Academic literature on the topic 'Nanobodies'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanobodies.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanobodies"

1

Gibbs, W. Wayt. "Nanobodies." Scientific American 293, no. 2 (August 2005): 78–83. http://dx.doi.org/10.1038/scientificamerican0805-78.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weiss and Verrips. "Nanobodies that Neutralize HIV." Vaccines 7, no. 3 (July 31, 2019): 77. http://dx.doi.org/10.3390/vaccines7030077.

Full text
Abstract:
Nanobodies or VHH (variable domains of heavy-chain only antibodies) are derived from camelid species such as llamas and camels. Nanobodies isolated and selected through phage display can neutralize a broad range of human immunodeficiency virus type 1 (HIV-1) strains. Nanobodies fit into canyons on the HIV envelope that may not be accessible to IgG (immunoglobulin G) containing both heavy and light chains, and they tend to have long CDR3 (complementarity-determining region 3) loops that further enhance recognition of otherwise cryptic epitopes. Nanobodies are readily expressed at high levels in bacteria and yeast, as well as by viral vectors, and they form relatively stable, heat-resistant molecules. Nanobodies can be linked to human Fc chains to gain immune effector functions. Bivalent and trivalent nanobodies recognizing the same or distinct epitopes on the envelope glycoproteins, gp120 and gp41, greatly increase the potency of HIV-1 neutralization. Nanobodies have potential applications for HIV-1 diagnostics, vaccine design, microbicides, immunoprophylaxis, and immunotherapy.
APA, Harvard, Vancouver, ISO, and other styles
3

Shatalova, A. V., A. S. Yakubova, V. V. Palimpsestov, and I. B. Esmagambetov. "NANOBODIES: STRUCTURE, MANUFACTURING, APPLICATION (REVIEW)." Drug development & registration 8, no. 1 (February 14, 2019): 14–22. http://dx.doi.org/10.33380/2305-2066-2019-8-1-14-22.

Full text
Abstract:
Introduction. Single-domain antibodies (nanobodies) are composed of the heavy-chain variable domain only. Compared to conventional immunoglobulins G (IgG) nanobodies have such qualities as: high bioavailability, ability to bind epitopes that are difficult to reach, high solubility and thermal stability, etc. Nanobodies can be easily manufactured in microorganisms (E. coli) to significantly save on cost. Text. Goal of the paper consists of the description of structural and functional properties of nanobodies and its effective application. Conclusion. Nanobodies can be used in many fields of medicine and biotechnology such as research, diagnostics and therapy of oncology, infectious, hematological, inflammatory, autoimmune and neurological diseases. They can also be easily modified using another nanobody, molecules or radioactive mark as necessary. Nanobodies have huge potential for applications in diagnostics, therapy and medicine.
APA, Harvard, Vancouver, ISO, and other styles
4

Woods, James. "Selection of Functional Intracellular Nanobodies." SLAS DISCOVERY: Advancing the Science of Drug Discovery 24, no. 7 (June 7, 2019): 703–13. http://dx.doi.org/10.1177/2472555219853235.

Full text
Abstract:
Camelid-derived nanobodies are versatile tools for research, diagnostics, and therapeutics. Certain nanobodies can function as intrabodies and bind antigens within the eukaryotic cytosol. This capability is valuable for the development of intracellular probes and targeted gene therapies. Consequently, many attempts have been made to produce nanobodies that are intracellularly stable and resistant to aggregation. Pursuit of these intrabodies generally focuses on library design or nanobody selection method. Recent variations of library design have yielded diverse libraries capable of producing nanobodies against a wide variety of antigens. Novel screening methods have also been developed, yielding nanobodies with high affinity for intracellular antigens. These screening techniques can have advantages over phage display methods when nanobodies against intracellular antigens must be rapidly produced. Some intracellular screening methods convey the additional advantage of selecting for other desired intrabody characteristics, such as antiviral action or conditional stability. This review summarizes the recent developments in both library design and selection methods aimed at producing intrabodies.
APA, Harvard, Vancouver, ISO, and other styles
5

Liang, Liu, Zixi Hu, Yingying Huang, Siliang Duan, Jian He, Yong Huang, Yongxiang Zhao, and Xiaoling Lu. "Advances in Nanobodies." Journal of Nanoscience and Nanotechnology 16, no. 12 (December 1, 2016): 12099–111. http://dx.doi.org/10.1166/jnn.2016.13767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Strack, Rita. "Nanobodies made versatile." Nature Methods 20, no. 1 (January 2023): 37. http://dx.doi.org/10.1038/s41592-022-01757-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Silva-Pilipich, Noelia, Cristian Smerdou, and Lucía Vanrell. "A Small Virus to Deliver Small Antibodies: New Targeted Therapies Based on AAV Delivery of Nanobodies." Microorganisms 9, no. 9 (September 15, 2021): 1956. http://dx.doi.org/10.3390/microorganisms9091956.

