Academic literature on the topic 'Nano-packaging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nano-packaging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nano-packaging"
Adeyeye, Samuel Ayofemi Olalekan. "Food packaging and nanotechnology: safeguarding consumer health and safety." Nutrition & Food Science 49, no. 6 (2019): 1164–79. http://dx.doi.org/10.1108/nfs-01-2019-0020.
Full textKuswandi, B. "Environmental friendly food nano-packaging." Environmental Chemistry Letters 15, no. 2 (2017): 205–21. http://dx.doi.org/10.1007/s10311-017-0613-7.
Full textGuo, Yun Tian, and Li Jiang Huo. "Study on PE/Inorganic Nano-Antibacterial Packaging Material." Applied Mechanics and Materials 731 (January 2015): 365–68. http://dx.doi.org/10.4028/www.scientific.net/amm.731.365.
Full textWolter, Klaus-Juergen, and Gerald Gerlach. "Nano- and Biotechniques in Electronic Packaging." IEEE Nanotechnology Magazine 4, no. 1 (2010): 23–27. http://dx.doi.org/10.1109/mnano.2010.935970.
Full textZhang, Rongfei, Xiangyou Wang, and Meng Cheng. "Preparation and Characterization of Potato Starch Film with Various Size of Nano-SiO2." Polymers 10, no. 10 (2018): 1172. http://dx.doi.org/10.3390/polym10101172.
Full textLi, Xin, Shu Cai Li, and Li Qiang Huang. "Synthesis and Property of Water Borne Polyurethane/Modified Nano-ZnO Composites Packaging Membranes." Applied Mechanics and Materials 469 (November 2013): 167–70. http://dx.doi.org/10.4028/www.scientific.net/amm.469.167.
Full textSánchez, C., M. Hortal, C. Aliaga, A. Devis, and V. A. Cloquell-Ballester. "Recyclability assessment of nano-reinforced plastic packaging." Waste Management 34, no. 12 (2014): 2647–55. http://dx.doi.org/10.1016/j.wasman.2014.08.006.
Full textYap, Ray Chin Chong, Amegadze Paul Seyram Kwablah, Jiating He, and Xu Li. "Functions of Nano-Materials in Food Packaging." Journal of Molecular and Engineering Materials 04, no. 04 (2016): 1640015. http://dx.doi.org/10.1142/s2251237316400153.
Full textMorris, James E. "Reliability testing of nano-particle system packaging." Microsystem Technologies 15, no. 1 (2008): 139–43. http://dx.doi.org/10.1007/s00542-008-0654-8.
Full textWong, Ching-Ping, Wei Lin, Ling-Bo Zhu, et al. "Nano materials for microelectronic and photonic packaging." Frontiers of Optoelectronics in China 3, no. 2 (2010): 139–42. http://dx.doi.org/10.1007/s12200-010-0009-9.
Full textDissertations / Theses on the topic "Nano-packaging"
Joo, Sung Chul. "Adhesion mechanisms of nano-particle silver to electronics packaging materials." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31730.
Full textBleiker, Simon J. "Heterogeneous 3D Integration and Packaging Technologies for Nano-Electromechanical Systems." Doctoral thesis, KTH, Mikro- och nanosystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207185.
Full textTredimensionell (3D) integration av mikro- och nano-elektromekaniska system (MEMS/NEMS) med integrerade kretsar (ICs) är en ny teknik som erbjuder stora fördelar jämfört med konventionell mikroelektronik. MEMS och NEMS används oftast som sensorer och aktuatorer då de möjliggör många funktioner som inte kan uppnås med vanliga ICs.3D-integration av NEMS och ICs bidrar även till mindre dimensioner, ökade prestanda och mindre energiförbrukning av elektriska komponenter. Den nuvarande tekniken för complementary metal-oxide-semicondictor (CMOS) närmar sig de fundamentala gränserna vilket drastiskt begränsar utvecklingsmöjligheten för mikroelektronik och medför slutet på Moores lag. Därför har 3D-integration identifierats som en lovande teknik för att kunna driva vidare utvecklingen för framtidens elektriska komponenter.I denna avhandling framläggs en omfattande fabrikationsmetodik för heterogen 3D-integration av NEMS ovanpå CMOS-kretsar. Heterogen integration betyder att både NEMS- och CMOS-komponenter byggs på separata substrat för att sedan förenas på ett enda substrat. Denna teknik tillåter full processfrihet för tillverkning av NEMS-komponenter och garanterar kompatibilitet med standardiserade CMOS-fabrikationsprocesser.I den första delen av avhandlingen beskrivs en metod för att sammanfoga två halvledarskivor med en extremt tunn adhesiv polymer. Denna metod demonstreras för 3D-integration av NEMS- och CMOS-komponenter. Den andra delen introducerar ett nytt koncept för NEM-switchar och dess användning i NEM-switch-baserade mikrodatorchip. Den tredje delen presenterar två olika inkapslingsmetoder för MEMS och NEMS. Den ena metoden fokuserar på hermetisk vakuuminkapsling medan den andra metoden beskriver en lågkostnadsstrategi för inkapsling av optiska komponenter. Slutligen i den fjärde delen presenteras en ny fabrikationsteknik för så kallade ”through silicon vias” (TSVs) baserad på magnetisk självmontering av nickeltråd på mikrometerskala.
