Academic literature on the topic 'Nanocomposite Polymer Electrolytes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanocomposite Polymer Electrolytes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanocomposite Polymer Electrolytes"

1

Lee, Kyoung-Jin, Eun-Jeong Yi, Gangsanin Kim, and Haejin Hwang. "Synthesis of Ceramic/Polymer Nanocomposite Electrolytes for All-Solid-State Batteries." Journal of Nanoscience and Nanotechnology 20, no. 7 (2020): 4494–97. http://dx.doi.org/10.1166/jnn.2020.17562.

Full text
Abstract:
Lithium-ion conducting nanocomposite solid electrolytes were synthesized from polyethylene oxide (PEO), poly(methyl methacrylate) (PMMA), LiClO4, and Li1.3Al0.3Ti1.7(PO4)3 (LATP) ceramic particles. The synthesized nanocomposite electrolyte consisted of LATP particles and an amorphous polymer. LATP particles were homogeneously distributed in the polymer matrix. The nanocomposite electrolytes were flexible and self-standing. The lithium-ion conductivity of the nanocomposite electrolyte was almost an order of magnitude higher than that of the PEO/PMMA solid polymer electrolyte.
APA, Harvard, Vancouver, ISO, and other styles
2

Austin Suthanthiraraj, S., and M. Johnsi. "Nanocomposite polymer electrolytes." Ionics 23, no. 10 (2016): 2531–42. http://dx.doi.org/10.1007/s11581-016-1924-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Si, Satyabrata. "Additives for Solid Polymer Electrolytes: The Layered Nanoparticles." Key Engineering Materials 571 (July 2013): 27–56. http://dx.doi.org/10.4028/www.scientific.net/kem.571.27.

Full text
Abstract:
The massive exploitation of modern technology results in increasing demand of energy of the entire world, which has urged extensive research and development in the areas of energy production from non-conventional resources, their storage and distribution. Electrolyte is one of the components in various electrochemical devices, like solar cells, fuel cells, rechargeable battery etc. Besides the conventional liquid electrolytes, polymer based electrolytes gain particular attention because of their solid nature, flexibility and ease of availability. For the last few decades, use of inorganic nano
APA, Harvard, Vancouver, ISO, and other styles
4

Muda, N., Salmiah Ibrahim, Norlida Kamarulzaman, and Mohamed Nor Sabirin. "PVDF-HFP-NH4CF3SO3-SiO2 Nanocomposite Polymer Electrolytes for Protonic Electrochemical Cell." Key Engineering Materials 471-472 (February 2011): 373–78. http://dx.doi.org/10.4028/www.scientific.net/kem.471-472.373.

Full text
Abstract:
This paper describes the preparation and characterization of proton conducting nanocomposite polymer electrolytes based a polyvinylidene fluoride-co-hexapropylene (PVDF-HFP) for protonic electrochemical cells. The electrolytes were characterized by Differential Scanning Calorimetry (DSC) and Impedance Spectroscopy (IS). It is observed that the crystallinity of the PVDF-HFP-NH4CF3SO3 system slightly increase upon addition of SiO2 nanofiller. The PVDF-HFP-NH4CF3SO3-SiO2 electrolytes reveals the existence of two conductivity maxima at 1 and 4 wt% of SiO2 concentration attributed to two percolatio
APA, Harvard, Vancouver, ISO, and other styles
5

K Manjula, K. Manjula, and V. John Reddy. "Na+ Ion Conducting Nano-Composite Solid Polymer Electrolyte – Application to Electrochemical Cell." Oriental Journal Of Chemistry 38, no. 5 (2022): 1204–8. http://dx.doi.org/10.13005/ojc/380515.

Full text
Abstract:
Various concentrations of Multi Walled Carbon Nanotubes (MCNT) fillers dispersed PVDF- HFP: NaClO4 nanocomposite polymer electrolytes (NPE) were prepared by solution casting technique. The dispersion of MCNT nano fillers raised the accessibility of more ions for attaining the highest conductivity. Electrical conductivity, Ohmic resistance (RΩ), Polarisation resistanace (Rp), and Warburg impedance (W) were studied using electrochemical impedance spectroscopy (EIS), which revealed ion transport mechanics in the polymer electrolytes. The best ionic conductivity is found to be 8.46 × 10-3 Scm-1 fo
APA, Harvard, Vancouver, ISO, and other styles
6

Bhattacharya, S., and A. Ghosh. "Effect of ZnO Nanoparticles on the Structure and Ionic Relaxation of Poly(ethylene oxide)-LiI Polymer Electrolyte Nanocomposites." Journal of Nanoscience and Nanotechnology 8, no. 4 (2008): 1922–26. http://dx.doi.org/10.1166/jnn.2008.18257.