Full text
Abstract:
Nanobodies are camelid-derived single-domain antibodies that present some advantages versus conventional antibodies, such as a smaller size, and higher tissue penetrability, stability, and hydrophilicity. Although nanobodies can be delivered as proteins, in vivo expression from adeno-associated viral (AAV) vectors represents an attractive strategy. This is due to the fact that AAV vectors, that can provide long-term expression of recombinant genes, have shown an excellent safety profile, and can accommodate genes for one or several nanobodies. In fact, several studies showed that AAV vectors can provide sustained nanobody expression both locally or systemically in preclinical models of human diseases. Some of the pathologies addressed with this technology include cancer, neurological, cardiovascular, infectious, and genetic diseases. Depending on the indication, AAV-delivered nanobodies can be expressed extracellularly or inside cells. Intracellular nanobodies or “intrabodies” carry out their function by interacting with cell proteins involved in disease and have also been designed to help elucidate cellular mechanisms by interfering with normal cell processes. Finally, nanobodies can also be used to retarget AAV vectors, when tethered to viral capsid proteins. This review covers applications in which AAV vectors have been used to deliver nanobodies, with a focus on their therapeutic use.
APA, Harvard, Vancouver, ISO, and other styles
8

Adel M, Zakri, AL-Doss Abdullah A, Sack Markus, Ali Ahmed A, Samara Emad M, Ahmed Basem S, Amer Mahmoud A, Abdalla Omar A, and Al-Saleh Mohammed A. "Cloning and characterisation of nanobodies against the coat protein of Zucchini yellow mosaic virus." Plant Protection Science 54, No. 4 (August 25, 2018): 215–21. http://dx.doi.org/10.17221/158/2017-pps.

Full text
Abstract:
Zucchini yellow mosaic virus (ZYMV), in the family Potyviridae, causes an economically important disease. Antibodies are valuable reagents for diagnostic assays to rapidly detect viral infection. Here, we report the isolation of camel-derived variable domains of the heavy chain antibody (VHH, also called nanobodies) directed against the coat protein (CP) of ZYMV. Several nanobodies that specifically recognise ZYMV-CP were identified. The isolated nanobodies showed binding not only to recombinant ZYMV-CP but also to native ZYMV, indicating that these nanobodies can be used in diagnostic tools to detect viral infections.
APA, Harvard, Vancouver, ISO, and other styles
9

Deszyński, Piotr, Jakub Młokosiewicz, Adam Volanakis, Igor Jaszczyszyn, Natalie Castellana, Stefano Bonissone, Rajkumar Ganesan, and Konrad Krawczyk. "INDI—integrated nanobody database for immunoinformatics." Nucleic Acids Research 50, no. D1 (November 8, 2021): D1273—D1281. http://dx.doi.org/10.1093/nar/gkab1021.

Full text
Abstract:
Abstract Nanobodies, a subclass of antibodies found in camelids, are versatile molecular binding scaffolds composed of a single polypeptide chain. The small size of nanobodies bestows multiple therapeutic advantages (stability, tumor penetration) with the first therapeutic approval in 2018 cementing the clinical viability of this format. Structured data and sequence information of nanobodies will enable the accelerated clinical development of nanobody-based therapeutics. Though the nanobody sequence and structure data are deposited in the public domain at an accelerating pace, the heterogeneity of sources and lack of standardization hampers reliable harvesting of nanobody information. We address this issue by creating the Integrated Database of Nanobodies for Immunoinformatics (INDI, http://naturalantibody.com/nanobodies). INDI collates nanobodies from all the major public outlets of biological sequences: patents, GenBank, next-generation sequencing repositories, structures and scientific publications. We equip INDI with powerful nanobody-specific sequence and text search facilitating access to >11 million nanobody sequences. INDI should facilitate development of novel nanobody-specific computational protocols helping to deliver on the therapeutic promise of this drug format.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Caixia, Weiqi Zhang, Xiaoqian Tang, Qi Zhang, Wen Zhang, and Peiwu Li. "Change of Amino Acid Residues in Idiotypic Nanobodies Enhanced the Sensitivity of Competitive Enzyme Immunoassay for Mycotoxin Ochratoxin A in Cereals." Toxins 12, no. 4 (April 23, 2020): 273. http://dx.doi.org/10.3390/toxins12040273.

Full text
Abstract:
Anti-idiotypic nanobodies, usually expressed by gene engineering protocol, has been shown as a nontoxic coating antigen for toxic compound immunoassays. We here focused on how to increase immunoassay sensitivity by changing the nanobody’s primary sequence. In the experiments, two anti-idiotype nanobodies against monoclonal antibody 1H2, which is specific to ochratoxin A, were obtained and named as nontoxic coating antigen 1 (NCA1) and nontoxic coating antigen 2 (NCA2). Three differences between the nanobodies were discovered. First, there are six amino acid residues (AAR) of changes in the complementarity determining region (CDR), which compose the antigen-binding site. One of them locates in CDR1 (I–L), two of them in CDR2 (G–D, E–K), and three of them in CDR3 (Y–H, Y–W). Second, the affinity constant of NCA1 was tested as 1.20 × 108 L mol−1, which is about 4 times lower than that of NCA2 (5.36 × 108 L mol−1). Third, the sensitivity (50% inhibition concentration) of NCA1 for OTA was shown as 0.052 ng mL−1, which was 3.5 times lower than that of nontoxic coating antigen 2 (0.015 ng mL−1). The results indicate that the AAR changes in CDR of the anti-idiotypic nanobodies, from nonpolar to polar, increasing the affinity constant may enhance the immunoassay sensitivity. In addition, by using the nontoxic coating antigen 2 to substitute the routine synthetic toxic antigen, we established an eco-friendly and green enzyme-linked immunosorbent assay (ELISA) method for rapid detection of ochratoxin A in cereals. The half-maximal inhibitory concentration (IC50) of optimized ELISA was 0.017 ng mL−1 with a limit of detection (LOD) of 0.003 ng mL−1. The optimized immunoassay showed that the average recoveries of spiked corn, rice, and wheat were between 80% and 114.8%, with the relative standard deviation (RSD) ranging from 3.1–12.3%. Therefore, we provided not only basic knowledge on how to improve the structure of anti-idiotype nanobody for increasing assay sensitivity, but also an available eco-friendly ELISA for ochratoxin A in cereals.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nanobodies"

1

Colazet, Magali. "Génération de nanobodies pour des applications en immunothérapie." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0013.