20170519
Nasiri, Aida. "Development of Safe-by-Design Nano-composites for Food Packaging Application." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT076.
Full textThe market of nanotechnologies is dominated by the food packaging area which amounts more than 20% of the total nanotechnologies market in 2015. However, the wide-scale use of nanomaterials raises important questions about environmental and safety issues that could hinder their development. In the case of plastics intended to be in contact with food, the risk of contamination concerns not only the nanoparticles but also all the chemical additives added during the material processing. The presence of nanoparticles is susceptible to modify the interactions between polymer and the additives with a possible change in their transport properties and therefore the food contamination.The present work aims at identifying the relationship between the structural characteristic and the transport properties (diffusivity and solubility) of nanoparticles and chemical additives incorporated in nanocomposites. In this regard, it is necessary to fill the gap of knowledge in 3D nanostructure characterization and a multi-scale modeling of mass transfer properties of nanocomposites in real usage conditions.In this way, polyethylene and nanoclay were selected based on the best compromise between real potential applications and the scientific knowledge previously published and eventually the nanocomposites were synthesized with LLDPE, Cloisite20 and a compatibilizer by melt intercalation method.The nanocomposite structure was characterized using TEM, X-ray nanotomography, TGA and XRD then submitted to migration tests undertaken in contact with different food simulants which represent various types of food (aqueous, acid, alcoholic) following the recommendation of the European regulation on the food contact material. To evaluate the positive or adverse effects of the nanomaterials on the contamination of the food by chemical additives which are usually incorporated with the plastic packaging, the virgin polymer and nanocomposite material were spiked with a mixture of the additives exhibiting various volatility, polarity and molecular weight. Then, the transport properties (i.e inertia) of nanocomposite structure was distinctively investigated on kinetic (apparent diffusion coefficient) and thermodynamic (partition coefficient) considerations.The results indicated that nanoclay addition in plastic materials favorably reduced the migration of additives by modifying both their diffusivity in the polymer and their partition between the polymer and the food simulant. However, while the partition coefficient of additives increases in nanocomposite in comparison to pure LLDPE for the samples in contact with all types of food simulants, the reduction of diffusion coefficient is significantly dependent on the nature of the food simulant in contact. Hence, it can be concluded that the major role in the migration of additives is not played by the imposed tortuosity path, but by the factors such as the affinity between the base polymer and simulants as well as the effects of simulants on swelling and crystallinity of the samples. Moreover, the effect of additive-related parameters and the structural parameters were assessed and put in perspective with their impact on the transport properties of nanostructures. Integrating the results of characterization and transfer properties led to an improved understanding of the influence of structure of nanocomposites on their mass transfer properties and therefore on the suitability of using them as food contact materials
Barwood, Michael. "An exploration of shape memory polymers and (nano) composites for packaging applications." Thesis, Sheffield Hallam University, 2012. http://shura.shu.ac.uk/19326/.
Full textJi, Zhouxiang. "Nano-channel of Viral DNA Packaging Motor as Single Pore to Differentiate Peptides." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555016293008571.
Full textCastro, Mayorga Jinneth Lorena. "Biotechnological routes for the development of antimicrobial nano-metal based polyhydroxyalkanoates for active food packaging applications." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/85678.
