the samples annealed at low temperatures demonstrate no change in saturation polarization, while at high temperatures a rise by approximately ~15% at 800°C was observed. The rise of the saturation polarization at high annealing temperatures is attributed to the de-wetting effect.
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Jining. "Deterministic fabrication of micro- and nano-structures by focused ion beam." Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reinert, Tilo. "Focussed MeV-Ion Micro- and Nano-Beams in the Life Sciences." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-197802.

Full text
Abstract:
This work presents the development of a sub-micron nuclear microprobe for applications in the life sciences. It includes quantitative trace element analysis with sub-micron spatial resolution, 2D- and 3D-microscopy of density distributions and the targeted irradiation of living cells with counted single ions. The analytical methods base on particle induced X-ray emission spectrometry (PIXE), Rutherford backscattering spectrometry (RBS), scanning transmission ion microscopy (STIM) and STIM-tomography. The specific development of the existing nuclear microprobe LIPSION led to an improved performance of the capabilities for trace element analysis. For sub-micron analysis the spatial resolution could be improved to 300 nm at a sensitivity of about 1 µg/g for metal ions in biological matrices; for a resolution of 1 µm the sensitivity was improved to 200 ng/g (3 µmol/l). This habilitation thesis comprises a short general introduction including the motivation to utilize focussed high energy ion beams, an overview on the applications and actual research fields. The introduction is followed by the basic principles of the equipments and analytical methods. An estimation of the limits of resolution for element analytical and single ion techniques is given for the Leipzig system. Thereafter, selected studies from different research areas are presented. The first presented application is a study from environmental air pollution research. It is demonstrated that the microscopic elemental analysis of single aerosol particles can be used to assess the contributions from different sources. A further example is the analysis of the distribution of nanoparticles in skin cross-sections for a risk assessment of the applications of nanosized physical UV-filters in cosmetic products. The risk assessment is followed by the micro-analysis of trace elements, especially of bound metal ions, in brain sections on the cellular and sub-cellular level. After this the application of focussed MeV ion beams in low dose radiobiological research is presented. Finally, the analysis of 3D-density distributions by proton micro-tomography is demonstrated. A summary concludes on the applications and gives an outlook to further applications and methodological developments. The appendix comprises the relevant publications of the author
Die vorliegende Arbeit etabliert für Anwendungen in den Lebenswissenschaften den Einsatz hochfokussierter MeV-Ionenstrahlen für nuklear-mikroskopische Methoden der quantitativen Spurenelementanalyse, der 2D- und 3D-Dichtemikroskopie sowie für die gezielte Bestrahlung einzelner lebender Zellen für radiobiologische Experimente. Zur Anwendung kamen die Methoden ortsaufgelöste Protonen induzierte Röntgenfluoreszenzanalyse (particle induced X-ray emission - PIXE), Spektrometrie rückgestreuter Ionen (Rutherford backscattering spectrometry - RBS) und Rastertransmissionsionenmikroskopie (scanning transmission ion microscopy - STIM). Durch eine gezielte Weiterentwicklung des bestehenden Ionenstrahlmikroskops, der Hochenergie Ionennanosonde LIPSION, konnte die Ortsauflösung für Spurenelementanalyse auf unter 300 nm verbessert werden, beziehungsweise die Sensitivität für Metallionen in biologischen Proben auf unter 200 ng/g (3 µmol/l) bei einer Ortsauflösung von 1 µm verbessert werden. Die Habilitationsschrift umfasst eine kurze allgemeine Einleitung einschließlich der Motivation für den Einsatz fokussierter MeV-Ionenstrahlen sowie einen Überblick über die Anwendungsgebiete und aktuellen Forschungsschwerpunkte. Danach werden kurz die Grundlagen der Technik und Methoden vorgestellt, gefolgt von einer Abschätzung der Auflösungsgrenzen für Elementanalysen und Einzelionentechniken. Danach werden ausgewählte Anwendungen aus verschiedenen Forschungsgebieten vorgestellt. Das erstes Beispiel ist aus der Umweltforschung. Es wird dargestellt, wie mittels ortsaufgelöster Elementspektroskopie eine Abschätzung der Feinstaubbelastung nach Beiträgen einzelner Verursacherquellen erfolgen kann. Dann folgt als Beispiel eine ortsaufgelöste Analyse der Verteilung von Nanopartikeln aus Sonnencremes in Hautquerschnitten zur Risikoabschätzung der Anwendungen von Nanotechnologie in kosmetischen Produkten. Desweiteren werden Studien der Spurenelementverteilung, speziell der von gebundenen Metallionen, in Hirnschnitten auf zellulärer und subzellulärer Ebene erläutert. Das anschließende Beispiel erläutert die Anwendung niedriger Energiedosen in der Radiobiologie anhand des Beschusses einzelner lebender Zellen mit abgezählten einzelnen Ionen. Als letztes Beispiel wird die Anwendung hochfokussierter Ionenstrahlen für die Mikrotomographie gezeigt. Abschließend folgt eine zusammenfassende Bewertung der vorgestellten Anwendungen mit einem Ausblick auf weitere Anwendungen und methodische Entwicklungen. Der Arbeit sind die relevanten Veröffentlichungen mit Beteiligung des Autors als Anhang beigefügt
APA, Harvard, Vancouver, ISO, and other styles
10