Full text
Abstract:
L’immunothérapie est une approche thérapeutique qui consiste à restaurer les fonctions anti-tumorales du système immunitaire pour qu’il soit à nouveau capable d’éliminer les cellules cancéreuses. Pour cela, différentes stratégies sont étudiées : l’une d’entre elles consiste à cibler des récepteurs inhibiteurs présents à la surface des cellules immunitaires infiltrées dans les tumeurs de façon à réactiver leurs fonctions. L’entreprise Innate Pharma développe des anticorps monoclonaux capables de restaurer les fonctions immunitaires de cellules effectrices de l’immunité innée. Le but de la collaboration était de générer des sdAbs (single-domain Antibodies), fragments d’anticorps dérivés de camélidés, capables de bloquer des interactions de type « immune checkpoint ». Ces anticorps à domaine unique sont notamment capables de lier des épitopes inaccessibles aux anticorps conventionnels tels que des cavités. Dans ce manuscrit, les résultats concernant deux de ces projets sont exposés : la modulation de l’axe inhibiteur SIRPα/CD47 et le blocage de l’interaction réalisée entre les récepteurs Siglec-7/-9 et leurs ligands sialylés. Lors de ces travaux, plusieurs sdAbs ciblant les récepteurs d’intérêt ont été sélectionnés grâce à la technologie du phage display. Ces molécules monovalentes ont été caractérisées puis clonées en différents formats multivalents de façon à améliorer leur affinité par effet d’avidité, et ainsi potentialiser leur efficacité de blocage. Enfin, plusieurs tests fonctionnels ont été réalisés pour évaluer l’effet de ces molécules sur les fonctions effectrices de différentes cellules du système immunitaire
Immunotherapy is a therapeutic approach which consists in restoring anti-tumoral functions of the immune system for eliminating cancer cells. For this, several strategies are developed: one of them is to target inhibitory receptors at the surface of effector cells in order to reactivate their functions in the tumor microenvironment.The company Innate pharma develops monoclonal antibodies able to restor immune functions of innate effector cells. The aim of the collaboration was to generate single-domain Antibodies (sdAbs), antibody fragments derived from camelids, which have the capacity of blocking interactions such as immune checkpoints. These sdAbs have several useful characteristics in terms of stability, production and especially in epitope binding. Indeed, because of their small size, they are able to bind on epitopes which are not accessible to conventional antibodies.In this manuscript, the results of two projets are reported: the modulation of the inhibitory axis SIRPα/CD47 and the blocking of the interaction between the receptors Siglec-7/-9 and their sialylated ligands. In these studies, several sdAbs targeting the receptors of interest were isolated by selection using phage display technology. These monovalent molecules were characterized to determine their specificity and estimate their binding and blocking capacities. Best candidates were cloned into several multivalent formats to optimize their affinity by avidity effect and to potent their blocking efficacy. Finally, several functional assays were performed to evaluate the efficacy of these multivalent constructions to restore immune functions of several effector cells
APA, Harvard, Vancouver, ISO, and other styles
2

Burbidge, Owen David. "Developing nanobodies to stabilise the tumour suppressor protein p16INK4a." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288375.

