Journal articles on the topic 'Nanocomposite thermal conductivity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanocomposite thermal conductivity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ouis, Nora, Assia Belarbi, Salima Mesli, and Nassira Benharrats. "Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites." Chemistry & Chemical Technology 17, no. 1 (2023): 118–25. http://dx.doi.org/10.23939/chcht17.01.118.
Full textSabo, Y. T., D. E. A. Boryo, I. Y. Chindo, and A. M. Auwal. "Nanocomposites transformed from polystyrene waste/antimony, barium and nickel oxides nanoparticles with improved thermal and electrical properties." Nigerian Journal of Chemical Research 26, no. 2 (2022): 117–27. http://dx.doi.org/10.4314/njcr.v26i2.7.
Full textJang, Ji-un, Hae Eun Nam, Soon Oh So, et al. "Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet." Polymers 14, no. 2 (2022): 323. http://dx.doi.org/10.3390/polym14020323.
Full textTijjani, Y. "High temperature applications of carbon nanotubes (CNTs) [v]: thermal conductivity of CNTs reinforced silica nanocomposite." Bayero Journal of Pure and Applied Sciences 15, no. 1 (2022): 136–40. http://dx.doi.org/10.4314/bajopas.v15i1.19.
Full textKeklikcioğlu Çakmak, Neşe. "Experimental study on the thermal conductivity of a water-based ternary hybrid nanofluid incorporating MWCNTs-COOH-Fe3O4-rGO." European Mechanical Science 9, no. 1 (2025): 16–24. https://doi.org/10.26701/ems.1591623.
Full textRibezzo, Alessandro, Matteo Fasano, Luca Bergamasco, Luigi Mongibello, and Eliodoro Chiavazzo. "Multi-Scale Numerical Modelling for Predicting Thermo-Physical Properties of Phase-Change Nanocomposites for Cooling Energy Storage." Tecnica Italiana-Italian Journal of Engineering Science 65, no. 2-4 (2021): 201–4. http://dx.doi.org/10.18280/ti-ijes.652-409.
Full textMoheimani, Reza, and M. Hasansade. "A closed-form model for estimating the effective thermal conductivities of carbon nanotube–polymer nanocomposites." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 8 (2018): 2909–19. http://dx.doi.org/10.1177/0954406218797967.
Full textSingh, Manohar, and Jeewan Chandra Pandey. "Probing thermal conductivity of interphase in epoxy alumina nanocomposites." Polymers and Polymer Composites 30 (January 2022): 096739112210774. http://dx.doi.org/10.1177/09673911221077489.
Full textHan, Bai, Jinghui Dai, Wanliang Zhao, Wei Song, Zhi Sun, and Xuan Wang. "Preparation and Space Charge Properties of Functionalized Zeolite/Crosslinked Polyethylene Composites with High Thermal Conductivity." Polymers 15, no. 22 (2023): 4363. http://dx.doi.org/10.3390/polym15224363.
Full textFialko, Nataliia, Roman Dinzhos, Julii Sherenkovskii, et al. "Influence on the thermophysical properties of nanocomposites of the duration of mixing of components in the polymer melt." Eastern-European Journal of Enterprise Technologies 2, no. 5 (116) (2022): 25–30. http://dx.doi.org/10.15587/1729-4061.2022.255830.
Full textNataliia, Fialko, Dinzhos Roman, Sherenkovskii Julii, et al. "Influence on the thermophysical properties of nanocomposites of the duration of mixing of components in the polymer melt." Eastern-European Journal of Enterprise Technologies 2, no. 5 (116) (2022): 25–30. https://doi.org/10.15587/1729-4061.2022.255830.
Full textKianfar, Armin, Mir Masoud Seyyed Fakhrabadi, and Mahmoud Mosavi Mashhadi. "Prediction of mechanical and thermal properties of polymer nanocomposites reinforced by coiled carbon nanotubes for possible application as impact absorbent." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 4 (2019): 882–902. http://dx.doi.org/10.1177/0954406219885969.
Full textPattanshetti, Virappa Virupaxappa, G. M. Shashidhara, and Mysore Guruswamy Veena. "Dielectric and thermal properties of magnesium oxide/poly(aryl ether ketone) nanocomposites." Science and Engineering of Composite Materials 25, no. 5 (2018): 915–25. http://dx.doi.org/10.1515/secm-2016-0273.