Full text
Abstract:
The effect of ZnO nanoparticles on the structure and ionic relaxation of LiI salt doped poly(ethylene oxide) (PEO) polymer electrolytes has been investigated. X-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy show that ZnO nanoparticles dispersed in the PEO-LiI polymer electrolyte reduce the crystallinity of PEO and increase relative smoothness of the surface morphology of the nanocomposite electrolyte. The electrical conductivity of the nanocomposites is found to increase due to incorporation of ZnO nanoparticles. We have shown
APA, Harvard, Vancouver, ISO, and other styles
7

Vijayakumar, G., A. Maruthadurai, R. Paramasivam, and V. Tamilavan. "Investigation on Electrochemical Performance of New Flexible Nanocomposite Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Polymer Electrolytes." International Journal of Polymer Science 2020 (March 23, 2020): 1–8. http://dx.doi.org/10.1155/2020/3583806.

Full text
Abstract:
This research paper as an article investigates electrochemical performance of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-co-HFP) flexible nanocomposite polymer electrolytes which have been prepared successfully with incorporation of zinc oxide (ZnO) nanofiller. First, nanofillers are incorporated in a polymer matrix to form the flexible nanocomposite PVdF-co-HFP polymer membranes (PI-CMPM), and it is obtained by phase inversion technique. Contact angles of PI-CMPM have achieved a maximum of 136°. After this procedure, it has been activated by using a 1.0 M LiClO4 containing of DMC/
APA, Harvard, Vancouver, ISO, and other styles
8

Karuppasamy, Karuppasamy, Sethuramachandran Thanikaikarasan, D. Eapen, et al. "Effect of Nanochitosan on Structural, Thermal and Electrochemical Properties of Poly Ether Based Polymer Electrolytes Complexed with Lithium Bis(Trifluoromethanesulfonyl Imide)." Journal of New Materials for Electrochemical Systems 17, no. 3 (2014): 197–203. http://dx.doi.org/10.14447/jnmes.v17i3.422.

Full text
Abstract:
In this research, nanocomposite membranes were prepared using polyethylene oxide as polymer host, lithium bis(trifluoromethanesulfonyl imide) as salt and nanochitosan as inert filler. Initially nanochitosan was prepared from chitosan by ionotropic gelation method. Nanocomposite membranes were prepared by solvent free membrane hot press technique. The prepared membranes possessed excellent physico-chemical properties. The complexing behavior and structural reorganization in polymer electrolytes were analyzed by XRD and FT-IR analyzes. The decrease in crystalline nature of polymer electrolytes w
APA, Harvard, Vancouver, ISO, and other styles
9

Tan, Xinjie, Yongmin Wu, Weiping Tang, et al. "Preparation of Nanocomposite Polymer Electrolyte via In Situ Synthesis of SiO2 Nanoparticles in PEO." Nanomaterials 10, no. 1 (2020): 157. http://dx.doi.org/10.3390/nano10010157.

Full text
Abstract:
Composite polymer electrolytes provide an emerging solution for new battery development by replacing liquid electrolytes, which are commonly complexes of polyethylene oxide (PEO) with ceramic fillers. However, the agglomeration of fillers and weak interaction restrict their conductivities. By contrast with the prevailing methods of blending preformed ceramic fillers within the polymer matrix, here we proposed an in situ synthesis method of SiO2 nanoparticles in the PEO matrix. In this case, robust chemical interactions between SiO2 nanoparticles, lithium salt and PEO chains were induced by the
APA, Harvard, Vancouver, ISO, and other styles
10

Bósquez-Cáceres, María Fernanda, Sandra Hidalgo-Bonilla, Vivian Morera Córdova, Rose M. Michell, and Juan P. Tafur. "Nanocomposite Polymer Electrolytes for Zinc and Magnesium Batteries: From Synthetic to Biopolymers." Polymers 13, no. 24 (2021): 4284. http://dx.doi.org/10.3390/polym13244284.

