Academic literature on the topic 'Nanobodies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanobodies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanobodies"
Gibbs, W. Wayt. "Nanobodies." Scientific American 293, no. 2 (August 2005): 78–83. http://dx.doi.org/10.1038/scientificamerican0805-78.
Full textWeiss and Verrips. "Nanobodies that Neutralize HIV." Vaccines 7, no. 3 (July 31, 2019): 77. http://dx.doi.org/10.3390/vaccines7030077.
Full textShatalova, A. V., A. S. Yakubova, V. V. Palimpsestov, and I. B. Esmagambetov. "NANOBODIES: STRUCTURE, MANUFACTURING, APPLICATION (REVIEW)." Drug development & registration 8, no. 1 (February 14, 2019): 14–22. http://dx.doi.org/10.33380/2305-2066-2019-8-1-14-22.
Full textWoods, James. "Selection of Functional Intracellular Nanobodies." SLAS DISCOVERY: Advancing the Science of Drug Discovery 24, no. 7 (June 7, 2019): 703–13. http://dx.doi.org/10.1177/2472555219853235.
Full textLiang, Liu, Zixi Hu, Yingying Huang, Siliang Duan, Jian He, Yong Huang, Yongxiang Zhao, and Xiaoling Lu. "Advances in Nanobodies." Journal of Nanoscience and Nanotechnology 16, no. 12 (December 1, 2016): 12099–111. http://dx.doi.org/10.1166/jnn.2016.13767.
Full textStrack, Rita. "Nanobodies made versatile." Nature Methods 20, no. 1 (January 2023): 37. http://dx.doi.org/10.1038/s41592-022-01757-z.
Full textSilva-Pilipich, Noelia, Cristian Smerdou, and Lucía Vanrell. "A Small Virus to Deliver Small Antibodies: New Targeted Therapies Based on AAV Delivery of Nanobodies." Microorganisms 9, no. 9 (September 15, 2021): 1956. http://dx.doi.org/10.3390/microorganisms9091956.
Full textAdel M, Zakri, AL-Doss Abdullah A, Sack Markus, Ali Ahmed A, Samara Emad M, Ahmed Basem S, Amer Mahmoud A, Abdalla Omar A, and Al-Saleh Mohammed A. "Cloning and characterisation of nanobodies against the coat protein of Zucchini yellow mosaic virus." Plant Protection Science 54, No. 4 (August 25, 2018): 215–21. http://dx.doi.org/10.17221/158/2017-pps.
Full textDeszyński, Piotr, Jakub Młokosiewicz, Adam Volanakis, Igor Jaszczyszyn, Natalie Castellana, Stefano Bonissone, Rajkumar Ganesan, and Konrad Krawczyk. "INDI—integrated nanobody database for immunoinformatics." Nucleic Acids Research 50, no. D1 (November 8, 2021): D1273—D1281. http://dx.doi.org/10.1093/nar/gkab1021.
Full textZhang, Caixia, Weiqi Zhang, Xiaoqian Tang, Qi Zhang, Wen Zhang, and Peiwu Li. "Change of Amino Acid Residues in Idiotypic Nanobodies Enhanced the Sensitivity of Competitive Enzyme Immunoassay for Mycotoxin Ochratoxin A in Cereals." Toxins 12, no. 4 (April 23, 2020): 273. http://dx.doi.org/10.3390/toxins12040273.
Full textDissertations / Theses on the topic "Nanobodies"
Colazet, Magali. "Génération de nanobodies pour des applications en immunothérapie." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0013.