Full textTarawneh, Mou’ad A., and Sahrim Haji Ahmad. "The Effect of Ultrasonic Treatment and Gamma Radiation on the Thermal Conductivity of TPNR Hybrid Nanocomposites." Advanced Materials Research 626 (December 2012): 29–33. http://dx.doi.org/10.4028/www.scientific.net/amr.626.29.
Full textKusunose, Takafumi, Tohru Sekino, Yoichi Ando, and Koichi Niihara. "Fabrication of machinable AlN–BN composites with high thermal conductivity by pressureless sintering turbostatic BN-coated AlN nanocomposite powders." Journal of Materials Research 23, no. 1 (2008): 236–44. http://dx.doi.org/10.1557/jmr.2008.0022.
Full textAkbarzadeh, Mohammad, Hassan Ebadi-Dehaghani, and Meisam Sadeghi. "Validity of Several Thermal Conductivity Models in Metal Oxide Nanoparticles Filled Polycarbonate." Advanced Materials Research 739 (August 2013): 51–56. http://dx.doi.org/10.4028/www.scientific.net/amr.739.51.
Full textPurwandari, Vivi, and Malemta Tarigan. "PREPARASI FILM NANOKOMPOSIT POLIVINIL ALKOHOL (PVA)/NANOKARBON DARI CANGKANG BUAH SAWIT (NCCS) DENGAN METODE PENCAMPURAN LARUTAN." JURNAL KIMIA SAINTEK DAN PENDIDIKAN 6, no. 1 (2022): 11–16. http://dx.doi.org/10.51544/kimia.v6i1.2977.
Full textPurwandari, Vivi, Saharman Gea, Basuki Wirjosentono, Agus Haryono, I. Putu Mahendra, and Yasir Arafat Hutapea. "Electrical and Thermal Conductivity of Cyclic Natural Rubber/Graphene Nanocomposite Prepared by Solution Mixing Technique." Indonesian Journal of Chemistry 20, no. 4 (2020): 801. http://dx.doi.org/10.22146/ijc.44791.
Full textReji Kumar Rajamony, Mahendran Samykano, A.K. Pandey, et al. "Investigation on Thermophysical Properties of Multi-Walled Carbon Nanotubes Enhanced Salt Hydrate Phase Change Material." International Journal of Automotive and Mechanical Engineering 20, no. 3 (2023): 10595–605. http://dx.doi.org/10.15282/ijame.20.3.2023.03.0817.
Full textZhang, Chong, Chaofeng Zhao, Huize Cui, et al. "Molecular Dynamics Study on Thermal Conductivity Properties and Dielectric Behaviors of Graphene-Based Epoxy Resin Nanocomposites." Polymers 17, no. 1 (2025): 112. https://doi.org/10.3390/polym17010112.
Full textYin, Biao, Yanwei Wen, Hongbing Jia, Jingyi Wang, Zhaodong Xu, and Lifeng Ding. "Synergistic effects of hybridization of carbon black and carbon nanotubes on the mechanical properties and thermal conductivity of a rubber blend system." Journal of Polymer Engineering 37, no. 8 (2017): 785–94. http://dx.doi.org/10.1515/polyeng-2016-0375.
Full textAfolabi, Lukmon Owolabi, Hussain Hamoud Al-Kayiem, Aklilu Tesfamichael Baheta, and Saw Chun Lin. "Experimental Investigation of Thermal Conductivity of Paraffin Based Nanocomposite for TES." Applied Mechanics and Materials 465-466 (December 2013): 181–85. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.181.
Full textIoannou, Ioanna, Panagiotis S. Ioannou, Theodora Kyratsi, and John Giapintzakis. "Effect of Starting Powder Particle Size on the Thermoelectric Properties of Hot-Pressed Bi0.3Sb1.7Te3 Alloys." Materials 17, no. 2 (2024): 318. http://dx.doi.org/10.3390/ma17020318.
Full textStanciu, Nicoleta-Violeta, Felicia Stan, Ionut-Laurentiu Sandu, Catalin Fetecau, and Adriana-Madalina Turcanu. "Thermal, Rheological, Mechanical, and Electrical Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites." Polymers 13, no. 2 (2021): 187. http://dx.doi.org/10.3390/polym13020187.
