To see the other types of publications on this topic, follow the link: Nanocontatos.

Journal articles on the topic 'Nanocontatos'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nanocontatos.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

LUKASZEW, R. A., Z. ZHANG, D. PEARSON, and A. ZAMBANO. "MAGNETO-TRANSPORT IN NANOPATTERNED EPITAXIAL Ni FILMS." International Journal of Nanoscience 03, no. 06 (2004): 729–35. http://dx.doi.org/10.1142/s0219581x04002589.

Full text
Abstract:
The latest reports on ballistic magneto-resistance in electrochemically defined nanocontacts between Ni wires have shown surprisingly large magneto-resistive effects (several thousands percent) that are still not understood. In addition, there is strong controversy on the interpretation of this effect. Thus, in an attempt to resolve some of the relevant issues surrounding this effect, we report our work on lithographically patterned nanocontacts on epitaxial Ni films. Our results indicate that there are domain-wall related magneto-resistance effects in these nanostructures but the overall effe
APA, Harvard, Vancouver, ISO, and other styles
2

Nikolic, Nebojsa. "Magnetic effects in electrochemistry." Journal of the Serbian Chemical Society 70, no. 5 (2005): 785–87. http://dx.doi.org/10.2298/jsc0505785n.

Full text
Abstract:
The effect of imposed magnetic fields onto the electrodeposition of magnetic (nickel) and non ? magnetic (copper) metals was analysed. Also, magnetic properties of electrochemically obtained nanocontacts were examined. An effort to establish a possible correlation between the morphologies of the nanocontacts and the effect of the very large ballistic magnetoresistance (BMR effect) was made.
APA, Harvard, Vancouver, ISO, and other styles
3

Kavanagh, Karen L. "Nanocontacts." Semiconductor Science and Technology 29, no. 5 (2014): 050301. http://dx.doi.org/10.1088/0268-1242/29/5/050301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dokukin, S. A., S. V. Kolesnikov, and A. M. Saletsky. "Molecular dynamics simulation of the formation of Cu–Pt nanocontacts in the mechanically controlled break junction experiments." Physical Chemistry Chemical Physics 22, no. 28 (2020): 16136–42. http://dx.doi.org/10.1039/d0cp02903c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lainé, Antoine, Andrea Vanossi, Antoine Niguès, Erio Tosatti, and Alessandro Siria. "Amplitude nanofriction spectroscopy." Nanoscale 13, no. 3 (2021): 1955–60. http://dx.doi.org/10.1039/d0nr07925a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Темирязев, А. Г., М. П. Темирязева, А. В. Здоровейщев та ін. "Формирование магнитных наноструктур с помощью зонда атомно-силового микроскопа". Журнал технической физики 89, № 11 (2019): 1807. http://dx.doi.org/10.21883/jtf.2019.11.48349.120-19.

Full text
Abstract:
The paper presents examples of the use of pulse force nanolithography, performed with a probe of an atomic force microscope, to form magnetic nanowires, nanocontacts, one- and two-dimensional arrays with characteristic dimensions of about 50-100 nm.
APA, Harvard, Vancouver, ISO, and other styles
7