Full text
Abstract:
The diversification of current forms of energy storage and the reduction of fossil fuel consumption are issues of high importance for reducing environmental pollution. Zinc and magnesium are multivalent ions suitable for the development of environmentally friendly rechargeable batteries. Nanocomposite polymer electrolytes (NCPEs) are currently being researched as part of electrochemical devices because of the advantages of dispersed fillers. This article aims to review and compile the trends of different types of the latest NCPEs. It briefly summarizes the desirable properties the electrolytes
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nanocomposite Polymer Electrolytes"

1

Karlsson, Christian. "Ionic conduction in glasses and nanocomposite polymer electrolytes /." Göteborg : Chalmers university of technology, 2003. http://catalogue.bnf.fr/ark:/12148/cb392991306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khawaja, Mohamad. "Synthesis and Fabrication of Graphene/Conducting Polymer/Metal Oxide Nanocomposite Materials for Supercapacitor Applications." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5715.

Full text
Abstract:
The rising energy consumption worldwide is leading to significant increases in energy production with fossil fuels being the major energy source. The negative environmental impact of fossil fuel use and its finite nature requires the use of alternative sources of energy. Solar energy is a clean alternative energy source; however, its intermittent nature is a major impediment that needs to be reduced or eliminated by the development of cost effective energy storage. Thermal storage in tanks filled typically with molten salt at elevated temperatures is widely used in concentrating solar power pl
APA, Harvard, Vancouver, ISO, and other styles
3

Harish, Muthuraman. "Processing and Study of Carbon Nanotube / Polymer Nanocomposites and Polymer Electrolyte Materials." Master's thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4247.

Full text
Abstract:
The first part of the study deals with the preparation of carbon nanotube/polymer nanocomposite materials. The dispersion of multi-walled carbon nanotubes (MWNTs) using trifluoroacetic acid (TFA) as a co-solvent and its subsequent use in polymer nanocomposite fabrication is reported. The use of carbon nanotube/ polymer nanocomposite system for the fabrication of organic solar cells is also studied. TFA is a strong but volatile acid which is miscible with many commonly used organic solvents. Our study demonstrates that MWNTs can be effectively purified and readily dispersed in a range of organi
APA, Harvard, Vancouver, ISO, and other styles
4

Jalani, Nikhil H. "Development of nanocomposite polymer electrolyte membranes for higher temperature PEM fuel cells." Link to electronic dissertation, 2006. https://www.wpi.edu/ETD-db/ETD-catalog/view%5Fetd?URN=etd-032706-165027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yarmolenko, O. V., S. A. Baskakov, Y. M. Shulga, P. I. Vengrus, and O. N. Efimov. "Supercapacitors Based on Composite Polyaniline / Reduced Graphene Oxide with Network Nanocomposite Polymer Electrolyte." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35510.

Full text
Abstract:
The paper describes investigation on new types of supercapacitors based on composite polyani-line/reduced graphene oxide with network nanocomposite polymer electrolyte. Its prototypes are all solid state. The new network polymer electrolytes based on polyethylene glycol diacrylate and nanoparticle SiO2 was synthesized by reaction of radical polymerization in the environment of liquid organic electrolyte. The work is aimed to obtain a polymer electrolyte that is compatible with the electrode materials of superca-pacitors. For these purposes the method of FTIR spectroscopy, a.c. electrochemical
APA, Harvard, Vancouver, ISO, and other styles
6

Muriithi, Beatrice Wanjku. "DESIGN AND CHARACTERIZATION OF NAFION®/EX-SITU SILICA NANOCOMPOSITE MEMBRANES: EFFECTS OF PARTICLE SIZE AND SURFACE MODIFICATION." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/194152.

Full text
Abstract:
This dissertation focuses on the preparation of new Nafion®/ ex-situ silica nanocomposites membranes and the impact of particle size of spherical silica particles on the nanocomposites' properties. To achieve acceptable power production, fuel cell polymer membranes are required with good proton conductivity, water retention, thermal and mechanical stability. However, to avoid poisoning of fuel cell electrocatalysts with CO or other fuel contaminants, they must be operated at temperatures (>100 °C). At these temperatures, fuel cell membranes dehydrate resulting in dramatic decreases in proto
APA, Harvard, Vancouver, ISO, and other styles
7

Savych, Maciejasz Juliia. "Synthèse et caractérisation de nanocomposites platine/nanofibres pour électrodes de pile à combustible à électrolyte polymère." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20152/document.