Full textKuan, Chen-Feng, Chin-Lung Chiang, Su-Hsia Lin, Wei-Guo Huang, Wen-Yen Hsieh, and Ming-Yuan Shen. "Characterization and Properties of Graphene Nanoplatelets/XNBR Nanocomposites." Polymers and Polymer Composites 26, no. 1 (2018): 59–68. http://dx.doi.org/10.1177/096739111802600107.
Full textKusunose, Takafumi, and Tohru Sekino. "Non-Oxide Ceramic Nanocomposites with Multifunctionality." Key Engineering Materials 403 (December 2008): 45–48. http://dx.doi.org/10.4028/www.scientific.net/kem.403.45.
Full textRazonado, Ivy Ann C., Emee Grace T. Suarnaba, Lawrence V. Madriaga, and Leslie Joy L. Diaz. "Thermal Conductivity Enhancement in Polymer-Clay Nanocomposite Using Casting Techniques." Materials Science Forum 995 (June 2020): 15–20. http://dx.doi.org/10.4028/www.scientific.net/msf.995.15.
Full textSilva, Sofia, José M. Barbosa, João D. Sousa, Maria C. Paiva, and Paulo F. Teixeira. "High-Performance PEEK/MWCNT Nanocomposites: Combining Enhanced Electrical Conductivity and Nanotube Dispersion." Polymers 16, no. 5 (2024): 583. http://dx.doi.org/10.3390/polym16050583.
Full textRouhi, S., R. Ansari, and M. Ahmadi. "Finite element investigation into the thermal conductivity of carbon nanotube/aluminum nanocomposites." Modern Physics Letters B 31, no. 06 (2017): 1750053. http://dx.doi.org/10.1142/s0217984917500531.
Full textКульбачинский, В. А., В. Г. Кытин, Д. А. Зиновьев та ін. "Термоэлектрические свойства нанокомпозитов Sb-=SUB=-2-=/SUB=-Te-=SUB=-3-=/SUB=- c графитом". Физика и техника полупроводников 53, № 5 (2019): 645. http://dx.doi.org/10.21883/ftp.2019.05.47555.13.
Full textYang, Mei Jun, Wei Jun Luo, Qiang Shen, Hong Yi Jiang, and Lian Meng Zhang. "Preparation and Thermoelectric Properties of Bi-Doped Mg2Si Nanocomposites." Advanced Materials Research 66 (April 2009): 17–20. http://dx.doi.org/10.4028/www.scientific.net/amr.66.17.
Full textWang, Tai-Yuan, Po-Ying Tseng, and Jia-Lin Tsai. "Characterization of Young’s modulus and thermal conductivity of graphene/epoxy nanocomposites." Journal of Composite Materials 53, no. 6 (2018): 835–47. http://dx.doi.org/10.1177/0021998318791681.
Full textZhou, Yongcun, Shihu Yu, Huan Niu, and Feng Liu. "Synergistic Improvement in Thermal Conductivity of Polyimide Nanocomposite Films Using Boron Nitride Coated Copper Nanoparticles and Nanowires." Polymers 10, no. 12 (2018): 1412. http://dx.doi.org/10.3390/polym10121412.
Full textNataliia, Fialko, Dinzhos Roman, Sherenkovskii Julii, et al. "Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties." Eastern-European Journal of Enterprise Technologies 4, no. 5 (112) (2021): 21–26. https://doi.org/10.15587/1729-4061.2021.236915.
Full textTarawneh, Mou’ad A., Adilah Mat Ali, Sahrim Hj Ahmad, and L. J. Yu. "Influence of multiwalled carbon nanotubes content on thermal conductivity of polyactic acid/liquid natural rubber nanocomposite." World Journal of Engineering 13, no. 1 (2016): 1–5. http://dx.doi.org/10.1108/wje-02-2016-005.
Full textPanda, Shivkumari, Dibakar Behera, and Tapan Kumar Bastia. "Graphite/UPE Nanocomposite: Transport, Thermal, Mechanical and Viscoelastic Properties." Diffusion Foundations 23 (August 2019): 201–12. http://dx.doi.org/10.4028/www.scientific.net/df.23.201.
Full textLule, Zelalem, and Jooheon Kim. "Surface Modification of Aluminum Nitride to Fabricate Thermally Conductive poly(Butylene Succinate) Nanocomposite." Polymers 11, no. 1 (2019): 148. http://dx.doi.org/10.3390/polym11010148.