Kulinich, S. I., R. I. Shekhter, I. V. Krive, S. I. Kulinich, and I. V. Krive. "Hot electrons in nanocontacts." Low Temperature Physics 26, no. 6 (2000): 437–40. http://dx.doi.org/10.1063/1.593922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gnecco, Enrico, Sabine Maier, and Ernst Meyer. "Superlubricity of dry nanocontacts." Journal of Physics: Condensed Matter 20, no. 35 (2008): 354004. http://dx.doi.org/10.1088/0953-8984/20/35/354004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brandbyge, Mads, Mads R. Sørensen, and Karsten W. Jacobsen. "Conductance eigenchannels in nanocontacts." Physical Review B 56, no. 23 (1997): 14956–59. http://dx.doi.org/10.1103/physrevb.56.14956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhu, Y. F., and G. Q. Di. "Magnetostriction and magnetoresistance in nanocontacts." Journal of Magnetism and Magnetic Materials 302, no. 1 (2006): 82–85. http://dx.doi.org/10.1016/j.jmmm.2005.08.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Yu-Xian, Yong Guo, and Bo-Zang Li. "Quantum magnetocapacitance in ferromagnetic nanocontacts." Physics Letters A 342, no. 5-6 (2005): 478–83. http://dx.doi.org/10.1016/j.physleta.2005.05.091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Minowa, T., S. Kurokawa, and A. Sakai. "Break conductance of Al nanocontacts." Physica E: Low-dimensional Systems and Nanostructures 29, no. 3-4 (2005): 495–99. http://dx.doi.org/10.1016/j.physe.2005.06.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Arzubiaga, Libe, Federico Golmar, Roger Llopis, Fèlix Casanova, and Luis E. Hueso. "Tailoring palladium nanocontacts by electromigration." Applied Physics Letters 102, no. 19 (2013): 193103. http://dx.doi.org/10.1063/1.4804559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Minowa, Takeshi, Makusu Tsutsui, Shu Kurokawa, and Akira Sakai. "Break Conductance of Pt Nanocontacts." Japanese Journal of Applied Physics 44, no. 8 (2005): 6321–26. http://dx.doi.org/10.1143/jjap.44.6321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Versluijs, J. J., and J. M. D. Coey. "Magnetotransport properties of Fe3O4 nanocontacts." Journal of Magnetism and Magnetic Materials 226-230 (May 2001): 688–89. http://dx.doi.org/10.1016/s0304-8853(01)00246-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Popescu, L. M., Mihaela Gherghiceanu, E. Mandache, and D. Cretoiu. "Caveolae in smooth muscles: nanocontacts." Journal of Cellular and Molecular Medicine 10, no. 4 (2006): 960–90. http://dx.doi.org/10.1111/j.1582-4934.2006.tb00539.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zhuravlev, M. Ye, E. Y. Tsymbal, S. S. Jaswal, A. V. Vedyayev, and B. Dieny. "Spin blockade in ferromagnetic nanocontacts." Applied Physics Letters 83, no. 17 (2003): 3534–36. http://dx.doi.org/10.1063/1.1622986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Landman, Uzi, Robert N. Barnett, Andrew G. Scherbakov, and Phaedon Avouris. "Metal-Semiconductor Nanocontacts: Silicon Nanowires." Physical Review Letters 85, no. 9 (2000): 1958–61. http://dx.doi.org/10.1103/physrevlett.85.1958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Buzio, R., C. Boragno, and U. Valbusa. "Friction laws for lubricated nanocontacts." Journal of Chemical Physics 125, no. 9 (2006): 094708. http://dx.doi.org/10.1063/1.2345369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yuki, Kenji, Shu Kurokawa, and Akira Sakai. "Quantized Conductance in Pt Nanocontacts." Japanese Journal of Applied Physics 39, Part 1, No. 7B (2000): 4593–95. http://dx.doi.org/10.1143/jjap.39.4593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Requist, Ryan, Pier Paolo Baruselli, Alexander Smogunov, Michele Fabrizio, Silvio Modesti, and Erio Tosatti. "Metallic, magnetic and molecular nanocontacts." Nature Nanotechnology 11, no. 6 (2016): 499–508. http://dx.doi.org/10.1038/nnano.2016.55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