Full textEl desarrollo de nuevos biomateriales con propiedades antimicrobianas para aplicaciones de envasado activo resulta un tema de gran interés en la actualidad. La presente tesis doctoral estudia el desarrollo por vía biotecnológica de polihidroxialcanoatos (PHAs) conteniendo nanometales para aplicaciones de envasado activo antimicrobiano de alimentos. En primer lugar, se produjeron nanopartículas de plata (AgNPs) por reducción química y se estabilizaron in situ en una suspensión de poli (hidroxibutirato-co-hidroxivalerato) no purificado, PHBV18 (18% en moles de valerato), obtenido previamente a partir de cultivos mixtos microbianos. Posteriormente, las AgNPs estabilizadas se utilizaron para desarrollar nanocompuestos de PHAs-AgNPs siguiendo dos estrategias diferentes: 1) un proceso de mezclado-fundido en donde las AgNPs se añadieron al PHBV3 (3% mol de valerato) a partir de un masterbatch de nanopartículas altamente dispersas y distribuidas y, 2) como una estructura bicapa formada por un recubrimiento a base de PHBV/PHBV18/AgNPs depositado sobre un film de PHBV3 obtenido por moldeo por compresión. La aplicación de ambas estrategias dio lugar a nanocompuestos activos con una fuerte actividad antimicrobiana frente a patógenos transmitidos por los alimentos, siendo la estructura bicapa la más eficaz en la reducción de la población bacteriana y viral, incluso a una carga muy baja de AgNPs (de 0.002 a 0.04% en peso). Como ruta alternativa, también se llevó a cabo un proceso integrado de fermentación con Cupriavidus necator para la síntesis biológica de AgNPs y polihidroxibutirato (PHB). En este trabajo se demostró, por primera vez, la capacidad inherente de C. necator para reducir nitrato de plata y producir AgNPs sin la necesidad de añadir un agente reductor. El proceso fue optimizado y escalado satisfactoriamente a un biorreactor automatizado de 10 litros. Finalmente, debido a las limitaciones del uso de AgNPs en aplicaciones alimentarias, se prepararon films antimicrobianos de PHAs basados en nanopartículas de óxido de zinc (ZnO) y óxido de cobre (CuO) de acuerdo con las estrategias previamente desarrolladas. Adicionalmente, ambas estrategias se compararon con una tercera basada en la preincorporación de ZnO en fibras de PHBV18 no purificado y su posterior mezclado-fundido con polímero virgen. Se estudió el efecto de la morfología de las nanopartículas de ZnO y del método de incorporación de ZnO/CuO sobre las propiedades morfológicas, ópticas, térmicas, mecánicas y de barrera de los films activos resultantes, así como su influencia en el comportamiento antimicrobiano (bactericida y virucida). Por lo tanto, esta tesis doctoral representa un avance significativo en la comprensión de la eficacia antimicrobiana de nanometales altamente dispersos y distribuidos y destaca la idoneidad de los materiales desarrollados a base de PHAs y nanometales para aplicaciones antimicrobianas y, en particular, para aplicaciones de envasado de alimentos activos antimicrobianos.
El desenvolupament de nous materials d'origen biològic amb propietats antimicrobianes per a aplicacions d'envasament actiu és un tema d'interès significatiu. La tesi doctoral actual s'ocupa del desenvolupament de polihidroxialcanoats (PHA) reforçats amb nanometals per via biotecnològicament per a aplicacions d'envasat actiu antimicrobià d'aliments. Inicialment, les nanopartícules de plata (AgNPs) van ser produïdes per reducció química i estabilitzades in situ dins en suspensions de poli (hidroxibutirato-co-hidroxivalerato) sense purificar, PHBV18 (18 mol% de valerat), prèviament obtinguts a partir de cultius mixtes microbians. Las AgNPs estabilitzades es van usar posteriorment per a desenvolupar nanocompostos de PHA's- AgNPs seguint dues estratègies diferents: 1) Procés directe de barreja en fusió que no utilitza dissolvents orgànics o estabilitzants addicionals i on es van afegir les AgNPs al PHBV3 (3% mol valerato) a partir d¿un masterbath on estaven perfectament disperses i distribuïdes 2) com una estructura bicapa formada per un recobriment de PHBV3 / PHBV18/AgNPS que es deposita sobre un film de PHBV3 obtingut per modelat per compressió. L'aplicació d'ambdues estratègies va donar lloc a nanocompostos