Full text
Abstract:
The tumour suppressor protein p16INK4a (p16) is a cyclin-dependent kinase (CDK) inhibitor that plays a key role in the regulation of the cell cycle by controlling the progression of cells through the G1 to S phase transition. Dysregulation of the protein through deletion, silencing or mutation of the gene encoding p16 is implicated in a range of different cancers including melanoma, cervical and oesophageal to name a few. p16 is composed of four ankyrin repeats and it has a very low thermodynamic and kinetic stability and rapidly unfolds even in the absence of denaturants. This low stability means that the protein is highly vulnerable to point mutations, which can result in functional inactivation through a range of different mechanisms such as deletion of key binding contacts, disruption of secondary or tertiary structure and consequent destabilisation leading to unfolding or aggregation. Heavy-chain antibodies are a unique form of antibody devoid of light chains found in the serum of the Camelid family (camels and llamas). Despite the absence of light chains, heavy-chain antibodies have evolved to complement traditional antibodies and retain the full binding capacity seen in canonical IgG antibodies. The single variable domain, known as a nanobody, is, at 15 kDa, the smallest antigen binding fragment, a tenth the size of a standard IgG antibody. The small size and relative ease of production, coupled with an unusually high stability, makes nanobodies useful tools as biological reagents, crystallography chaperones and therapeutics. The research contained within this PhD looks at the development of nanobodies to target p16. By leveraging the high stability of selected nanobodies, the aim was to obtain binders that could stabilise and reactivate a range of unstable cancer-associated mutants. The initial stages of the project focused on generating and optimising the expression and purification of p16 constructs prior to immunisation of animals to raise nanobodies. A high-throughput approach was taken to generate forty-five different p16 constructs with a range of different solubility and purification tags. These constructs were assessed in a multi-factorial expression screen, which resulted in the identification of a p16 construct with a ten-fold improvement in soluble expression levels compared with previous studies. A range of biophysical techniques, including circular dichroism and chemical denaturation, were performed to characterise this protein fully prior to immunisation. The second part of this project utilised a phage display library of two immune nanobody libraries generated against p16 and a p16 variant stabilised by previously published second-site mutations. This process yielded a large number of diverse nanobodies. Biophysical characterisation of these nanobodies was first performed, and they were found to have a range of chemical and thermal stabilities. Assays were then developed to test the ability of the nanobodies to stabilise p16. Two nanobodies were found to dramatically stabilise wild-type p16, with an increase in stability of approximately 44 % and 60 %, respectively. Furthermore, these nanobodies were also able to stabilise a subset of cancer-associated point mutants. Although there are NMR structures of p16, as well as a crystal structure of p16 bound to CDK6, the resolution of is very low, most likely due to the high backbone flexibility of p16. The last part of the project aimed to obtain a higher-resolution structure of p16 by using the two stabilising nanobodies as crystallisation chaperones. The more stabilising of the two nanobodies resulted in crystals that diffracted to a resolution of less than 2 $\AA$, a significant improvement compared with the previously published structure. In conclusion, a number of nanobodies were generated against tumour-associated p16 and shown to be capable of stabilising p16, allowing structure determination to high resolution and restoration of the stability of cancer-associated mutants to wild-type levels. In the project, a range of different approaches for nanobody production were explored, and these will be important for future applications. Moreover, the crystal structure of the p16-nanobody complex showed that the nanobody binds on the opposite face of p16, to the face involved in binding to CDKs; thus, this nanobody could potentially be exploited as a pharmacological chaperone to stabilise and restore the activity of cancer-associated mutant p16 in the cell.
APA, Harvard, Vancouver, ISO, and other styles
3

Cutolo, Pasquale. "Etude de l'interaction structurelle et fonctionnelle entre la chimiokine CXCL12 et ses récepteurs : CXCR4 et ACKR3/CXCR7." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS550/document.

Full text
Abstract:
L'axe formé par la chimiokine CXCL12 et son récepteur CXCR4 est conservé chez les vertébrés où il joue un rôle important dans l'embryogenèse et la vie adulte, régule de nombreux processus des réponses immunitaires grâce à ses fonctions dans la migration cellulaire, la survie et la prolifération.En outre, cet axe est impliqué dans les processus pathologiques tels que les cancers (croissance et métastase) et immunodéficiences ainsi que des dysfonctionnements (par exemple l'expression dérégulée, polymorphismes ou mutations) et est également détourné par certains agents pathogènes (par exemple le virus de l'immunodéficience humaine, virus du papillome humain).Un grand groupe de travail est consacré à cette paire comme cible thérapeutique, mais seulement un composé (à savoir Plérixafor) a atteint l'approbation pour une utilisation clinique faisant le potentiel de cet axe comme cible de médicament encore inexploré.Bien que cet axe est l'objet d'un grand intérêt, des questions demeurent quant aux déterminants structurels impliqués dans l'interaction CXCL12/CXCR4.Cependant, la structure récemment résolue par diffraction de CXCR4 a donné quelque indice au sujet de ces questions, et au­ delà, la possible stoichiométrie entre CXCL12 et CXCR4.Plusieurs éléments de preuve appuient le concept que les formes CXCR4 homo- et hétéro- oligomères (qui peut contribuer à la diversité des fonctions de récepteur), telles que la structure de diffraction, le gain de fonction d'un récepteur CXCR4 mutant responsable du syndrome WHIM et la modulation allostérique des fonctions de CXCR4 par CXCR7 (ACKR3), le second récepteur de CXCL12. La possibilité de former des oligomères ouvre de nombreuses questions en matière de CXCL12 et ses interactions avec CXCR4 et CXCR7/ACKR3. La stoichiométrie de cette interaction reste une question ouverte, comme le récepteur est capable de former des oligomères avec le même récepteur ou autre récepteurs, en particulier CXCR7/ACKR3. Ce récepteur, connu comme scavenger, n'a pas de structure résolue et son mécanisme d'interaction avec CXCL12 reste inconnu.Afin d'étudier les interactions CXCL12/CXCR4/CXCR7, nous avons appliqué plusieurs techniques de modélisation moléculaire tels que peptid-peptide docking et simulations de dynamique moléculaire.Objets du projet ont étés : la résolution des possibles formes stoichiométriques de l'interaction CXCR4/CXCL12 (modélisation moléculaire, docking et dynamique); la modélisation de la structure du récepteur CXCR7/ACKR3 et son interaction avec CXCL12 (homology modeling), avec caractérisation des domaines et des résidus clef de l'activation des pathways de signalisation en aval du récepteur (mutants CXCR7/ACKR3); l'étude et la caractérisation de nouveaux outils innovants pour la détection de l'oligomerisation de ces récepteurs en conditions endogènes. (Nanobodies, HTRF)Les résultats du premier objectif ont été publiés en janvier 2016 : PMID 26813575.La modélisation de CXCR7/ACKR3 nous a permit de générer plusieurs mutants du récepteur pour tester nos hypothèses sur l’activation.Les nanobodies caractérisés pour CXCR4 seront utilisé dans une deuxième étude pour l’identification des formes oligomériques du récepteur sur tissus et cellules
The axis formed by the chemokine CXCL12 and its receptor CXCR4 is conserved in vertebrates where it plays an important role in embryogenesis and adult life, regulates many processes of immune responses through its functions in cell migration, survival and proliferation.In addition, this axis is involved in pathological processes such as cancers (growth and metastasis) and immune deficiencies and malfunctions (eg deregulated expression, mutations or polymorphisms) and is also hijacked by certain pathogens (eg HIV, human papilloma virus).A large working group is dedicated to this pair as a therapeutic target, but only a compound (ie Plerixafor) achieved approval for clinical use by the potential of this area as a drug target unexplored.Although this axis is the subject of great interest, questions remain about the structural determinants involved in CXCL12 / CXCR4 interaction.However, the recently resolved diffraction structure of CXCR4 gave some clue about these questions, and beyond possible stoichiometry between CXCL12 and CXCR4.Several lines of evidence support the concept that forms CXCR4 homo- and hetero-oligomers (which can contribute to the diversity of the receptor functions), as shown in the diffraction structure, the gain function of a mutant CXCR4 receptor responsible for the syndrome WHIM and allosteric modulation of CXCR4 functions by CXCR7 (ACKR3), the second receptor of the chemokine CXCL12. The ability to form oligomers opens many issues of CXCL12 and its interaction with CXCR4 and CXCR7 / ACKR3.The stoichiometry of this interaction still remains an open question, as the receptor is capable to form oligomers with the same receptor or other receptors, particularly CXCR7 / ACKR3. This receptor, known as scavenger, has not solved structure and the mechanism of interaction with CXCL12 is unknown.To study the interactions CXCL12 / CXCR4 / CXCR7, we applied several molecular modeling techniques such as peptide-peptide docking and molecular dynamics simulations.Objectives of this project were: the resolution of the different stoichiometric forms for the interaction of CXCR4 and CXCL12 (molecular modeling, docking and dynamic); modeling the CXCR7 / ACKR3 receptor structure and its interaction with CXCL12 (homology modeling), with the characterization of domains and residues key in the activation of downstream signaling pathways of the receptor (CXCR7 / ACKR3 mutants); the study and characterization of new innovative tools for the detection of oligomerization of these receptors in endogenous conditions. (Nanobodies, HTRF)The results of the first objective were published in January 2016: PMID 26813575.Modeling of CXCR7 / ACKR3 allowed us to generate several mutants of the receptor to test our hypothesis about the activation pathways.Nanobodies were fully characterized for CXCR4 to be used in a second study to identify oligomeric forms of the receptor in tissues and cells
APA, Harvard, Vancouver, ISO, and other styles
4

