Journal articles on the topic 'Nanobody'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanobody.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zeng, Ying, Yiying Hu, Ganying Chen, et al. "Development of an Anti-Zearalenone Nanobody Phage Display Library and Preparation of Specific Nanobodies." Current Issues in Molecular Biology 47, no. 3 (2025): 157. https://doi.org/10.3390/cimb47030157.
Full textZang, Berlin, Jun Ren, Da Li, et al. "Freezing-assisted synthesis of covalent C–C linked bivalent and bispecific nanobodies." Organic & Biomolecular Chemistry 17, no. 2 (2019): 257–63. http://dx.doi.org/10.1039/c8ob02323a.
Full textMiao, Yinglong, and J. Andrew McCammon. "Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor." Proceedings of the National Academy of Sciences 115, no. 12 (2018): 3036–41. http://dx.doi.org/10.1073/pnas.1800756115.
Full textDeszyński, Piotr, Jakub Młokosiewicz, Adam Volanakis, et al. "INDI—integrated nanobody database for immunoinformatics." Nucleic Acids Research 50, no. D1 (2021): D1273—D1281. http://dx.doi.org/10.1093/nar/gkab1021.
Full textSu, Benchao, Yidan Wang, Hua Pei, et al. "Phage-mediated double-nanobody sandwich immunoassay for detecting alpha fetal protein in human serum." Analytical Methods 12, no. 39 (2020): 4742–48. http://dx.doi.org/10.1039/d0ay01407a.
Full textChames, Patrick, and Ulrich Rothbauer. "Special Issue: Nanobody." Antibodies 9, no. 1 (2020): 6. http://dx.doi.org/10.3390/antib9010006.
Full textVogt, Nina. "Conditional nanobody tools." Nature Methods 13, no. 8 (2016): 610–11. http://dx.doi.org/10.1038/nmeth.3950.
Full textZou, Tao, Fatimata Dembele, Anne Beugnet, Lucie Sengmanivong, Ario de Marco, and Min-Hui Li. "Nanobody-functionalized polymersomes." Journal of Controlled Release 213 (September 2015): e79-e80. http://dx.doi.org/10.1016/j.jconrel.2015.05.132.
Full textLi, Shufeng, Kunpeng Jiang, Ting Wang, et al. "Nanobody against PDL1." Biotechnology Letters 42, no. 5 (2020): 727–36. http://dx.doi.org/10.1007/s10529-020-02823-2.
Full textZhang, Yunxiao, Wan-Jin Lu, David P. Bulkley, et al. "Hedgehog pathway activation through nanobody-mediated conformational blockade of the Patched sterol conduit." Proceedings of the National Academy of Sciences 117, no. 46 (2020): 28838–46. http://dx.doi.org/10.1073/pnas.2011560117.
Full textKunz, Sarah, Manon Durandy, Laetitia Seguin, and Chloe C. Feral. "NANOBODY® Molecule, a Giga Medical Tool in Nanodimensions." International Journal of Molecular Sciences 24, no. 17 (2023): 13229. http://dx.doi.org/10.3390/ijms241713229.
Full textBitsch, Peter, Eva S. Baum, Irati Beltrán Hernández, et al. "Penetration of Nanobody-Dextran Polymer Conjugates through Tumor Spheroids." Pharmaceutics 15, no. 10 (2023): 2374. http://dx.doi.org/10.3390/pharmaceutics15102374.
Full textRatnikova, Nataliya M., Yulia Kravchenko, Anna Ivanova, Vladislav Zhuchkov, Elena Frolova, and Stepan Chumakov. "A Novel Anti-CD47 Nanobody Tetramer for Cancer Therapy." Antibodies 13, no. 1 (2024): 2. http://dx.doi.org/10.3390/antib13010002.