Full textWu, Zi Hua, Hua Qing Xie, and Qing Feng Zeng. "Synthesis and Thermal Characterization of Co-Doped ZnO Nanocomposites Prepared by Sol-Gel Method." Advanced Materials Research 512-515 (May 2012): 1753–56. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.1753.
Full textNikonkov, R. V., P. Stachowiak, A. Jeżowski, and A. I. Krivchikov. "Thermal conductivity of argon-SiO2cryocrystal nanocomposite." Low Temperature Physics 42, no. 4 (2016): 313–16. http://dx.doi.org/10.1063/1.4947308.
Full textBehdinan, Kamran, Rasool Moradi-Dastjerdi, Babak Safaei, Zhaoye Qin, Fulei Chu, and David Hui. "Graphene and CNT impact on heat transfer response of nanocomposite cylinders." Nanotechnology Reviews 9, no. 1 (2020): 41–52. http://dx.doi.org/10.1515/ntrev-2020-0004.
Full textZhang, Yu, Kaichang Kou, Tiezheng Ji, et al. "Preparation of Ionic Liquid-Coated Graphene Nanosheets/PTFE Nanocomposite for Stretchable, Flexible Conductor via a Pre-Stretch Processing." Nanomaterials 10, no. 1 (2019): 40. http://dx.doi.org/10.3390/nano10010040.
Full textAl Sawafi, Suaad, and Mo Song. "Polymer/carbon nanotube nanocomposites as temperature sensing materials." Polymers and Polymer Composites 31 (April 2, 2023): 096739112311666. http://dx.doi.org/10.1177/09673911231166631.
Full textHaddadi, Manel, Boudjemaa Agoudjil, and Abderrahim Boudenne. "Thermal Conductivity of Polymer/Carbon Nanotube Composites." Materials Science Forum 714 (March 2012): 99–113. http://dx.doi.org/10.4028/www.scientific.net/msf.714.99.
Full textSrivastava, G. P., and Iorwerth O. Thomas. "Tunable Thermal Transport Characteristics of Nanocomposites." Nanomaterials 10, no. 4 (2020): 673. http://dx.doi.org/10.3390/nano10040673.
Full textLiu, Tian, Weston Wood, Bin Li, Brooks Lively, and Wei-Hong Zhong. "Electrical and dielectric sensitivities to thermal processes in carbon nanofiber/high-density polyethylene composites." Science and Engineering of Composite Materials 18, no. 1-2 (2011): 51–60. http://dx.doi.org/10.1515/secm.2011.007.
Full textGonçalves, Jordana, Patrícia Lima, Beate Krause, et al. "Electrically Conductive Polyetheretherketone Nanocomposite Filaments: From Production to Fused Deposition Modeling." Polymers 10, no. 8 (2018): 925. http://dx.doi.org/10.3390/polym10080925.
Full textPotensa, Bruno Santos, Grazieli Olinda Martins, Silvania Lanfredi, and Marcos Augusto Lima Nobre. "New Additive Type Amorphous-Carbon/Zn Modifier of the Thermal Conductivity of Alcohol Fuel." Materials Science Forum 820 (June 2015): 384–89. http://dx.doi.org/10.4028/www.scientific.net/msf.820.384.
Full textDuc, Huynh Mai, Dat Nguyen Huu, Trung Tran Huu, et al. "The Effect of Multiwalled Carbon Nanotubes on the Thermal Conductivity and Cellular Size of Polyurethane Foam." Advances in Polymer Technology 2021 (January 6, 2021): 1–8. http://dx.doi.org/10.1155/2021/6634545.
Full textZandi, F., M. Rezaei, and A. Kasiri. "Effect of Nanoclay on the Physical-Mechanical and Thermal Properties and Microstructure of Extruded Noncross-Linked LDPE Nanocomposite Foams." Key Engineering Materials 471-472 (February 2011): 751–56. http://dx.doi.org/10.4028/www.scientific.net/kem.471-472.751.
Full textBarai, Divya, Sohan Parbat, and Bharat Bhanvase. "Synthesis and thermal conductivity of functionalized biocarbon-Fe3O4 nanocomposite-based green nanofluid for heat transfer applications." E3S Web of Conferences 321 (2021): 01003. http://dx.doi.org/10.1051/e3sconf/202132101003.
Full text