Keller, Laura. "Conception de nano-anticorps conformationnels comme nouveaux outils d'étude de l'activité des GTPases de la sous-famille RHOA." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30005/document.

Full text
Abstract:
Les GTPases de la sous famille RHOA participent à la régulation de nombreuses voies de signalisation qui contrôlent la dynamique du cytosquelette cellulaire et une grande diversité de fonctions telles que la prolifération, la division, la migration et la polarité cellulaires. Ce sont de véritables interrupteurs moléculaires qui, en réponse à un stimulus, changent de conformation tridimensionnelle pour activer leurs protéines effectrices cibles. Elles existent donc sous deux formes, une forme inactive liant le GDP et une forme active, liant le GTP. La proportion de forme active est extrêmement régulée au niveau spatial et temporel dans une cellule et représente moins de 10% de sa totalité. Depuis près de 20 ans, le seul outil disponible pour étudier leur activation est constitué par le domaine de liaison d'un effecteur, le RBD. Peu stable, faiblement soluble et peu adaptable, de nouveaux outils sont nécessaires afin de mieux comprendre la fine régulation de ces protéines. Les anticorps à simple domaine, VHH ou nanobodies, sont caractérisés par leur stabilité, solubilité, haut rendement de production et versatilité de fonctionnalisation. A partir d'une nouvelle banque d'anticorps à simple domaine optimisée pour la production d'intracorps, nous avons isolés différents clones capables de reconnaître in vitro et de bloquer in cellulo la forme active de ces protéines. L'un de ces clones permettra le développement d'un nouvel outil de mesure de l'activité de ces protéines in vitro tandis qu'un autre, in cellulo, permettra de mieux comprendre la régulation spatiale et temporelle des protéines endogènes
RHOA small GTPase belongs to a subfamily acting as a molecular switch activating major signaling pathways that regulate cytoskeletal dynamics and a variety of cellular responses such as cell cycle progression, cytokinesis, migration and polarity. RHOA activity resides in a few percent of GTP loaded protein, which is finely tuned by a crosstalk between regulators of the GTPase cycle. Manipulating a single RHO at the expression level often induces imbalance in the activity of other RHO GTPases, suggesting that more specific tools targeting these active pools are needed to decipher RHOA functions in time and space. We decided to use single domain antibodies, also known as VHH or nanobodies, as a new tool for studying RHOA activation. We produced and screened a novel fully synthetic phage display library of humanized nanobodies (NaLi-H1) to develop conformational sensors of the GTP loaded active conformation of RHO subfamily. We obtained several high affinity nanobodies against RHOA's active form which we characterized as RHO active antibodies in vitro and RHO signaling blocking intrabodies in cellulo. These new tools will facilitate and improve our current knowledge of this peculiar protein subfamily and will be a paradigm for the study of other RHO related small GTPases
APA, Harvard, Vancouver, ISO, and other styles
5

Plagmann, Ingo [Verfasser]. "Entwicklung von Strategien zur Dimerisierung von Single-Domain Antikörpern (Nanobodies) sowie zu ihrer Produktion in transgenen Pflanzen (anhand eines Tumor Nekrose Faktor neutralisierenden Nanobodies) / Ingo Plagmann." Kiel : Universitätsbibliothek Kiel, 2013. http://d-nb.info/1044891831/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Patris, Stéphanie. "Développement d'immunoessais associés aux électrodes sérigraphiées: des particules superparamagnétiques aux nanobodies." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209208.