Full textWu, Tiantian, Manman Liu, Hai Huang, Yaping Sheng, Haihua Xiao, and Yangzhong Liu. "Clustered nanobody–drug conjugates for targeted cancer therapy." Chemical Communications 56, no. 65 (2020): 9344–47. http://dx.doi.org/10.1039/d0cc03396k.
Full textMoliner-Morro, Ainhoa, Daniel J. Sheward, Vivien Karl, et al. "Picomolar SARS-CoV-2 Neutralization Using Multi-Arm PEG Nanobody Constructs." Biomolecules 10, no. 12 (2020): 1661. http://dx.doi.org/10.3390/biom10121661.
Full textHendrickx, Maarten L. V., Monika Zatloukalova, Gholamreza Hassanzadeh-Ghassabeh, Serge Muyldermans, Ann Gils, and Paul J. Declerck. "In vitro and in vivo characterisation of the profibrinolytic effect of an inhibitory anti-rat TAFI nanobody." Thrombosis and Haemostasis 111, no. 05 (2014): 824–32. http://dx.doi.org/10.1160/th13-08-0645.
Full textKhatibi, Azadeh Sharif, Nasim Hayati Roodbari, Keivan Majidzade-A, Parichehreh Yaghmaei та Leila Farahmand. "In vivo tumor-suppressing and anti-angiogenic activities of a recombinant anti-CD3ε nanobody in breast cancer mice model". Immunotherapy 11, № 18 (2019): 1555–67. http://dx.doi.org/10.2217/imt-2019-0068.
Full textVerkhivker, Gennady. "Allosteric Determinants of the SARS-CoV-2 Spike Protein Binding with Nanobodies: Examining Mechanisms of Mutational Escape and Sensitivity of the Omicron Variant." International Journal of Molecular Sciences 23, no. 4 (2022): 2172. http://dx.doi.org/10.3390/ijms23042172.
Full textXu, Li, Hanyu Cao, Chundong Huang, and Lingyun Jia. "Oriented Immobilization and Quantitative Analysis Simultaneously Realized in Sandwich Immunoassay via His-Tagged Nanobody." Molecules 24, no. 10 (2019): 1890. http://dx.doi.org/10.3390/molecules24101890.
Full textHong, Haofei, Zhifang Zhou, Kun Zhou, Shaozhong Liu, Zhongwu Guo, and Zhimeng Wu. "Site-specific C-terminal dinitrophenylation to reconstitute the antibody Fc functions for nanobodies." Chemical Science 10, no. 40 (2019): 9331–38. http://dx.doi.org/10.1039/c9sc03840j.
Full textYe, Gang, Fan Bu, Ruangang Pan, et al. "Structure-guided in vitro evolution of nanobodies targeting new viral variants." PLOS Pathogens 20, no. 9 (2024): e1012600. http://dx.doi.org/10.1371/journal.ppat.1012600.
Full textStathopoulou, Chaido, Jessica Hong, Mitchell Ho, and Raffit Hassan. "Abstract 1786: Mesothelin-targeting, nanobody-based CAR T cells effectively target solid tumors in fully immunocompetent hosts." Cancer Research 83, no. 7_Supplement (2023): 1786. http://dx.doi.org/10.1158/1538-7445.am2023-1786.
Full textPercipalle, Mathias, Yamanappa Hunashal, Jan Steyaert, Federico Fogolari, and Gennaro Esposito. "Structure of Nanobody Nb23." Molecules 26, no. 12 (2021): 3567. http://dx.doi.org/10.3390/molecules26123567.
Full textSinha, Gunjan. "Ablynx drops lead nanobody." Nature Biotechnology 30, no. 2 (2012): 124. http://dx.doi.org/10.1038/nbt0212-124a.
Full textKeller, Laura, Nicolas Bery, Claudine Tardy, et al. "Selection and Characterization of a Nanobody Biosensor of GTP-Bound RHO Activities." Antibodies 8, no. 1 (2019): 8. http://dx.doi.org/10.3390/antib8010008.