Full textImmunotherapy is a therapeutic approach which consists in restoring anti-tumoral functions of the immune system for eliminating cancer cells. For this, several strategies are developed: one of them is to target inhibitory receptors at the surface of effector cells in order to reactivate their functions in the tumor microenvironment.The company Innate pharma develops monoclonal antibodies able to restor immune functions of innate effector cells. The aim of the collaboration was to generate single-domain Antibodies (sdAbs), antibody fragments derived from camelids, which have the capacity of blocking interactions such as immune checkpoints. These sdAbs have several useful characteristics in terms of stability, production and especially in epitope binding. Indeed, because of their small size, they are able to bind on epitopes which are not accessible to conventional antibodies.In this manuscript, the results of two projets are reported: the modulation of the inhibitory axis SIRPα/CD47 and the blocking of the interaction between the receptors Siglec-7/-9 and their sialylated ligands. In these studies, several sdAbs targeting the receptors of interest were isolated by selection using phage display technology. These monovalent molecules were characterized to determine their specificity and estimate their binding and blocking capacities. Best candidates were cloned into several multivalent formats to optimize their affinity by avidity effect and to potent their blocking efficacy. Finally, several functional assays were performed to evaluate the efficacy of these multivalent constructions to restore immune functions of several effector cells
Burbidge, Owen David. "Developing nanobodies to stabilise the tumour suppressor protein p16INK4a." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288375.
Full textCutolo, Pasquale. "Etude de l'interaction structurelle et fonctionnelle entre la chimiokine CXCL12 et ses récepteurs : CXCR4 et ACKR3/CXCR7." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS550/document.
Full textThe axis formed by the chemokine CXCL12 and its receptor CXCR4 is conserved in vertebrates where it plays an important role in embryogenesis and adult life, regulates many processes of immune responses through its functions in cell migration, survival and proliferation.In addition, this axis is involved in pathological processes such as cancers (growth and metastasis) and immune deficiencies and malfunctions (eg deregulated expression, mutations or polymorphisms) and is also hijacked by certain pathogens (eg HIV, human papilloma virus).A large working group is dedicated to this pair as a therapeutic target, but only a compound (ie Plerixafor) achieved approval for clinical use by the potential of this area as a drug target unexplored.Although this axis is the subject of great interest, questions remain about the structural determinants involved in CXCL12 / CXCR4 interaction.However, the recently resolved diffraction structure of CXCR4 gave some clue about these questions, and beyond possible stoichiometry between CXCL12 and CXCR4.Several lines of evidence support the concept that forms CXCR4 homo- and hetero-oligomers (which can contribute to the diversity of the receptor functions), as shown in the diffraction structure, the gain function of a mutant CXCR4 receptor responsible for the syndrome WHIM and allosteric modulation of CXCR4 functions by CXCR7 (ACKR3), the second receptor of the chemokine CXCL12. The ability to form oligomers opens many issues of CXCL12 and its interaction with CXCR4 and CXCR7 / ACKR3.The stoichiometry of this interaction still remains an open question, as the receptor is capable to form oligomers with the same receptor or other receptors, particularly CXCR7 / ACKR3. This receptor, known as scavenger, has not solved structure and the mechanism of interaction with CXCL12 is unknown.To study the interactions CXCL12 / CXCR4 / CXCR7, we applied several molecular modeling techniques such as peptide-peptide docking and molecular dynamics simulations.Objectives of this project were: the resolution of the different stoichiometric forms for the interaction of CXCR4 and CXCL12 (molecular modeling, docking and dynamic); modeling the CXCR7 / ACKR3 receptor structure and its interaction with CXCL12 (homology modeling), with the characterization of domains and residues key in the activation of downstream signaling pathways of the receptor (CXCR7 / ACKR3 mutants); the study and characterization of new innovative tools for the detection of oligomerization of these receptors in endogenous conditions. (Nanobodies, HTRF)The results of the first objective were published in January 2016: PMID 26813575.Modeling of CXCR7 / ACKR3 allowed us to generate several mutants of the receptor to test our hypothesis about the activation pathways.Nanobodies were fully characterized for CXCR4 to be used in a second study to identify oligomeric forms of the receptor in tissues and cells
Keller, Laura. "Conception de nano-anticorps conformationnels comme nouveaux outils d'étude de l'activité des GTPases de la sous-famille RHOA." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30005/document.
Full textRHOA small GTPase belongs to a subfamily acting as a molecular switch activating major signaling pathways that regulate cytoskeletal dynamics and a variety of cellular responses such as cell cycle progression, cytokinesis, migration and polarity. RHOA activity resides in a few percent of GTP loaded protein, which is finely tuned by a crosstalk between regulators of the GTPase cycle. Manipulating a single RHO at the expression level often induces imbalance in the activity of other RHO GTPases, suggesting that more specific tools targeting these active pools are needed to decipher RHOA functions in time and space. We decided to use single domain antibodies, also known as VHH or nanobodies, as a new tool for studying RHOA activation. We produced and screened a novel fully synthetic phage display library of humanized nanobodies (NaLi-H1) to develop conformational sensors of the GTP loaded active conformation of RHO subfamily. We obtained several high affinity nanobodies against RHOA's active form which we characterized as RHO active antibodies in vitro and RHO signaling blocking intrabodies in cellulo. These new tools will facilitate and improve our current knowledge of this peculiar protein subfamily and will be a paradigm for the study of other RHO related small GTPases
Plagmann, Ingo [Verfasser]. "Entwicklung von Strategien zur Dimerisierung von Single-Domain Antikörpern (Nanobodies) sowie zu ihrer Produktion in transgenen Pflanzen (anhand eines Tumor Nekrose Faktor neutralisierenden Nanobodies) / Ingo Plagmann." Kiel : Universitätsbibliothek Kiel, 2013. http://d-nb.info/1044891831/34.
Full textPatris, Stéphanie. "Développement d'immunoessais associés aux électrodes sérigraphiées: des particules superparamagnétiques aux nanobodies." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209208.
Full textLe travail est divisé en deux volets principaux.
Le premier est consacré à la mise en œuvre de différents modèles d’immunocapteurs ampérométriques pour le dosage d’anticorps anti-tetani. La vaccination contre le tétanos est généralisée, toutefois pour maintenir un taux d’anticorps suffisant, il est indispensable d’administrer un rappel tous les 10 ans. Ce schéma vaccinal n’est pas toujours respecté, ce qui a pour conséquence qu’une partie de la population n’est plus protégée. Afin de déterminer le statut immunitaire du patient, il est indispensable de pouvoir déterminer le taux d’anticorps. Les immunocapteurs ampérométriques répondent à cet objectif. Plusieurs stratégies d’immobilisation de l’anatoxine tétanique (antigène) sur une SPE ont été mises en œuvre et comparées. L’une d’elles repose sur l’utilisation de microparticules superparamagnétiques pour la réaction immunologique et d’une SPE rendue magnétique par un support aimanté pour la mesure. D’autres reposent sur l’immobilisation de l’antigène et les réactions immunologiques directement à la surface de la SPE. L’utilisation de plans d’expérience, pour l’optimisation des immunoessais sur SPE est également exploitée dans ce travail. Les immunocapteurs développés ont permis de doser les anticorps anti-tetani dans le sérum de cobaye en dessous des valeurs considérées comme protectrices.
Dans le second volet, un immunocapteur basé sur l’utilisation de nanobodies® (NB) a été mis au point. Nous avons qualifié ce type d’immunocapteur original de nanoimmunocapteur. Le récepteur de facteur de croissance épidermique humain (HER2) a été utilisé comme cible. La protéine HER2 est considérée comme un biomarqueur important car sa surexpression provoque un type agressif de cancer du sein. Les NB sont des fragments à domaine unique dérivés d'anticorps à chaînes lourdes de camélidés. La stratégie de dosage immunologique en sandwich développée a tiré profit de la petite taille des NB pour la détection du marqueur électroactif d’oxydoréduction. La stabilité élevée des NB immobilisés a permis une durée de stockage des SPE modifiées supérieure à 3 semaines. De très courtes durées d'incubation étaient suffisantes pour obtenir une réponse satisfaisante. Le nanoimmunoessai a permis de déterminer le taux d’HER2 dopé dans des lysats cellulaires.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Andersson, Klara. "Characterization of nsP-specific nanobodies targeting Chikungunya and Semliki Forest Virus." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414971.
Full textGuilliams, Tim Thomas. "Nanobodies as tools to gain insights into [alpha]-synuclein misfolding in Parkinson's disease." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608094.
Full textBroster, Christine. "Caractérisation et Ciblage de Protéines Essentielles via l'utilisation de nanobodies chez Trypanosoma brucei." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0158.
Full textKinetoplastid parasites, including trypanosomes and leishmania, are responsible for several diseases of socio-economic and public health importance worldwide. These include the Neglected Tropical Diseases: Sleeping Sickness, Chagas disease and Leishmaniasis, as classified by the World Health Organisation (WHO) and the global wasting disease of animals, Surra, as reported by the Food and Agricultural Organisation of the United Nations (FAO). Animal African Trypanosomiais (AAT) causes the death of 3 million cattle per year in sub-Saharan Africa, with an annual loss of 4.5 billion US dollars to the African economy. Cutaneaous leishmaniasis is a zoonotic disease, with 1.5 million new cases reported globally each year.Trypanosoma brucei is an ancient, early diverging eukaryote, used as a model organism in the laboratory for studying eukaryotic cilia and flagella. Remodelling of the trypanosome cytoskeleton is essential for cell morphology, organelle positioning and division. Study of essential proteins of the cytoskeleton provides insight into intracellular processes and could provide potential targets for therapeutic interventions. Trypanosomes evade the host immune system by periodically changing their external surface coat, which is endocytosed, along with any attached host antibodies, via a structure called the flagellar pocket. TbBILBO1 is a structural protein of the Flagellar Pocket Collar (FPC) that is essential for FPC biogenesis and parasite survival. Due to the importance of TbBILBO1 for the parasite, protein partners were investigated.In my thesis, I describe, firstly, the characterisation of a novel and essential cytoskeletal protein, FPC6, of the FPC/Hook complex of T. brucei; FPC6 is a partner of TbBILBO1. RNAi Knock-down of FPC6 protein leads to rapid cell death in the blood-stream form of the parasite accompanied with a block in endocytosis. Secondly, I describe the purification and intracellular expression of a nanobody (Nb48), raised against TbBILBO1. The purified Nb is able to identify TbBILBO1 in fixed trypanosomes and denatured protein. Surface Plasmon Resonance analysis confirmed a high affinity of Nb48 to TbBILBO1. Expression of Nb48 as an intrabody in T. brucei, reveals that it binds precisely to its target, TbBILBO1 and leads to rapid cell death. Further exploration of the potential uses of this trypanocidal nanobody is warranted
Sola, Colom Mireia [Verfasser]. "Nucleoporin-binding nanobodies that either track or trap uclear pore complex assembly / Mireia Sola Colom." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2021. http://nbn-resolving.de/urn:nbn:de:gbv:7-21.11130/00-1735-0000-0008-57CA-3-3.
Full textBook chapters on the topic "Nanobodies"
Bährle-Rapp, Marina. "Nanobodies." In Springer Lexikon Kosmetik und Körperpflege, 372. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_6857.
Full textBährle-Rapp, Marina. "Nanoparts, Nanobodies, Nanospheren, Nanopartikel." In Springer Lexikon Kosmetik und Körperpflege, 372. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_6859.
Full textGhassabeh, Gholamreza Hassanzadeh, Dirk Saerens, and Serge Muyldermans. "Isolation of Antigen-Specific Nanobodies." In Antibody Engineering, 251–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01147-4_20.
Full textYu, Daseuli, and Won Do Heo. "Optogenetic Activation of Intracellular Nanobodies." In Methods in Molecular Biology, 595–606. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2075-5_31.
Full textCrauwels, Maxine, Sam Massa, Charlotte Martin, Cecilia Betti, Steven Ballet, Nick Devoogdt, Catarina Xavier, and Serge Muyldermans. "Site-Specific Radioactive Labeling of Nanobodies." In Antibody Engineering, 505–40. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8648-4_26.
Full textHassanzadeh-Ghassabeh, Gholamreza, Dirk Saerens, and Serge Muyldermans. "Generation of Anti-infectome/Anti-proteome Nanobodies." In Methods in Molecular Biology, 239–59. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-319-6_19.
Full textDevoogdt, Nick, Catarina Xavier, Sophie Hernot, Ilse Vaneycken, Matthias D’Huyvetter, Jens De Vos, Sam Massa, Patrick De Baetselier, Vicky Caveliers, and Tony Lahoutte. "Molecular Imaging Using Nanobodies: A Case Study." In Methods in Molecular Biology, 559–67. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-968-6_35.
Full textYu, Daseuli, and Heo Won Do. "Correction to: Optogenetic Activation of Intracellular Nanobodies." In Methods in Molecular Biology, C1. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2075-5_32.
Full textVincke, Cécile, and Serge Muyldermans. "Introduction to Heavy Chain Antibodies and Derived Nanobodies." In Single Domain Antibodies, 15–26. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-968-6_2.
Full textHansen, Simon Boje, and Kasper Røjkjær Andersen. "Introducing Cysteines into Nanobodies for Site-Specific Labeling." In Methods in Molecular Biology, 327–43. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2075-5_16.
Full textConference papers on the topic "Nanobodies"
"Nanobodies design for treatment of age-related diseases." In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-394.
Full textHarmon, Brooke. "GENERATION OF HIGHLY EFFECTIVE SARS-COV-2 NEUTRALIZING HUMANIZED NANOBODIES." In Proposed for presentation at the NVBL Molecular Design Symposium held February 1, 2021. US DOE, 2021. http://dx.doi.org/10.2172/1842252.
Full textStefan, Maxwell, Yooli Light, Jennifer Schwedler, Dina Weilhammer, and Brooke Harmon. "Development of Potent and Effective SARS-CoV-2 Neutralizing Nanobodies." In Proposed for presentation at the PEGS: The Essential Protein Engineering & Cell Therapy Summit held May 11, 2021. US DOE, 2021. http://dx.doi.org/10.2172/1861025.
Full textDeclercq, Jeroen, Jingjing Zhu, Iris Lindberg, Gholamreza H. Ghassabeh, Sandra Meulemans, Alphons J. M. Vermorken, Wim J. M. Van de Ven, Serge Muyldermans, and John W. M. Creemers. "Abstract 4627: Generation and characterization of non-competitive furin-inhibiting nanobodies." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4627.
Full textPARDON, ELS, and JAN STEYAERT. "NANOBODIES FOR THE STRUCTURAL AND FUNCTIONAL INVESTIGATION OF GPCR TRANSMEMBRANE SIGNALING." In 23rd International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814603836_0028.
Full textGurbatri, Candice, Ioana Lia, Rosa Vincent, Courtney Coker, Samuel Castro, Piper Treuting, Taylor Hinchliffe, Nicholas Arpaia, and Tal Danino. "Abstract 6248: Engineered probiotics for local delivery of checkpoint blockade nanobodies." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-6248.
Full textKomissarov, A., M. Dacus, L. Naydanova, M. Sillen, P. J. Declerck, S. Idell, and G. Florova. "Nanobodies - A Novel Approach Designed to Target Plasminogen Activator Inhibitor 1." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a2089.
Full textVan holsbeeck, Kevin, Baptiste Fischer Fischer, Simon Gonzalez, Charlène Gadais, Wim Versées, José C. Martins, Charlotte Martin, Alexandre Wohlkönig, Jan Steyaert, and Steven Ballet. "Downsizing Nanobodies: Towards CDR Loop Mimetics Modulating Intracellular Protein-Protein Interactions." In 36th European Peptide Symposium. The European Peptide Society, 2022. http://dx.doi.org/10.17952/36eps/36eps.2022.141.
Full textWYNS, LODE. "NANOBODIES: A UNIVERSE OF VARIABLE DOMAINS AND A TOOLBOX FOR MANY TRADES." In 23rd International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814603836_0038.
Full textBrussel, Aram SA van, Arthur Adams, Sabrina Oliveira, Mohamed E. Khatabbi, Jeroen F. Vermeulen, Elsken Van der Wall, Willem PThM Mali, Patrick W. Derksen, Paul J. Van Diest, and Paul MP Van Bergen en Henegouwen. "Abstract 4935: Hypoxia targeting fluorescent nanobodies for optical molecular imaging of preinvasive breast cancer." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4935.
Full textReports on the topic "Nanobodies"
Paul, Satashree. Importance of Mini-Antibodies in COVID-19. Spring Library, February 2021. http://dx.doi.org/10.47496/sl.blog.21.
Full text