Full text
Abstract:
Cette thèse a pour vocation de contribuer au développement de différents immunocapteurs ampérométriques associés aux électrodes sérigraphiées (SPE). Les immunocapteurs sont des dispositifs simples associant un anticorps ou un antigène qui assurent la sélectivité à un transducteur (ici une SPE) ;ce dernier transforme la liaison anticorps/antigène en un signal mesurable (ici ampérométrique).

Le travail est divisé en deux volets principaux.

Le premier est consacré à la mise en œuvre de différents modèles d’immunocapteurs ampérométriques pour le dosage d’anticorps anti-tetani. La vaccination contre le tétanos est généralisée, toutefois pour maintenir un taux d’anticorps suffisant, il est indispensable d’administrer un rappel tous les 10 ans. Ce schéma vaccinal n’est pas toujours respecté, ce qui a pour conséquence qu’une partie de la population n’est plus protégée. Afin de déterminer le statut immunitaire du patient, il est indispensable de pouvoir déterminer le taux d’anticorps. Les immunocapteurs ampérométriques répondent à cet objectif. Plusieurs stratégies d’immobilisation de l’anatoxine tétanique (antigène) sur une SPE ont été mises en œuvre et comparées. L’une d’elles repose sur l’utilisation de microparticules superparamagnétiques pour la réaction immunologique et d’une SPE rendue magnétique par un support aimanté pour la mesure. D’autres reposent sur l’immobilisation de l’antigène et les réactions immunologiques directement à la surface de la SPE. L’utilisation de plans d’expérience, pour l’optimisation des immunoessais sur SPE est également exploitée dans ce travail. Les immunocapteurs développés ont permis de doser les anticorps anti-tetani dans le sérum de cobaye en dessous des valeurs considérées comme protectrices.

Dans le second volet, un immunocapteur basé sur l’utilisation de nanobodies® (NB) a été mis au point. Nous avons qualifié ce type d’immunocapteur original de nanoimmunocapteur. Le récepteur de facteur de croissance épidermique humain (HER2) a été utilisé comme cible. La protéine HER2 est considérée comme un biomarqueur important car sa surexpression provoque un type agressif de cancer du sein. Les NB sont des fragments à domaine unique dérivés d'anticorps à chaînes lourdes de camélidés. La stratégie de dosage immunologique en sandwich développée a tiré profit de la petite taille des NB pour la détection du marqueur électroactif d’oxydoréduction. La stabilité élevée des NB immobilisés a permis une durée de stockage des SPE modifiées supérieure à 3 semaines. De très courtes durées d'incubation étaient suffisantes pour obtenir une réponse satisfaisante. Le nanoimmunoessai a permis de déterminer le taux d’HER2 dopé dans des lysats cellulaires.


Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
7

Andersson, Klara. "Characterization of nsP-specific nanobodies targeting Chikungunya and Semliki Forest Virus." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414971.

Full text
Abstract:
Viral infections are constantly increasing and impose a large threat to the public health. Alphaviruses are responsible for several animal and human diseases and have a large medical importance with few treatments available today. Alphaviruses are small, spherical single stranded RNA viruses, and are most often transmitted by mosquito vectors. Alphaviruses contains a domain of nonstructural proteins that compose the replication machinery. The domain is crucial for viral replication to occur and is therefore an interesting target for antiviral therapy. With the focus on Chikungunya and Semliki Forest Virus this work investigates the events in the cells on molecular level during infections. To do this a panel of Camelid derived single domain antibodies are developed to target the nonstructural proteins of Chikungunya and Semliki Forest Virus. Binding of the produced nanobodies to the viral proteins was investigated by biochemical methods including immunoprecipitations, western blot, and ELISA. Cell lines that express nsP-specific nanobodies in the cytosol were employed for infection- and plaque assays with Semliki Forest Virus in order to determine the antiviral potential of the new nanobodies. Three of the nanobodies proved to bind two different nonstructural proteins of the viruses, providing opportunities for further investigations and a possible use of these nanobodies to identify viral vulnerabilities that could be exploited for antiviral intervention.
APA, Harvard, Vancouver, ISO, and other styles
8

Guilliams, Tim Thomas. "Nanobodies as tools to gain insights into [alpha]-synuclein misfolding in Parkinson's disease." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Broster, Christine. "Caractérisation et Ciblage de Protéines Essentielles via l'utilisation de nanobodies chez Trypanosoma brucei." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0158.