actius amb una forta activitat antibacteriana enfront de patògens transmesos pels aliments, sent l'estructura de doble capa la més eficaç en la reducció de la població bacteriana i viral, fins i tot a una càrrega molt baixa de AgNPs (de 0.002-0.04% en pes). Com ruta alternativa, també es va dur a terme un procés integrat de fermentació amb Cupriavidus necator per a la síntesi biològica de AgNPs i polihidroxibutirato (PHB). En aquest treball es demostra, per primera vegada, la capacitat inherent de C. necator per reduir la sal de plata i produir AgNPs sense la necessitat d'afegir un agent reductor. El procés va ser optimitzat i escalat satisfactòriament a un bioreactor de 10 litres. Finalment, a causa de les limitacions de l'ús de nanopartícules de plata en aplicacions alimentàries, es van preparar films antimicrobians de PHA que incorporessin nanopartícules d'òxid de zinc (ZnO) i òxid de coure (CuO) d'acord amb les estratègies prèviament desenvolupades. Les dues estratègies es van comparar amb una tercera basada en la preincorporació de ZnO en fibres de PHBV18 no purificat i aquestes fibres es van barrejar posteriorment amb polímer verge. Es va estudiar l'efecte de la morfologia de les nanopartícules de ZnO i el mètode de la incorporació de ZnO/CuO sobre les propietats morfològiques, òptiques, tèrmiques, mecàniques i de barrera dels films actius resultants, així com la seva influència en el comportament antimicrobià (bactericida i virucida). Per tant, aquesta tesi doctoral representa un pas endavant significatiu en la comprensió de l'eficàcia antimicrobiana de nanometales altament dispersos i distribuïts i posa en relleu la idoneïtat dels materials desenvolupats basats en PHAs i nanometals per a aplicacions antimicrobianes i, en particular, per a aplicacions d'envasat d'aliments actius antimicrobians.
Castro Mayorga, JL. (2017). Biotechnological routes for the development of antimicrobial nano-metal based polyhydroxyalkanoates for active food packaging applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/85678
TESIS
Wolf, Caroline. "Multi-scale modelling of structure and mass transfer relationships in nano- and micro-composites for food packaging." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20217/document.
Full textDespite the global growing interest in the food packaging field for the design of tailored composite structures with controlled mass transfer properties, the understanding of the modulation of the mass transfer properties with the incorporation of particles in polymer still remains very complex. In order to throw light on this scientific problem, the thesis work was focused on the following parts: - providing a better understanding of mass transfer in composites. In this purpose an analysis of all experimental gas and vapour permeability data available in the literature has been carried out in nano- and micro- composites and a comparison of these data with predictions from tortuosity models based on few geometrical inputs has been achieved; - performing a detailed study of water vapour mass transfer in composites (wheat straw fibres/bio-polyester). These data were compared with the prediction of bi-phasic analytical models coming from other disciplinary fields. This part of the work has highlighted the lack of comprehensive and complete models for the prediction of permeability in composite with permeable particles; - developing of an innovative multi-scale approach for the prediction of mass transfer in bi-phasic composites considering both the particle and the polymer matrix properties with realistic 2D geometry of the composite structures has been proposed. For the sake of reaching a satisfactory validation level of the model, some experimental improvements are still needed to increase the accuracy of input parameters such as diffusivity of the particles.This new modelling approach open the way for the creation of a reverse-engineering toolbox for the design of tailor made composites structures, tightly adjusted to barrier properties requirements of the packed food
Imran, Muhammad. "Enrobages actifs contenants des peptides antimicrobiens nano-vectorisés." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL026N/document.