Full textGuenter, Rachael, Yuvasri Golivi, Lucinda Hall, et al. "Abstract 574: Detection of tumor cell surface calreticulin after doxorubicin treatment using a novel radiolabeled nanobody." Cancer Research 85, no. 8_Supplement_1 (2025): 574. https://doi.org/10.1158/1538-7445.am2025-574.
Full textBao, Chaolemeng, Quanli Gao, Lin-Lin Li, et al. "The Application of Nanobody in CAR-T Therapy." Biomolecules 11, no. 2 (2021): 238. http://dx.doi.org/10.3390/biom11020238.
Full textVester, Susan K., Anna M. Davies, Rebecca L. Beavil, et al. "Expanding the Anti-Phl p 7 Antibody Toolkit: An Anti-Idiotype Nanobody Inhibitor." Antibodies 12, no. 4 (2023): 75. http://dx.doi.org/10.3390/antib12040075.
Full textLiu, Bingying, and Daiwen Yang. "Validation and Optimization of PURE Ribosome Display for Screening Synthetic Nanobody Libraries." Antibodies 14, no. 2 (2025): 39. https://doi.org/10.3390/antib14020039.
Full textKrol, Viktoria E., Aditya Bansal, Manasa Kethamreddy, et al. "Synthesis and In Vitro Evaluation of a Scandium-44 Radiolabeled Nanobody as a PD-L1 PET Imaging Probe." Pharmaceutics 17, no. 6 (2025): 796. https://doi.org/10.3390/pharmaceutics17060796.
Full textCheng, Xin, Jiewen Wang, Guangbo Kang, et al. "Homology Modeling-Based in Silico Affinity Maturation Improves the Affinity of a Nanobody." International Journal of Molecular Sciences 20, no. 17 (2019): 4187. http://dx.doi.org/10.3390/ijms20174187.
Full textScholler, Nathalie, Catherine Yin, khushboo sharma, et al. "In vivo validation of a novel anti-mesothelin nanobody for early detection of mesothelin-expressing cancers." Journal of Immunology 198, no. 1_Supplement (2017): 76.20. http://dx.doi.org/10.4049/jimmunol.198.supp.76.20.
Full textZhao, Shuai, Wanting Zeng, Fang Yu, et al. "Visual and High-Efficiency Secretion of SARS-CoV-2 Nanobodies with Escherichia coli." Biomolecules 15, no. 1 (2025): 111. https://doi.org/10.3390/biom15010111.
Full textTemple, William C., Matthew A. Nix, Akul Naik, et al. "Framework humanization optimizes potency of anti-CD72 nanobody CAR-T cells for B-cell malignancies." Journal for ImmunoTherapy of Cancer 11, no. 11 (2023): e006985. http://dx.doi.org/10.1136/jitc-2023-006985.
Full textHansen, Anders H., Kasper I. H. Andersen, Li Xin, et al. "A HER2 Specific Nanobody–Drug Conjugate: Site-Selective Bioconjugation and In Vitro Evaluation in Breast Cancer Models." Molecules 30, no. 2 (2025): 391. https://doi.org/10.3390/molecules30020391.
Full textChen, Yi, Guanggang Qu, Hongkun Quan, et al. "A Novel Cost-Effective Nanobody against Fumonisin B1 Contaminations: Efficacy Test in Dairy Milk and Chickens." Toxins 14, no. 12 (2022): 821. http://dx.doi.org/10.3390/toxins14120821.
Full textFernández-Quintero, Monica L., Eugene F. DeRose, Scott A. Gabel, Geoffrey A. Mueller, and Klaus R. Liedl. "Nanobody Paratope Ensembles in Solution Characterized by MD Simulations and NMR." International Journal of Molecular Sciences 23, no. 10 (2022): 5419. http://dx.doi.org/10.3390/ijms23105419.