Bin, Jianhui. "Laser-driven ion acceleration from carbon nano-targets with Ti:Sa laser systems." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-185199.

Full text
Abstract:
Over the past few decades, the generation of high energetic ion beams by relativistic intense laser pulses has attracted great attentions. Starting from the pioneering endeavors around 2000, several groups have demonstrated muliti-MeV (up to 58 MeV for proton by then) ion beams along with low transverse emittance and ps-scale pulse duration emitted from solid targets. Owing to those superior characteristics, laser driven ion beam is ideally suitable for many applications. However, the laser driven ion beam typically exhibits a large angular spread as well as a broad energy spectrum which for many applications is disadvantageous. The utilization of nano-targets as ion source provides a number of advantages over micrometer thick foils. The presented PhD work was intended to investigate laser driven ion acceleration from carbon nano-targets and demonstrate the potential feasibility for biological studies. Two novel nano-targets are employed: nm thin diamond-like-carbon (DLC) foil and carbon nanotubes foam (CNF). Both are self-produced in the technological laboratory at Ludwig-Maximilians-Universität München. Well-collimated proton beams with extremely small divergence (half angle) of 2 degrees are observed from DLC foils, one order of magnitude lower as compared to micrometer thick targets. Two-dimensional particle-in-cellsimulations indicate a strong influence from the electron density distribution on the divergence of protons. This interpretation is supported by an analytical model. In the same studies, the highest maximum proton energy was observed with a moderate laser intensity as low as 5*10^18W/cm^2. Parallel measurements of laser transmission and reflection are used to determine laser absorption in the nano-plasma, showing a strong correlation to the maximum proton energy. This observation indicates significance of absorbed laser energy rather than incident laser intensity and is supported by an analytical model. The ion energy also depends on pulse duration, a reduced optimum pulse duration is found as compared to micrometer thick targets. This behavior is attributed to a reduction of transverse electron spread due to the reduction of thickness from micrometer to nanometer. These remarkable proton bunch characteristics enabled irradiating living cells with a single shot dose of up to 7 Gray in one nanosecond, utilizing the Advanced Titanium: sapphire LASer (ATLAS)system at Max-Planck-Institut of Quantum Optics (MPQ). The experiments represent the first feasibility demonstration of a very compact laser driven nanosecond proton source for radiobiological studies by using a table-top laser system and advanced nano-targets. For the purpose of providing better ion sources for practical application, particularly in terms of energy increase, subsequent experiments were performed with the Astra Gemini laser system in the UK. The experiments demonstrate for the first time that ion acceleration can be enhanced by exploiting relativistic nonlinearities enabled by micrometer-thick CNF targets. When the CNF is attached to a nm-thick DLC foil, a significant increase of maximum carbon energy (up to threefold) is observed with circularly polarized laser pulses. A preferable enhancement of the carbon energy is observed with non-exponential spectral shape, indicating a strong contribution of the radiation pressure to the overall acceleration. In contrast, the linear polarization give rise to a more prominent proton acceleration. Proton energies could be increased by a factor of 2.4, inline with a stronger accelerating potential due to higher electron temperatures. Three-dimensional (3D) particle-in-cell (PIC) simulations reveal that the improved performance of the double-layer targets (CNF+DLC) can be attributed to relativistic self-focusing in near-critical density plasma. Interestingly, the nature of relativistic non-linearities, that plays a major role in laserwakefield-acceleration of electrons, can also apply to the benefit of laser driven ion acceleration.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Nano-Ion"

1

Daryush, Ila, ed. Ion beams and nano-engineering: Symposium held April 14-17, 2009, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Keskinbora, Kahraman. Prototyping Micro- and Nano-Optics with Focused Ion Beam Lithography. SPIE, 2019. http://dx.doi.org/10.1117/3.2531118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krywawych, Steve. Metabolic Acidosis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0081.