Full textFood nanotechnology has the potential to improve food safety and bio-security, food processing, food packaging and functional ingredients. Nano-encapsulation of active agents is an innovative concept to protect them against possible denaturation during processing and storage. The overall objective of the present work was to optimize and develop fluorescent labeling and encapsulation of nisin for molecular transfer study in different packaging based on biopolymers and in the food. Nanoencapsulation of nisin in different nanoliposomes by using continuous cell disruption system (CCDS) has provided an innovative method for nano-delivery systems fabrication. Incorporation of nisin in nano-emulsion form (encapsulated and free) can possibly be an effective approach to control pathogen without compromising the basic physico-chemical attributes of composite HPMC coatings. The fluorescently labeled nisin Z prepared had a molecular weight of 3717.3 Da. Confocal microscopic studies demonstrated the interaction of nisin with the bacterial membranes at the cell-division sites as possible mechanism of action against food borne pathogen. HPMC, CTS, SC and PLA packaging bio-membranes act as a reservoir and progressively release nisin to sustain a constant inhibitory effect. Choice of biopolymer is significant in providing requisite bioavailability of antimicrobial compounds at exterior surface and inside the food system. Based on the present study results, the emerging revolution concerning food safety through packaging possibly will rely on « 3-BIOs » blend with nanotechnology, which refers to Bioactive, Biodegradable and Bio-nanocomposite
Roux-Levy, Philippe. "Nanostructures de carbone dédiées aux interconnexions hautes fréquences." Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0102/document.
Full textAt extremely high frequency, electronic applications will have to challenge problems born from the size reduction and compactification of the systems. Physical limits of conventional materials will be reached and so new alternatives are necessary in the nano-packaging field. New materials have been studied to replace conventional materials. Among them, carbon nanotubes have shown extremely high electrical and thermal conductivity as well as extraordinary physical resistance. And so carbon nanotubes are a good candidate for applications such as interconnects, thermal management, electromagnetic shielding or structural reinforcement. All of those applications are capital for modern nano-packaging. In this manuscript, carbon nanotubes will be studied in depths to demonstrate again their incredible electronic and thermal properties. We will then focus on the study of two types of carbon nanotubes based interconnects: carbon nanotubes bumps based interconnects for Flip-Chip applications and wireless interconnects based on carbon nanotubes monopole antenna. Finally, we will study the possibility of creating passive RF components using carbon nanotubes structures. New ways of fabricating the carbon nanotubes structure were used in order to get a fabrication process of the prototype completely compatible with CMOS technologies
Rajarathinam, Venmathy. "Imprint lithography and characterization of photosensitive polymers for advanced microelectronics packaging." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34722.
Full textBooks on the topic "Nano-packaging"
Wong, C. P., Kyoung-Sik Moon, and Yi (Grace) Li, eds. Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-0040-1.
Full textLi, Yi, C. P. Wong, and Kyoung-Sik Moon. Nano-bio-electronic, photonic and MEMS packaging. Springer, 2010.
Wong, C. P. (Ching-Ping), Kyoung-sik Moon, and Yi Li, eds. Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49991-4.
Full textGerlach, Gerald, and Klaus-Jürgen Wolter, eds. Bio and Nano Packaging Techniques for Electron Devices. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28522-6.
Full textKlaus-Jürgen, Wolter, and SpringerLink (Online service), eds. Bio and Nano Packaging Techniques for Electron Devices: Advances in Electronic Device Packaging. Springer Berlin Heidelberg, 2012.
name, No. Nano- and microtechnology: Materials, processes, packaging and systems : 16-18 December 2002, Melbourne, Australia. SPIE, 2003.
Shi pin nai mi ke ji: Ji chu yu ying yong = Food nano : technology fundamental and application. Xin wen jing kai fa chu ban gu fen you xian gong si, 2011.
Wong, C. P., Yi Li, and Kyoung-Sik Moon. Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer, 2020.
Bio And Nano Packaging Techniques For Electron Devices Advances In Electronic Device Packaging. Springer, 2012.
K, Sood Dinesh, Malshe Ajay P, Maeda Ryutaro, et al., eds. Nano- and microtechnology: Materials, processes, packaging and systems : 16-18 December 2002, Melbourne, Australia. SPIE, 2002.
Book chapters on the topic "Nano-packaging"
Jiménez, Alfonso, and Roxana A. Ruseckaite. "Nano-Biocomposites for Food Packaging." In Environmental Silicate Nano-Biocomposites. Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4108-2_15.
Full textZambrano-Zaragoza, M. L., R. M. González-Reza, D. Quintanar-Guerrero, and N. Mendoza-Muñoz. "Nano-Films for Food Packaging." In Food Engineering Series. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44552-2_10.
Full textLi, Yi, Kyoung-sik (Jack) Moon, and C. P. Wong. "Nano-conductive Adhesives for Nano-electronics Interconnection." In Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0040-1_2.
Full textLi, Yi, Kyoung-sik Moon, and C. P. (Ching-Ping) Wong. "Nano-conductive Adhesives for Nano-electronics Interconnection." In Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49991-4_2.