SAKAI, Akira. "Quantized Conductance in Metallic Nanocontacts." Hyomen Kagaku 20, no. 8 (1999): 554–62. http://dx.doi.org/10.1380/jsssj.20.554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Michal, Guillaume, Cheng Lu, and A. Kiet Tieu. "Multiscale model of elastic nanocontacts." Computational Materials Science 81 (January 2014): 98–103. http://dx.doi.org/10.1016/j.commatsci.2013.06.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Yan, Min Jia, Huanan Li, Yong Hu, and An Du. "Arrangement effects of nanocontacts on the magnetic vortex gyration in a confined multi-nanocontacts structure." Journal of Magnetism and Magnetic Materials 401 (March 2016): 124–28. http://dx.doi.org/10.1016/j.jmmm.2015.10.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nosonovsky, Michael, and Bharat Bhushan. "Capillary effects and instabilities in nanocontacts." Ultramicroscopy 108, no. 10 (2008): 1181–85. http://dx.doi.org/10.1016/j.ultramic.2008.04.092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kawakubo, Toru, Daisuke Miura, Shu Kurokawa, and Akira Sakai. "High-Bias Break of Sn Nanocontacts." Japanese Journal of Applied Physics 46, no. 11 (2007): 7596–98. http://dx.doi.org/10.1143/jjap.46.7596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhdanov, Vladimir P., and Bengt Kasemo. "Potential profiles near the Schottky nanocontacts." Physica E: Low-dimensional Systems and Nanostructures 43, no. 8 (2011): 1486–89. http://dx.doi.org/10.1016/j.physe.2011.04.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Céspedes, O., M. A. Bari, C. Dennis, et al. "Fabrication and characterisation of Ni nanocontacts." Journal of Magnetism and Magnetic Materials 242-245 (April 2002): 492–94. http://dx.doi.org/10.1016/s0304-8853(01)01053-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kervennic, Y. V., D. Vanmaekelbergh, L. P. Kouwenhoven, and H. S. J. Van der Zant. "Planar nanocontacts with atomically controlled separation." Applied Physics Letters 83, no. 18 (2003): 3782–84. http://dx.doi.org/10.1063/1.1623317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Itakura, Katsuhiro, Hiroshi Yasuda, Shu Kurokawa, and Akira Sakai. "Conductance of Rh and Ru Nanocontacts." Journal of the Physical Society of Japan 69, no. 2 (2000): 625–26. http://dx.doi.org/10.1143/jpsj.69.625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Khater, A., B. Bourahla, and R. Tigrine. "Vibration dynamics of single atomic nanocontacts." Journal of Physics: Conference Series 92 (December 1, 2007): 012032. http://dx.doi.org/10.1088/1742-6596/92/1/012032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Park, W. I., Gyu-Chul Yi, J. W. Kim, and S. M. Park. "Schottky nanocontacts on ZnO nanorod arrays." Applied Physics Letters 82, no. 24 (2003): 4358–60. http://dx.doi.org/10.1063/1.1584089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Vostokov, N. V., and V. I. Shashkin. "Electrical properties of metal-semiconductor nanocontacts." Semiconductors 38, no. 9 (2004): 1047–52. http://dx.doi.org/10.1134/1.1797483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bourahla, B., A. Khater, O. Rafil, and R. Tigrine. "Vibration spectra of single atomic nanocontacts." Journal of Physics: Condensed Matter 18, no. 39 (2006): 8683–91. http://dx.doi.org/10.1088/0953-8984/18/39/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bourahla, B., A. Khater, R. Tigrine, O. Rafil, and M. Abou Ghantous. "Magnon coherent conductance via atomic nanocontacts." Journal of Physics: Condensed Matter 19, no. 26 (2007): 266208. http://dx.doi.org/10.1088/0953-8984/19/26/266208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yang, C. S., C. Zhang, J. Redepenning, and B. Doudin. "In situ magnetoresistance of Ni nanocontacts." Applied Physics Letters 84, no. 15 (2004): 2865–67. http://dx.doi.org/10.1063/1.1705723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Buzio, Renato, Andrea Gerbi, Cristina Bernini, Luca Repetto, and Andrea Vanossi. "Graphite superlubricity enabled by triboinduced nanocontacts." Carbon 184 (October 2021): 875–90. http://dx.doi.org/10.1016/j.carbon.2021.08.071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

HIROSE, KENJI, and NOBUHIKO KOBAYASHI. "NONLINEAR BEHAVIOR OF QUANTUM TRANSPORT THROUGH NANOCONTACTS — AB INITIO CALCULATION STUDY." Surface Review and Letters 13, no. 02n03 (2006): 179–83. http://dx.doi.org/10.1142/s0218625x0600827x.