Full text
Abstract:
Les parasites de la classe des Kinetoplastidae, comprenant notamment les trypanosomes et les leishmanies, sont responsables pour plusieurs maladies d’importance socio-économique et de santé publique. La maladie du sommeil, la maladie de Chagas et la leishmaniose, classées comme maladies tropicales négligées (NTD) par l’Organisation mondiale de la santé (OMS) et la Surra, reportée par l’Organisation pour l’alimentation et l’agriculture, des Nations Unies (FAO). La Trypanosomiase Animale Africain sub-saharienne entraîne la mort de 3 millions bovins par an accompagné d'une perte annuelle de l'économie de 4,5 milliards de dollars américains. La leishmaniose cutanée, une maladie zoonose, présente 1,5 millions de nouveaux cas chaque année.Trypanosoma brucei (T. brucei) est un ancien eucaryote, utilisé comme organisme modèle dans le laboratoire pour l’étude des cils et des flagelles. Le remodelage du cytosquelette des trypanosomes est essentiel pour la morphologie cellulaire, le positionnement et la division des organites. L’étude des protéines essentielles du cytosquelette permet de mieux comprendre les processus cellulaires. Ces protéines pourraient également constituer des cibles potentielles pour des traitements thérapeutiques. Les trypanosomes échappent au système immunitaire de l’hôte en modifiant périodiquement les antigènes de présent à leur surface. En effet ces antigènes de surface sont endocytés, ainsi que les anticorps de l’hôte qui y sont attachés, au niveau d’une structure appelée la poche flagellaire (FP). TbBILBO1 est une protéine structurelle du collier de la poche flagellaire (FPC), essentielle à la biogenèse du FPC et à la survie du parasite. En raison du rôle majeur de la protéine TbBILBO1 dans le parasite, des partenaires de TbBILBO1 ont été recherchés.Dans ce travail, j’ai pu caractériser une nouvelle protéine essentielle du cytoskelette, la protéine FPC6, partenaire de TbBILBO1, qui se situe au niveau du complexe FPC/Complexe du Hook de T. brucei. L’ARN interférence de FPC6 conduit à une mort rapide des formes sanguines des trypanosomes, accompagnée d’un blocage de l’endocytose. Ensuite, j’ai produit un nanobody (Nb48), dirigé contre TbBILBO1, dans le système d’expression bactérien. Je l’ai également exprimé dans les lignées de trypanosomes. Le Nb48 reconnait TbBILBO1 sur les trypanosomes fixés par immunofluorescence et dans les extraits totaux de protéines dénaturées. L’analyse par résonance plasmonique de surface (SPR) a confirmé une haute affinité du Nb48 pour TbBILBO1. L’expression de Nb48 dans le parasite T. brucei en tant qu’intrabody demontrant que ce nanobody pouvait être exprimé de manière fonctionnelle, capable de reconnaitre spécifiquement sa cible protéique, TbBILBO1, intra-cellulaire et de bloquer sa fonction conduit à un effet trypanocide rapide. Ces études ouvrant ainsi la voie pour de nouvelles utilisations potentielles thérapeutiques dans le traitement des trypanosomiases
Kinetoplastid parasites, including trypanosomes and leishmania, are responsible for several diseases of socio-economic and public health importance worldwide. These include the Neglected Tropical Diseases: Sleeping Sickness, Chagas disease and Leishmaniasis, as classified by the World Health Organisation (WHO) and the global wasting disease of animals, Surra, as reported by the Food and Agricultural Organisation of the United Nations (FAO). Animal African Trypanosomiais (AAT) causes the death of 3 million cattle per year in sub-Saharan Africa, with an annual loss of 4.5 billion US dollars to the African economy. Cutaneaous leishmaniasis is a zoonotic disease, with 1.5 million new cases reported globally each year.Trypanosoma brucei is an ancient, early diverging eukaryote, used as a model organism in the laboratory for studying eukaryotic cilia and flagella. Remodelling of the trypanosome cytoskeleton is essential for cell morphology, organelle positioning and division. Study of essential proteins of the cytoskeleton provides insight into intracellular processes and could provide potential targets for therapeutic interventions. Trypanosomes evade the host immune system by periodically changing their external surface coat, which is endocytosed, along with any attached host antibodies, via a structure called the flagellar pocket. TbBILBO1 is a structural protein of the Flagellar Pocket Collar (FPC) that is essential for FPC biogenesis and parasite survival. Due to the importance of TbBILBO1 for the parasite, protein partners were investigated.In my thesis, I describe, firstly, the characterisation of a novel and essential cytoskeletal protein, FPC6, of the FPC/Hook complex of T. brucei; FPC6 is a partner of TbBILBO1. RNAi Knock-down of FPC6 protein leads to rapid cell death in the blood-stream form of the parasite accompanied with a block in endocytosis. Secondly, I describe the purification and intracellular expression of a nanobody (Nb48), raised against TbBILBO1. The purified Nb is able to identify TbBILBO1 in fixed trypanosomes and denatured protein. Surface Plasmon Resonance analysis confirmed a high affinity of Nb48 to TbBILBO1. Expression of Nb48 as an intrabody in T. brucei, reveals that it binds precisely to its target, TbBILBO1 and leads to rapid cell death. Further exploration of the potential uses of this trypanocidal nanobody is warranted
APA, Harvard, Vancouver, ISO, and other styles
10

Sola, Colom Mireia [Verfasser]. "Nucleoporin-binding nanobodies that either track or trap uclear pore complex assembly / Mireia Sola Colom." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2021. http://nbn-resolving.de/urn:nbn:de:gbv:7-21.11130/00-1735-0000-0008-57CA-3-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Nanobodies"