Full textTajeddin, Behjat. "Natural Nano-based Polymers for Packaging Applications." In Advanced Structured Materials. Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2473-0_8.
Full textGerlach, Gerald. "Nano- and Biotechniques for Electronic Device Packaging." In Bio and Nano Packaging Techniques for Electron Devices. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28522-6_3.
Full textBalan, Angitha, and Ravi-Kumar Kadeppagari. "Biopolymers for Nano-Enabled Packaging of Foods." In Handbook of Polymer and Ceramic Nanotechnology. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10614-0_57-1.
Full textBalan, Angitha, and Ravi-Kumar Kadeppagari. "Biopolymers for Nano-enabled Packaging of Foods." In Handbook of Polymer and Ceramic Nanotechnology. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-40513-7_57.
Full textLi, Yao, Jeffrey A. Hinkley, and Karl I. Jacob. "Molecular Dynamics Applications in Packaging." In Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0040-1_18.
Full textLi, Yao, Jeffery A. Hinkley, and Karl I. Jacob. "Molecular Dynamics Applications in Packaging." In Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49991-4_24.
Full textConference papers on the topic "Nano-packaging"
Oppermann, M., H. Heuer, N. Meyendorf, and K. J. Wolter. "Nano Evaluation in Electronics Packaging." In 2008 2nd Electronics Systemintegration Technology Conference. IEEE, 2008. http://dx.doi.org/10.1109/estc.2008.4684493.
Full textWong, C. P., W. Lin, and R. Zhang. "Nano materials for microelectronic packaging." In 2010 3rd Electronic System-Integration Technology Conference (ESTC). IEEE, 2010. http://dx.doi.org/10.1109/estc.2010.5642891.
Full textZhu, X., H. Kotadia, S. Xu, et al. "Electromigration aware design for nano-packaging." In 2013 IEEE 13th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2013. http://dx.doi.org/10.1109/nano.2013.6720970.
Full textFelba, J., T. Falat, and A. Moscicki. "Nano sized silver for electronic packaging." In 2013 IEEE 13th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2013. http://dx.doi.org/10.1109/nano.2013.6721027.
Full textZhang, Wei, Zewen Liu, and Zheng Wang. "Nano resonator simulation fabrication and packaging consideration." In High Density Packaging (ICEPT-HDP). IEEE, 2009. http://dx.doi.org/10.1109/icept.2009.5270700.
Full textLin, W., H. Jiang, R. Zhang, et al. "Nano materials for microelectronic and photonic packaging." In 2008 IEEE Interdisciplinary Conf on Portable Info Devices (PORTABLE) - Polytronic 2008 IEEE Conf on Polymers and Adhesives in Microelectronics and Photonics. IEEE, 2008. http://dx.doi.org/10.1109/portable-polytronic.2008.4681291.
Full textSiah, Chun Fei, Jianxiong Wang, Philippe Roux-Levy, Philippe Coquet, Beng Kang Tay, and Dominique Baillargeat. "Carbon Nanotube for Interconnects and Nano-Packaging Application." In 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC). IEEE, 2019. http://dx.doi.org/10.1109/eptc47984.2019.9026662.
Full textWolter, Klaus-Jurgen, Martin Oppermann, and Thomas Zema. "Nano Packaging - A challenge for Non-destructive Testing." In 2008 10th Electronics Packaging Technology Conference (EPTC 2008). IEEE, 2008. http://dx.doi.org/10.1109/eptc.2008.4763540.
Full textWang, Wen Xuan, Xiuzhen Lu, Johan Liu, Michael Olugbenga Olorunyomi, Tomas Aronsson, and Dongkai Shangguan. "New Nano-Thermal Interface Materials (Nano-TIMs) with SiC Nano-Particles Used for Heat Removal in Electronics Packaging Applications." In 2006 International Conference on Electronic Materials and Packaging. IEEE, 2006. http://dx.doi.org/10.1109/emap.2006.4430688.
Full textLi, Zhuo, Yi Gao, Kyoung-Sik Moon, Allen Tannenbaum, and C. P. Wong. "Nano filler dispersion in polymer composites for electronic packaging." In 2012 IEEE 62nd Electronic Components and Technology Conference (ECTC). IEEE, 2012. http://dx.doi.org/10.1109/ectc.2012.6249074.
Full text