Full text
Abstract:
We study the electronic states and current–voltage (I–V) characteristics of junction systems with atomic-scale nanocontacts as a function of the distance between electrodes by using the first-principles recursion-transfer-matrix (RTM) method combined with nonequilibrium Green function (NEGF) method. We observe a strong nonlinear behavior in the I–V characteristics and correspondingly a gap structure emerges in the differential conductance. We find that such a nonlinear behavior appears when the transport properties change from tunneling to ballistic regimes.
APA, Harvard, Vancouver, ISO, and other styles
39

Zavodinsky, V. G., and O. I. Kaminsky. "QUANTUM-MECHANICAL STUDY OF FRICTION IN NANOCONTACTS." Nanoscience and Technology: An International Journal 8, no. 3 (2017): 231–41. http://dx.doi.org/10.1615/nanoscitechnolintj.v8.i3.60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Löhneysen, H. v., C. Paschke, H. B. Weber, and E. Scheer. "Universal conductance fluctuations in Cu : Mn nanocontacts." Physica B: Condensed Matter 284-288 (July 2000): 1858–59. http://dx.doi.org/10.1016/s0921-4526(99)02874-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Díaz, M., and A. C. González. "Conductance of Pd nanocontacts measured in air." Physica B: Condensed Matter 423 (August 2013): 45–48. http://dx.doi.org/10.1016/j.physb.2013.04.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sekiguchi, Koji, Masayoshi Shimizu, Eiji Saitoh, and Hideki Miyajima. "Differential conductance anomaly in ferromagnetic Ni nanocontacts." Journal of Magnetism and Magnetic Materials 282 (November 2004): 143–46. http://dx.doi.org/10.1016/j.jmmm.2004.04.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Yang, C. S., C. Zhang, J. Redepenning, and B. Doudin. "Anisotropy magnetoresistance of quantum ballistic nickel nanocontacts." Journal of Magnetism and Magnetic Materials 286 (February 2005): 186–90. http://dx.doi.org/10.1016/j.jmmm.2004.09.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Paul, William, David Oliver, and Peter Grütter. "Indentation-formed nanocontacts: an atomic-scale perspective." Phys. Chem. Chem. Phys. 16, no. 18 (2014): 8201–22. http://dx.doi.org/10.1039/c3cp54869d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mizobata, Jun-ichi, Akihiro Fujii, Shu Kurokawa, and Akira Sakai. "Conductance of Al Nanocontacts under High Biases." Japanese Journal of Applied Physics 42, Part 1, No. 7B (2003): 4680–83. http://dx.doi.org/10.1143/jjap.42.4680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Klavsyuk, A. L., V. S. Stepanyuk, W. Hergert, A. M. Saletsky, P. Bruno, and I. Mertig. "Structure and electronic states in Cu nanocontacts." Surface Science 566-568 (September 2004): 944–48. http://dx.doi.org/10.1016/j.susc.2004.06.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kizuka, Tokushi, and Hisanori Aoki. "The Dynamics of Electromigration in Copper Nanocontacts." Applied Physics Express 2 (June 19, 2009): 075003. http://dx.doi.org/10.1143/apex.2.075003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rippard, W. H., M. R. Pufall, M. L. Schneider, K. Garello, and S. E. Russek. "Spin transfer precessional dynamics in Co60Fe20B20 nanocontacts." Journal of Applied Physics 103, no. 5 (2008): 053914. http://dx.doi.org/10.1063/1.2838490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Tatara, G., and N. Garcia. "Theory of domain wall resistance in nanocontacts." IEEE Transactions on Magnetics 36, no. 5 (2000): 2839–40. http://dx.doi.org/10.1109/20.908603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hägglund, Carl, and Vladimir P. Zhdanov. "Charge distribution on and near Schottky nanocontacts." Physica E: Low-dimensional Systems and Nanostructures 33, no. 1 (2006): 296–302. http://dx.doi.org/10.1016/j.physe.2006.03.152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!