Full text
Abstract:
Cette thèse s'inscrit dans le contexte général des efforts de recherche pour développer des supports de catalyseur résistant à la corrosion qui peuvent potentiellement remplacer le carbone dans les piles à combustible à électrolyte polymère. Des nanofibres et des nanotubes à base de TiO2 et SnO2 dopés par Nb ont été préparés par filage électrostatique et caractérisés par diffraction des rayons X, spectroscopie des photoélectrons de rayons X, spectroscopie Raman, mesures de surface spécifique et de conductivité électronique. Les nanofibres de TiO2 et SnO2 dopées par Nb présentent une conductivi
APA, Harvard, Vancouver, ISO, and other styles
8

Matinise, Nolubabalo. "Electrolytic determination of phthalates organic pollutants with n nostructured titanium and iron oxides sensors." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1177_1305892404.

Full text
Abstract:
<p>This work reports the chemical synthesis, characterisation and electrochemical application of titanium dioxide (TiO2) and iron oxide (Fe2O3) nanoparticles in the determination of phthalates. The other part of this work involved electrochemical polymerization of aniline doped with titanium and iron oxide nanoparticles for the sensor platform in the electrolytic determination of phthalates. The TiO2 and Fe2O3 nanoparticles were prepared by sol gel and hydrothermal methods respectively. Particle sizes of 20 nm (TiO2) and 50 nm (Fe2O3) were estimated from transmission electron microscopy (TEM)
APA, Harvard, Vancouver, ISO, and other styles
9

Seck, Serigne. "Elaboration de matériaux hybrides organiques / inorganiques par extrusion réactive : Application en pile à combustible." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0027.

Full text
Abstract:
A l’heure actuelle, les piles à combustible à membrane échangeuse de protons (PEMFC) les plus avancées, qu’elles soient disponibles commercialement ou intégrées dans des démonstrateurs, sont réalisées avec des électrolytes polymères perfluorosulfonés de types Nafion®. En effet, ce type de polymère est celui qui présente à la fois les meilleures performances et la plus grande durée de vie sans pour autant qu’elles soient suffisantes, et ce, quelles que soient les applications (portable, stationnaire, transport). En effet ce polymère présente toutefois trois inconvénients majeurs : son prix, sa
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, Thokchom Joykumar. "Investigations Of Poly(Ethylene Glycol)- Based Solid Polymer And Nanocomposite Electrolytes." Thesis, 2004. http://etd.iisc.ernet.in/handle/2005/1323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Nanocomposite Polymer Electrolytes"

1

Sloop, Steven E. Synthesis and characterization of polymer electrolytes and related nanocomposites. 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Decher, Gero, and Joe B. Schlenoff. Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Decher, Gero, and Joe B. Schlenoff. Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Decher, Gero, and Joe B. Schlenoff. Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. Wiley & Sons, Incorporated, John, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Decher, Gero, and Joe B. Schlenoff. Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. Wiley-VCH Verlag GmbH, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alcohol Fuel Cells, Direct Methanol Fuel Cells, Alcohol Oxidation, Nano-Catalysts, Carbon-Based Nanomaterials, Polymer Electrolyte Membranes, Nanomaterials for Oxygen Reduction, Polymer-based Nanocomposites, Electrocatalysts, Ethanol Electro-Oxidation, Proton Electrolyte Membranes, Methanol Oxidation, Polymer-based Nanocomposites, Trimetallic Nanoparticles. Materials Research Forum LLC, 2019. http://dx.doi.org/10.21741/9781644900192.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanocomposite Polymer Electrolytes"