1

Bährle-Rapp, Marina. "Nanobodies." In Springer Lexikon Kosmetik und Körperpflege, 372. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_6857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bährle-Rapp, Marina. "Nanoparts, Nanobodies, Nanospheren, Nanopartikel." In Springer Lexikon Kosmetik und Körperpflege, 372. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_6859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghassabeh, Gholamreza Hassanzadeh, Dirk Saerens, and Serge Muyldermans. "Isolation of Antigen-Specific Nanobodies." In Antibody Engineering, 251–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01147-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Daseuli, and Won Do Heo. "Optogenetic Activation of Intracellular Nanobodies." In Methods in Molecular Biology, 595–606. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2075-5_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Crauwels, Maxine, Sam Massa, Charlotte Martin, Cecilia Betti, Steven Ballet, Nick Devoogdt, Catarina Xavier, and Serge Muyldermans. "Site-Specific Radioactive Labeling of Nanobodies." In Antibody Engineering, 505–40. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8648-4_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hassanzadeh-Ghassabeh, Gholamreza, Dirk Saerens, and Serge Muyldermans. "Generation of Anti-infectome/Anti-proteome Nanobodies." In Methods in Molecular Biology, 239–59. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-319-6_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Devoogdt, Nick, Catarina Xavier, Sophie Hernot, Ilse Vaneycken, Matthias D’Huyvetter, Jens De Vos, Sam Massa, Patrick De Baetselier, Vicky Caveliers, and Tony Lahoutte. "Molecular Imaging Using Nanobodies: A Case Study." In Methods in Molecular Biology, 559–67. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-968-6_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yu, Daseuli, and Heo Won Do. "Correction to: Optogenetic Activation of Intracellular Nanobodies." In Methods in Molecular Biology, C1. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2075-5_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vincke, Cécile, and Serge Muyldermans. "Introduction to Heavy Chain Antibodies and Derived Nanobodies." In Single Domain Antibodies, 15–26. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-968-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hansen, Simon Boje, and Kasper Røjkjær Andersen. "Introducing Cysteines into Nanobodies for Site-Specific Labeling." In Methods in Molecular Biology, 327–43. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2075-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanobodies"

1

"Nanobodies design for treatment of age-related diseases." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harmon, Brooke. "GENERATION OF HIGHLY EFFECTIVE SARS-COV-2 NEUTRALIZING HUMANIZED NANOBODIES." In Proposed for presentation at the NVBL Molecular Design Symposium held February 1, 2021. US DOE, 2021. http://dx.doi.org/10.2172/1842252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stefan, Maxwell, Yooli Light, Jennifer Schwedler, Dina Weilhammer, and Brooke Harmon. "Development of Potent and Effective SARS-CoV-2 Neutralizing Nanobodies." In Proposed for presentation at the PEGS: The Essential Protein Engineering & Cell Therapy Summit held May 11, 2021. US DOE, 2021. http://dx.doi.org/10.2172/1861025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Declercq, Jeroen, Jingjing Zhu, Iris Lindberg, Gholamreza H. Ghassabeh, Sandra Meulemans, Alphons J. M. Vermorken, Wim J. M. Van de Ven, Serge Muyldermans, and John W. M. Creemers. "Abstract 4627: Generation and characterization of non-competitive furin-inhibiting nanobodies." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

PARDON, ELS, and JAN STEYAERT. "NANOBODIES FOR THE STRUCTURAL AND FUNCTIONAL INVESTIGATION OF GPCR TRANSMEMBRANE SIGNALING." In 23rd International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814603836_0028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gurbatri, Candice, Ioana Lia, Rosa Vincent, Courtney Coker, Samuel Castro, Piper Treuting, Taylor Hinchliffe, Nicholas Arpaia, and Tal Danino. "Abstract 6248: Engineered probiotics for local delivery of checkpoint blockade nanobodies." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-6248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Komissarov, A., M. Dacus, L. Naydanova, M. Sillen, P. J. Declerck, S. Idell, and G. Florova. "Nanobodies - A Novel Approach Designed to Target Plasminogen Activator Inhibitor 1." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a2089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Van holsbeeck, Kevin, Baptiste Fischer Fischer, Simon Gonzalez, Charlène Gadais, Wim Versées, José C. Martins, Charlotte Martin, Alexandre Wohlkönig, Jan Steyaert, and Steven Ballet. "Downsizing Nanobodies: Towards CDR Loop Mimetics Modulating Intracellular Protein-Protein Interactions." In 36th European Peptide Symposium. The European Peptide Society, 2022. http://dx.doi.org/10.17952/36eps/36eps.2022.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

WYNS, LODE. "NANOBODIES: A UNIVERSE OF VARIABLE DOMAINS AND A TOOLBOX FOR MANY TRADES." In 23rd International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814603836_0038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brussel, Aram SA van, Arthur Adams, Sabrina Oliveira, Mohamed E. Khatabbi, Jeroen F. Vermeulen, Elsken Van der Wall, Willem PThM Mali, Patrick W. Derksen, Paul J. Van Diest, and Paul MP Van Bergen en Henegouwen. "Abstract 4935: Hypoxia targeting fluorescent nanobodies for optical molecular imaging of preinvasive breast cancer." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4935.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nanobodies"

1

Paul, Satashree. Importance of Mini-Antibodies in COVID-19. Spring Library, February 2021. http://dx.doi.org/10.47496/sl.blog.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography