Journal articles on the topic 'Nanobodies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanobodies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gibbs, W. Wayt. "Nanobodies." Scientific American 293, no. 2 (August 2005): 78–83. http://dx.doi.org/10.1038/scientificamerican0805-78.
Full textWeiss and Verrips. "Nanobodies that Neutralize HIV." Vaccines 7, no. 3 (July 31, 2019): 77. http://dx.doi.org/10.3390/vaccines7030077.
Full textShatalova, A. V., A. S. Yakubova, V. V. Palimpsestov, and I. B. Esmagambetov. "NANOBODIES: STRUCTURE, MANUFACTURING, APPLICATION (REVIEW)." Drug development & registration 8, no. 1 (February 14, 2019): 14–22. http://dx.doi.org/10.33380/2305-2066-2019-8-1-14-22.
Full textWoods, James. "Selection of Functional Intracellular Nanobodies." SLAS DISCOVERY: Advancing the Science of Drug Discovery 24, no. 7 (June 7, 2019): 703–13. http://dx.doi.org/10.1177/2472555219853235.
Full textLiang, Liu, Zixi Hu, Yingying Huang, Siliang Duan, Jian He, Yong Huang, Yongxiang Zhao, and Xiaoling Lu. "Advances in Nanobodies." Journal of Nanoscience and Nanotechnology 16, no. 12 (December 1, 2016): 12099–111. http://dx.doi.org/10.1166/jnn.2016.13767.
Full textStrack, Rita. "Nanobodies made versatile." Nature Methods 20, no. 1 (January 2023): 37. http://dx.doi.org/10.1038/s41592-022-01757-z.
Full textSilva-Pilipich, Noelia, Cristian Smerdou, and Lucía Vanrell. "A Small Virus to Deliver Small Antibodies: New Targeted Therapies Based on AAV Delivery of Nanobodies." Microorganisms 9, no. 9 (September 15, 2021): 1956. http://dx.doi.org/10.3390/microorganisms9091956.
Full textAdel M, Zakri, AL-Doss Abdullah A, Sack Markus, Ali Ahmed A, Samara Emad M, Ahmed Basem S, Amer Mahmoud A, Abdalla Omar A, and Al-Saleh Mohammed A. "Cloning and characterisation of nanobodies against the coat protein of Zucchini yellow mosaic virus." Plant Protection Science 54, No. 4 (August 25, 2018): 215–21. http://dx.doi.org/10.17221/158/2017-pps.
Full textDeszyński, Piotr, Jakub Młokosiewicz, Adam Volanakis, Igor Jaszczyszyn, Natalie Castellana, Stefano Bonissone, Rajkumar Ganesan, and Konrad Krawczyk. "INDI—integrated nanobody database for immunoinformatics." Nucleic Acids Research 50, no. D1 (November 8, 2021): D1273—D1281. http://dx.doi.org/10.1093/nar/gkab1021.
Full textZhang, Caixia, Weiqi Zhang, Xiaoqian Tang, Qi Zhang, Wen Zhang, and Peiwu Li. "Change of Amino Acid Residues in Idiotypic Nanobodies Enhanced the Sensitivity of Competitive Enzyme Immunoassay for Mycotoxin Ochratoxin A in Cereals." Toxins 12, no. 4 (April 23, 2020): 273. http://dx.doi.org/10.3390/toxins12040273.
Full textKumar, Meenakshi Sundaram, Megan E. Fowler-Magaw, Daniel Kulick, Sivakumar Boopathy, Del Hayden Gadd, Melissa Rotunno, Catherine Douthwright, et al. "Anti-SOD1 Nanobodies That Stabilize Misfolded SOD1 Proteins Also Promote Neurite Outgrowth in Mutant SOD1 Human Neurons." International Journal of Molecular Sciences 23, no. 24 (December 16, 2022): 16013. http://dx.doi.org/10.3390/ijms232416013.
Full textMukhametova, Lilia I., Sergei A. Eremin, Dmitrii A. Arutyunyan, Oksana S. Goryainova, Tatiana I. Ivanova, and Sergei V. Tillib. "Fluorescence Polarization Immunoassay of Human Lactoferrin in Milk Using Small Single-Domain Antibodies." Biochemistry (Moscow) 87, no. 12-13 (December 2022): 1679–88. http://dx.doi.org/10.1134/s0006297922120227.
Full textTillib, Sergei V., Oksana S. Goryainova, Anastasiya M. Sachko, and Tatiana I. Ivanova. "High-Affinity Single-Domain Antibodies for Analyzing Human Apo- and Holo-Transferrin." Acta Naturae 14, no. 2 (July 21, 2022): 98–102. http://dx.doi.org/10.32607/actanaturae.11663.
Full textMashayekhi, Vida, Katerina T. Xenaki, Paul M. P. van Bergen en Henegouwen, and Sabrina Oliveira. "Dual Targeting of Endothelial and Cancer Cells Potentiates In Vitro Nanobody-Targeted Photodynamic Therapy." Cancers 12, no. 10 (September 23, 2020): 2732. http://dx.doi.org/10.3390/cancers12102732.
Full textLiu, Bingying, and Daiwen Yang. "Easily Established and Multifunctional Synthetic Nanobody Libraries as Research Tools." International Journal of Molecular Sciences 23, no. 3 (January 27, 2022): 1482. http://dx.doi.org/10.3390/ijms23031482.
Full textZhu, Jingjing, Jeroen Declercq, Bart Roucourt, Gholamreza H. Ghassabeh, Sandra Meulemans, Jörg Kinne, Guido David, et al. "Generation and characterization of non-competitive furin-inhibiting nanobodies." Biochemical Journal 448, no. 1 (October 18, 2012): 73–82. http://dx.doi.org/10.1042/bj20120537.
Full textKang, Wei, Chuanfeng Ding, Danni Zheng, Xiao Ma, Lun Yi, Xinyi Tong, Chuang Wu, Chuang Xue, Yongsheng Yu, and Qian Zhou. "Nanobody Conjugates for Targeted Cancer Therapy and Imaging." Technology in Cancer Research & Treatment 20 (January 1, 2021): 153303382110101. http://dx.doi.org/10.1177/15330338211010117.
Full textMatamoros, Alcivar, Esther, Ivanova,, and Maily, Selena, González, Avilés. "Study review of camelid and shark antibodies for biomedical and biotechnological applications." Bionatura 6, no. 4 (November 15, 2021): 2331–40. http://dx.doi.org/10.21931/rb/2021.06.04.31.
Full textKlein, A., S. Hank, A. Raulf, E. F. Joest, F. Tissen, M. Heilemann, R. Wieneke, and R. Tampé. "Live-cell labeling of endogenous proteins with nanometer precision by transduced nanobodies." Chemical Science 9, no. 40 (2018): 7835–42. http://dx.doi.org/10.1039/c8sc02910e.
Full textFarrants, Helen, Miroslaw Tarnawski, Thorsten G. Müller, Shotaro Otsuka, Julien Hiblot, Birgit Koch, Moritz Kueblbeck, Hans-Georg Kräusslich, Jan Ellenberg, and Kai Johnsson. "Chemogenetic Control of Nanobodies." Nature Methods 17, no. 3 (February 17, 2020): 279–82. http://dx.doi.org/10.1038/s41592-020-0746-7.
Full textIngram, Jessica R., Florian I. Schmidt, and Hidde L. Ploegh. "Exploiting Nanobodies’ Singular Traits." Annual Review of Immunology 36, no. 1 (April 26, 2018): 695–715. http://dx.doi.org/10.1146/annurev-immunol-042617-053327.
Full textNicholls, Henry. "Nanobodies: The ultrasmall antibodies." New Scientist 196, no. 2624 (October 2007): 50–53. http://dx.doi.org/10.1016/s0262-4079(07)62536-6.
Full textVaneycken, Ilse, Matthias D’huyvetter, Sophie Hernot, Jens De Vos, Catarina Xavier, Nick Devoogdt, Vicky Caveliers, and Tony Lahoutte. "Immuno-imaging using nanobodies." Current Opinion in Biotechnology 22, no. 6 (December 2011): 877–81. http://dx.doi.org/10.1016/j.copbio.2011.06.009.
Full textMajerle, Andreja, San Hadži, Jana Aupič, Tadej Satler, Fabio Lapenta, Žiga Strmšek, Jurij Lah, Remy Loris, and Roman Jerala. "A nanobody toolbox targeting dimeric coiled-coil modules for functionalization of designed protein origami structures." Proceedings of the National Academy of Sciences 118, no. 17 (April 23, 2021): e2021899118. http://dx.doi.org/10.1073/pnas.2021899118.
Full textNiu, Zhiyuan, Zhixia Luo, Pengyang Sun, Linwei Ning, Xinru Jin, Guanxu Chen, Changjiang Guo, Lingtong Zhi, Wei Chang, and Wuling Zhu. "In Vitro Nanobody Library Construction by Using Gene Designated-Region Pan-Editing Technology." BioDesign Research 2022 (August 2, 2022): 1–9. http://dx.doi.org/10.34133/2022/9823578.
Full textNaidoo, Dhaneshree Bestinee, and Anil Amichund Chuturgoon. "Nanobodies Enhancing Cancer Visualization, Diagnosis and Therapeutics." International Journal of Molecular Sciences 22, no. 18 (September 10, 2021): 9778. http://dx.doi.org/10.3390/ijms22189778.
Full textKüppers, Jim, Stefan Kürpig, Ralph A. Bundschuh, Markus Essler, and Susanne Lütje. "Radiolabeling Strategies of Nanobodies for Imaging Applications." Diagnostics 11, no. 9 (August 25, 2021): 1530. http://dx.doi.org/10.3390/diagnostics11091530.
Full textValdés-Tresanco, Mario S., Andrea Molina-Zapata, Alaín González Pose, and Ernesto Moreno. "Structural Insights into the Design of Synthetic Nanobody Libraries." Molecules 27, no. 7 (March 28, 2022): 2198. http://dx.doi.org/10.3390/molecules27072198.
Full textLecocq, Quentin, Katty Zeven, Yannick De Vlaeminck, Sandrina Martens, Sam Massa, Cleo Goyvaerts, Geert Raes, Marleen Keyaerts, Karine Breckpot, and Nick Devoogdt. "Noninvasive Imaging of the Immune Checkpoint LAG-3 Using Nanobodies, from Development to Pre-Clinical Use." Biomolecules 9, no. 10 (September 29, 2019): 548. http://dx.doi.org/10.3390/biom9100548.
Full textAbderrazek, Rahma Ben, Issam Hmila, Cécile Vincke, Zakaria Benlasfar, Mireille Pellis, Hafedh Dabbek, Dirk Saerens, Mohamed El Ayeb, Serge Muyldermans, and Balkiss Bouhaouala-Zahar. "Identification of potent nanobodies to neutralize the most poisonous polypeptide from scorpion venom." Biochemical Journal 424, no. 2 (November 11, 2009): 263–72. http://dx.doi.org/10.1042/bj20090697.
Full textVerkhivker, Gennady. "Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering." International Journal of Molecular Sciences 23, no. 6 (March 8, 2022): 2928. http://dx.doi.org/10.3390/ijms23062928.
Full textZottel, Alja, Ivana Jovčevska, Neja Šamec, Jernej Mlakar, Jernej Šribar, Igor Križaj, Marija Skoblar Vidmar, and Radovan Komel. "Anti-vimentin, anti-TUFM, anti-NAP1L1 and anti-DPYSL2 nanobodies display cytotoxic effect and reduce glioblastoma cell migration." Therapeutic Advances in Medical Oncology 12 (January 2020): 175883592091530. http://dx.doi.org/10.1177/1758835920915302.
Full textGormal, Rachel S., Pranesh Padmanabhan, Ravikiran Kasula, Adekunle T. Bademosi, Sean Coakley, Jean Giacomotto, Ailisa Blum, et al. "Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies." Proceedings of the National Academy of Sciences 117, no. 48 (November 19, 2020): 30476–87. http://dx.doi.org/10.1073/pnas.2007443117.
Full textSmith, Caroline Noel, Kyle Kihn, Zachary A. Williamson, K. Martin Chow, Louis B. Hersh, Konstantin Korotkov, Daniel Deredge, and Jessica S. Blackburn. "Abstract 672: Development and validation of nanobodies specific to the oncogenic phosphatase protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3)." Cancer Research 82, no. 12_Supplement (June 15, 2022): 672. http://dx.doi.org/10.1158/1538-7445.am2022-672.
Full textDuhoo, Yoan, Jennifer Roche, Thi Trang Nhung Trinh, Aline Desmyter, Anaïs Gaubert, Christine Kellenberger, Christian Cambillau, Alain Roussel, and Philippe Leone. "Camelid nanobodies used as crystallization chaperones for different constructs of PorM, a component of the type IX secretion system fromPorphyromonas gingivalis." Acta Crystallographica Section F Structural Biology Communications 73, no. 5 (April 26, 2017): 286–93. http://dx.doi.org/10.1107/s2053230x17005969.
Full textZhou, Xiaohua, Maarten L. V. Hendrickx, Gholamreza Hassanzadeh-Ghassabeh, Serge Muyldermans, and Paul J. Declerck. "Generation and in vitro characterisation of inhibitory nanobodies towards plasminogen activator inhibitor 1." Thrombosis and Haemostasis 116, no. 12 (November 2016): 1032–40. http://dx.doi.org/10.1160/th16-04-0306.