Full textSohier, Jean S., Clémentine Laurent, Andy Chevigné та ін. "Allosteric inhibition of VIM metallo-β-lactamases by a camelid nanobody". Biochemical Journal 450, № 3 (2013): 477–86. http://dx.doi.org/10.1042/bj20121305.
Full textJakobs, Barbara D., Lisa Spannagel, Vladimir Purvanov, Edith Uetz-von Allmen, Christoph Matti, and Daniel F. Legler. "Engineering of Nanobodies Recognizing the Human Chemokine Receptor CCR7." International Journal of Molecular Sciences 20, no. 10 (2019): 2597. http://dx.doi.org/10.3390/ijms20102597.
Full textGe, Qiuhan, Tianyuan Sun, Yanlin Bian, Xiaodong Xiao, and Jianwei Zhu. "Generating a Novel Bispecific Nanobody to Enhance Antitumor Activity." Pharmaceutical Fronts 02, no. 02 (2020): e100-e108. http://dx.doi.org/10.1055/s-0040-1714138.
Full textLiu, Ze-Hui, Kai-Xia Lei, Guang-Wei Han, Hui-Ling Xu, and Fang He. "Novel Lentivirus-Based Method for Rapid Selection of Inhibitory Nanobody against PRRSV." Viruses 12, no. 2 (2020): 229. http://dx.doi.org/10.3390/v12020229.
Full textDevasani, Jagadeeswara Reddy, Girijasankar Guntuku, Nalini Panatula, Murali Krishna Kumar Muthyala, Mary Sulakshana Palla, and Teruna J. Siahaan. "Innovative CDR grafting and computational methods for PD-1 specific nanobody design." Frontiers in Bioinformatics 4 (January 17, 2025). https://doi.org/10.3389/fbinf.2024.1488331.
Full textSwaminathan, Rishabha, and John Dingus. "Investigating AlphaFold’s handling of nanobody-antigen complex prediction." Journal of Emerging Investigators, 2025. https://doi.org/10.59720/24-111.
Full textAlfadhli, Ayna, Timothy A. Bates, Robin Lid Barklis, CeAnn Romanaggi, Fikadu G. Tafesse, and Eric Barklis. "A nanobody interaction with SARS-COV-2 Spike allows the versatile targeting of lentivirus vectors." Journal of Virology, August 29, 2024. http://dx.doi.org/10.1128/jvi.00795-24.
Full text"Nanobody tools." Nature Methods 13, no. 2 (2016): 116. http://dx.doi.org/10.1038/nmeth.3748.
Full textFoley, John F. "Nanobody pharmacology." Science Signaling 17, no. 837 (2024). http://dx.doi.org/10.1126/scisignal.adq4734.
Full textHao, Shuai, Shuyi Xu, Liangzhu Li, et al. "Tumour inhibitory activity on pancreatic cancer by bispecific nanobody targeting PD-L1 and CXCR4." BMC Cancer 22, no. 1 (2022). http://dx.doi.org/10.1186/s12885-022-10165-7.
Full textPadhi, Aditya K., Ashutosh Kumar, Ken-ichi Haruna, et al. "An integrated computational pipeline for designing high-affinity nanobodies with expanded genetic codes." Briefings in Bioinformatics, August 20, 2021. http://dx.doi.org/10.1093/bib/bbab338.
Full textKunz, Patrick, Aurelio Ortale, Norbert Mücke, Katinka Zinner та Jörg D. Hoheisel. "Nanobody stability engineering by employing the ΔTm shift; a comparison with apparent rate constants of heat-induced aggregation". Protein Engineering, Design and Selection, 24 липня 2019. http://dx.doi.org/10.1093/protein/gzz017.
Full textDe Groeve, Manu, Bram Laukens, and Peter Schotte. "Optimizing expression of Nanobody® molecules in Pichia pastoris through co-expression of auxiliary proteins under methanol and methanol-free conditions." Microbial Cell Factories 22, no. 1 (2023). http://dx.doi.org/10.1186/s12934-023-02132-z.
Full text