Full text
Abstract:
Hydrogen ion turnover in resting adults exceeds 500 mole/24 hours and maintenance of hydrogen ion balance is an essential requirement for normal cellular, organ and body function. A variety of mechanisms co-operate to ensure that the hydrogen concentration in plasma can be tightly controlled between 35 to 46 nano moles per litre and any deviation being rapidly compensated. Inherited metabolic diseases can to a variable degree impact to disturb this equilibrium. The underlying causes responsible for this outcome are disease dependent and may occur due to generation of overwhelming quantities of hydrogen per se, or at the level of renal reabsorption or generation of bicarbonate or due to tissue hypoxia resulting from either poor pulmonary or cardiac function.
APA, Harvard, Vancouver, ISO, and other styles
4

Gallop, J., and L. Hao. Superconducting Nanodevices. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.17.

Full text
Abstract:
This article reviews recent progress in superconducting nanodevices, with particular emphasis on fabrication methods developed for superconducting nanowires and nanoscale Josephson junctions based on different barrier materials. It evaluates the future potential of superconducting nanodevices, including nano-superconducting quantum interference devices (nanoSQUIDs), in light of improvements in nanoscale fabrication and manipulation techniques, along with their likely impacts on future quantum technology and measurement. The article first considers efforts to realize devices at the physical scale of 100 nm and below before discussing different types of Josephson junction such as trilayer junctions. It also describes the use of focused ion beam milling and electron beam lithography techniques for junction fabrication at the nanoscale and the improved energy sensitivity detectable with a nanoSQUID. Finally, it looks at a range of applications for nanoSQUIDs, superconducting single photon detectors, and other superconducting nanodevices.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nano-Ion"

1

Tu, Jiawei, Hao Wan, and Ping Wang. "Micro/Nano Electrochemical Sensors for Ion Sensing." In Micro/Nano Cell and Molecular Sensors, 187–227. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1658-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dutta, Prasit Kumar, Abhinanada Sengupta, Vishwas Goel, P. Preetham, Aakash Ahuja, and Sagar Mitra. "Nano-/Micro-engineering for Future Li–Ion Batteries." In Energy, Environment, and Sustainability, 141–76. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3269-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krishnan, Rahul, Rahul Mukherjee, Toh-Ming Lu, and Nikhil Koratkar. "Nano-engineered Silicon Anodes for Lithium-Ion Rechargeable Batteries." In Nanotechnology for Lithium-Ion Batteries, 43–66. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-4605-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamaki, Jun-ichi. "Positive Electrodes of Nano-Scale for Lithium-Ion Batteries (Focusing on Nano-Size Effects)." In Nanoscale Technology for Advanced Lithium Batteries, 7–22. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8675-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nagase, Takashi. "Nano-gap Electrodes Developed Using Focused Ion Beam Technology." In Handbook of Manufacturing Engineering and Technology, 1513–28. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-4670-4_69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pfleging, Wilhelm, Petronela Gotcu, Peter Smyrek, Yijing Zheng, Joong Kee Lee, and Hans Jürgen Seifert. "Lithium-Ion Battery—3D Micro-/Nano-Structuring, Modification and Characterization." In Laser Micro-Nano-Manufacturing and 3D Microprinting, 313–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Soldera, Flavio Andrés, Fernando Adrián Lasagni, and Frank Mücklich. "Nano Characterization of Structures by Focused Ion Beam (FIB) Tomography." In Fabrication and Characterization in the Micro-Nano Range, 171–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17782-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Julien, C. M., and A. Mauger. "Nano Aspect of Vibration Spectra Methods in Lithium-Ion Batteries." In Nanoscale Technology for Advanced Lithium Batteries, 167–206. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8675-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tatsumi, Kuniaki. "Nano Aspects of Advanced Positive Electrodes for Lithium-Ion Batteries." In Nanoscale Technology for Advanced Lithium Batteries, 23–30. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8675-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abe, Takeshi, and Zempachi Ogumi. "Nano-Aspects of Carbon Negative Electrodes for Li Ion Batteries." In Nanoscale Technology for Advanced Lithium Batteries, 31–40. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8675-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nano-Ion"