Full textHassanzadeh-Ghassabeh, Gholamreza, Nick Devoogdt, Pieter De Pauw, Cécile Vincke, and Serge Muyldermans. "Nanobodies and their potential applications." Nanomedicine 8, no. 6 (June 2013): 1013–26. http://dx.doi.org/10.2217/nnm.13.86.
Full textBarakat, Sarah, Melike Berksöz, Pegah Zahedimaram, Sofia Piepoli, and Batu Erman. "Nanobodies as molecular imaging probes." Free Radical Biology and Medicine 182 (March 2022): 260–75. http://dx.doi.org/10.1016/j.freeradbiomed.2022.02.031.
Full textMuyldermans, Serge. "Nanobodies: Natural Single-Domain Antibodies." Annual Review of Biochemistry 82, no. 1 (June 2, 2013): 775–97. http://dx.doi.org/10.1146/annurev-biochem-063011-092449.
Full textAbderrazek, Rahma Ben, Issam Hmila, Cécile Vincke, Zakaria Benlasfar, Hafedh Dabbek, Mohamed El Ayeb, Serge Muyldermans, and Balkiss Bouhaouala-Zahar. "Nanobodies against AahII scorpion toxin." Toxicology Letters 189 (September 2009): S171. http://dx.doi.org/10.1016/j.toxlet.2009.06.701.
Full textCheloha, Ross W., Thibault J. Harmand, Charlotte Wijne, Thomas U. Schwartz, and Hidde L. Ploegh. "Exploring cellular biochemistry with nanobodies." Journal of Biological Chemistry 295, no. 45 (August 31, 2020): 15307–27. http://dx.doi.org/10.1074/jbc.rev120.012960.
Full textMartinez-Delgado, Gustavo. "Inhaled nanobodies against COVID-19." Nature Reviews Immunology 20, no. 10 (September 1, 2020): 593. http://dx.doi.org/10.1038/s41577-020-00443-5.
Full textJovčevska, Ivana, and Serge Muyldermans. "The Therapeutic Potential of Nanobodies." BioDrugs 34, no. 1 (November 4, 2019): 11–26. http://dx.doi.org/10.1007/s40259-019-00392-z.
Full textWagner, Hanna, Sarah Wehrle, Etienne Weiss, Marco Cavallari, and Wilfried Weber. "A Two-Step Approach for the Design and Generation of Nanobodies." International Journal of Molecular Sciences 19, no. 11 (November 2, 2018): 3444. http://dx.doi.org/10.3390/ijms19113444.
Full textYamagata, Masahito, and Joshua R. Sanes. "Reporter–nanobody fusions (RANbodies) as versatile, small, sensitive immunohistochemical reagents." Proceedings of the National Academy of Sciences 115, no. 9 (February 13, 2018): 2126–31. http://dx.doi.org/10.1073/pnas.1722491115.
Full textGüttler, Thomas, Matthias Dobbelstein, and Dirk Görlich. "Therapeutische Nanobodies gegen SARS-CoV-2." BIOspektrum 28, no. 1 (February 2022): 39–42. http://dx.doi.org/10.1007/s12268-022-1684-y.
Full textHanack, Katja, Anja Schlör, Pamela Holzlöhner, Martin Listek, Cindy Bauer, Monique Butze, Burkhard Micheel, et al. "Camelid nanobodies specific to human pancreatic glycoprotein 2." Journal of Immunology 196, no. 1_Supplement (May 1, 2016): 209.8. http://dx.doi.org/10.4049/jimmunol.196.supp.209.8.
Full textArce, Nicholas A., Ally J. Su, and Renhao Li. "Nanobody Activators of Von Willebrand Factor Via Targeting Its Autoinhibitory Module." Blood 138, Supplement 1 (November 5, 2021): 2074. http://dx.doi.org/10.1182/blood-2021-151052.
Full textVerkhivker, Gennady. "Allosteric Determinants of the SARS-CoV-2 Spike Protein Binding with Nanobodies: Examining Mechanisms of Mutational Escape and Sensitivity of the Omicron Variant." International Journal of Molecular Sciences 23, no. 4 (February 16, 2022): 2172. http://dx.doi.org/10.3390/ijms23042172.
Full textZarantonello, Alessandra, Henrik Pedersen, Nick S. Laursen, and Gregers R. Andersen. "Nanobodies Provide Insight into the Molecular Mechanisms of the Complement Cascade and Offer New Therapeutic Strategies." Biomolecules 11, no. 2 (February 17, 2021): 298. http://dx.doi.org/10.3390/biom11020298.
Full text