1

Jishnu, N. S., M. A. Krishnan, Akhila Das, et al. "Polymer Clay Nanocomposite Electrolytes for Lithium-Ion Batteries." In Polymer Electrolytes for Energy Storage Devices. CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Raju, Kumar, and Samuel A. Suthanthiraraj. "Nanocomposite Polymer Electrolytes in Electrochemical Energy Storage Systems." In Nanomaterials in Advanced Batteries and Supercapacitors. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26082-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stelbin Peter, Figerez, and Prasanth Raghavan. "Graphene/Polymer Nanocomposite Electrolytes for Lithium Ion Batteries." In Graphene and Carbon Nanotubes for Advanced Lithium Ion Batteries. CRC Press, 2018. http://dx.doi.org/10.1201/9780429434389-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sarma, Prasad V., Jayesh Cherusseri, and Sreekanth J. Varma. "Polymer Nanocomposite-Based Solid Electrolytes for Lithium-Ion Batteries." In Polymer Electrolytes for Energy Storage Devices. CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Das, Akhila, Anjumole P. Thomas, Neethu T. M. Balakrishnan, et al. "Polymer Silica Nanocomposite Gel Electrolytes for Lithium-Ion Batteries." In Polymer Electrolytes for Energy Storage Devices. CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stelbin Peter, Figerez, and Prasanth Raghavan. "Carbon Nanotube/Polymer Nanocomposite Electrolytes for Lithium Ion Batteries." In Graphene and Carbon Nanotubes for Advanced Lithium Ion Batteries. CRC Press, 2018. http://dx.doi.org/10.1201/9780429434389-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wen Liew, Chiam. "Nanocomposite Polymer Electrolytes for Electric Double Layer Capacitors (EDLCs) Application." In Nanomaterials in Energy Devices. CRC Press, 2017. http://dx.doi.org/10.1201/9781315153445-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Das, Akhila, Neethu T. M. Balakrishnan, Anjumole P. Thomas, Jou-Hyeon Ahn, M. J. Jabeen Fatima, and Raghavan Prasanth. "Electrospun Silica-Based Polymer Nanocomposite Electrolytes for Lithium-Ion Batteries." In Electrospinning for Advanced Energy Storage Applications. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8844-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rambabu, Gutru, and Santoshkumar D. Bhat. "Carbon-Polymer Nanocomposite Membranes as Electrolytes for Direct Methanol Fuel Cells." In Membrane Technology. CRC Press, 2018. http://dx.doi.org/10.1201/9781315105666-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chandra, Angesh, Alok Bhatt, and Archana Chandra. "Synthesis and Ion Transport Studies of K+ Ion Conducting Nanocomposite Polymer Electrolytes." In Trends and Applications in Advanced Polymeric Materials. John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119364795.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanocomposite Polymer Electrolytes"

1

Arunkumar, R., M. Usha Rani, and Ravishanker Babu. "PVC-PBMA nanocomposite polymer electrolytes for lithium battery applications." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Muhammad, F. H., R. H. Y. Subban, Tan Wime, Mohamad Rusop, and Tetsuo Soga. "Electrical Studies On Hexanoyl Chitosan-based Nanocomposite Polymer Electrolytes." In NANOSCIENCE AND NANOTECHNOLOGY: International Conference on Nanoscience and Nanotechnology—2008. AIP, 2009. http://dx.doi.org/10.1063/1.3160219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, A., M. Deka, Alka B. Garg, R. Mittal, and R. Mukhopadhyay. "PVdF-Clay Nanocomposite Gel Polymer Electrolytes For Li-Ion Batteries." In SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3606346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rahmawati, Suci A., Sulistyaningsih, Alviansyah Z. A. Putro, et al. "Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay." In PROCEEDINGS OF INTERNATIONAL SEMINAR ON MATHEMATICS, SCIENCE, AND COMPUTER SCIENCE EDUCATION (MSCEIS 2015). AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4941519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sadiq, M., Anil Arya, and Ashish kumar Yadav Manoj K Singh. "Scheme of Polymer-Ion-clay Interaction and Ion-Ion Interaction In Polymer Nanocomposite Electrolytes Films." In Proceedings of the International Conference on Nanotechnology for Better Living. Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lysenkov, E. A., I. P. Lysenkova, and V. V. Klepko. "Relaxation processes in nanocomposite polymer electrolytes based on polyethylene glycol and hybrid nanofiller." In 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2020. http://dx.doi.org/10.1109/elnano50318.2020.9088895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nidhi, Sandhya Patel, and Ranveer Kumar. "PVDF-HFP based nanocomposite polymer electrolytes for energy storage devices dispersed with various nano-fillers." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lysenkov, E. A., V. V. Klepko, and I. P. Lysenkova. "Features of electrical conductivity in nanocomposite polymer electrolytes based on polyethylene glycol, LiClO4 and organomodified laponite." In 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2020. http://dx.doi.org/10.1109/elnano50318.2020.9088832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Karuppasamy, K., C. Vijil Vani, A. Nichelson, S. Balakumar, and X. Sahaya Shajan. "Effect of nanochitosan and succinonitrile on the AC ionic conductivity of plasticized nanocomposite solid polymer electrolytes (PNCSPE)." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Harun, Fatin, Chin Han Chan, Lai Har Sim, Tan Winie, and Nurul Fatahah Asyqin Zainal. "Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes." In ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2015): 4th National Conference on Advanced Materials and Radiation Physics. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4928850.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nanocomposite Polymer Electrolytes"

1

Giannelis, Emmanuel P. Nanocomposite Polymer Electrolytes. Defense Technical Information Center, 2000. http://dx.doi.org/10.21236/ada387289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!