1

Bhattacharjee, S., P. Karmakar, A. K. Sinha, A. Chakrabarti, Alka B. Garg, R. Mittal, and R. Mukhopadhyay. "Magnetic Nano Anisotropy by Ion Irradiation." In SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3606006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Okuyama, Kikuo. "Ion and nano-particle measurement in ion-induced nucleation process." In The 15th international conference on nucleation and atmospheric aerosols. AIP, 2000. http://dx.doi.org/10.1063/1.1361954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

TAKAMI, T., J. WAN SON, JOO-KYUNG LEE, BAE HO PARK, and T. KAWAI. "NANO-PIPETTE PROBE WITH SEPARATIVE ION DETECTION." In Proceedings of International Conference Nanomeeting – 2011. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814343909_0126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Seki, T., and J. Matsuo. "High-Speed Nano-Processing with Cluster Ion Beams." In ION IMPLANTATION TECHNOLOGY: 16th International Conference on Ion Implantation Technology - IIT 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2401498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cordova, Stephen, Za Johnson, and G. G. Amatucci. "Nano Scale Based Cathode for Lithium Ion Batteries." In 6th International Energy Conversion Engineering Conference (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-5764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Ping, Mengyue Wu, Paul F. A. Alkemade, and Huub W. M. Salemink. "Nano-holes fabricated by Ion Beam Induced Deposition." In 2007 Digest of papers Microprocesses and Nanotechnology. IEEE, 2007. http://dx.doi.org/10.1109/imnc.2007.4456165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

John, Bibin, C. P. Sandhya, and C. Gouri. "Nano-structured anode materials for lithium-ion batteries." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sato, K., I. Okamoto, Y. Kitamoto, and S. Ishida. "Oblique ion nano-texturing technology for longitudinal recording media." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Satake, Shin-Ichi, and Jun Taniguchi. "Water-Evaporation Characteristics of Nano-Structure Surface." In ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/enic2008-53082.

Full text
Abstract:
The characteristics of water-evaporation from a glassy carbon (GC) plate with nano-structure surface were investigated. The nano-scale structures on the carbon plate are made by Oxygen ion beam process. In changing the exposure time in the Ion beam process, it can be changed as for the pitch and diameter of nano-structure with conical structures. The experiment measured the temperature of GC plate and weight of a water-droplet while the droplet evaporates on the heating carbon plate. Consequently, special evaporation appeared when the pitch of nano-structure with the conical structures was larger than 80 nm.
APA, Harvard, Vancouver, ISO, and other styles
10

Krishnamurthy, Vikram, Kai Yiu Luk, Bruce Cornell, and Don Martin. "Real-Time Molecular Detectors using Gramicidin Ion Channel Nano-Biosensors." In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07. IEEE, 2007. http://dx.doi.org/10.1109/icassp.2007.366701.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nano-Ion"

1

Harmer, M. P. A Focused-Ion Beam (FIB) Nano-Fabrication and Characterization Facility. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada408750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Daniel, Claus, Beth L. Armstrong, L. Curt Maxey, Adrian S. Sabau, Hsin Wang, Patrick Hagans, and Sue Babinec. Final Report - Recovery Act - Development and application of processing and process control for nano-composite materials for lithium ion batteries. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1095726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Qihua, Kathryn Kremer, Yongqing Jiang, Stephen Gibbons, and Anthony Bednar. Determination of metal ion contents in nanomaterials solution using inductively coupled plasma – mass spectrometry (ICP-MS) : nano risk SOP-P. Engineer Research and Development Center (U.S.), May 2019. http://dx.doi.org/10.21079/11681/32729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Daniel, C., B. Armstrong, C. Maxey, A. Sabau, H. Wang, P. Hagans, and S. and Babinec. CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1059845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography