Academic literature on the topic 'Nanocrystal Solids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanocrystal Solids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanocrystal Solids"
Li, Zhaohan, Zachary L. Robinson, Paolo Elvati, Angela Violi, and Uwe R. Kortshagen. "Distance-dependent resonance energy transfer in alkyl-terminated Si nanocrystal solids." Journal of Chemical Physics 156, no. 12 (March 28, 2022): 124705. http://dx.doi.org/10.1063/5.0079571.
Full textLin, Weyde M. M., Maksym Yarema, Mengxia Liu, Edward Sargent, and Vanessa Wood. "Nanocrystal Quantum Dot Devices: How the Lead Sulfide (PbS) System Teaches Us the Importance of Surfaces." CHIMIA International Journal for Chemistry 75, no. 5 (May 28, 2021): 398–413. http://dx.doi.org/10.2533/chimia.2021.398.
Full textBozyigit, D., and V. Wood. "Electrical characterization of nanocrystal solids." J. Mater. Chem. C 2, no. 17 (2014): 3172–84. http://dx.doi.org/10.1039/c3tc32235a.
Full textKovalenko, Maksym V. "Chemical Design of Nanocrystal Solids." CHIMIA International Journal for Chemistry 67, no. 5 (May 29, 2013): 316–21. http://dx.doi.org/10.2533/chimia.2013.316.
Full textGu, X. Wendy, Xingchen Ye, David M. Koshy, Shraddha Vachhani, Peter Hosemann, and A. Paul Alivisatos. "Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals." Proceedings of the National Academy of Sciences 114, no. 11 (February 27, 2017): 2836–41. http://dx.doi.org/10.1073/pnas.1618508114.
Full textYu, D. "n-Type Conducting CdSe Nanocrystal Solids." Science 300, no. 5623 (May 23, 2003): 1277–80. http://dx.doi.org/10.1126/science.1084424.
Full textKraabel, B., A. Malko, J. Hollingsworth, and V. I. Klimov. "Ultrafast dynamic holography in nanocrystal solids." Applied Physics Letters 78, no. 13 (March 26, 2001): 1814–16. http://dx.doi.org/10.1063/1.1358365.
Full textOh, Jae Taek, Sung Yong Bae, Su Ryong Ha, Hongjoo Cho, Sung Jun Lim, Danil W. Boukhvalov, Younghoon Kim, and Hyosung Choi. "Water-resistant AgBiS2 colloidal nanocrystal solids for eco-friendly thin film photovoltaics." Nanoscale 11, no. 19 (2019): 9633–40. http://dx.doi.org/10.1039/c9nr01192g.
Full textYazdani, Nuri, Deniz Bozyigit, Olesya Yarema, Maksym Yarema, and Vanessa Wood. "Hole Mobility in Nanocrystal Solids as a Function of Constituent Nanocrystal Size." Journal of Physical Chemistry Letters 5, no. 20 (October 3, 2014): 3522–27. http://dx.doi.org/10.1021/jz5015086.
Full textKinder, Erich, Pavel Moroz, Geoffrey Diederich, Alexa Johnson, Maria Kirsanova, Alexander Nemchinov, Timothy O’Connor, Dan Roth, and Mikhail Zamkov. "Fabrication of All-Inorganic Nanocrystal Solids through Matrix Encapsulation of Nanocrystal Arrays." Journal of the American Chemical Society 133, no. 50 (December 21, 2011): 20488–99. http://dx.doi.org/10.1021/ja208670r.
Full textDissertations / Theses on the topic "Nanocrystal Solids"
Kholmicheva, Natalia N. "Exciton Diffusion in Nanocrystal Solids." Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1498061834549115.
Full textMoroz, Pavel. "A Novel Approach for the Fabrication of All-Inorganic Nanocrystal Solids: Semiconductor Matrix Encapsulated Nanocrystal Arrays." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1435324105.
Full textLauth, Jannika [Verfasser], and Horst [Akademischer Betreuer] Weller. "Towards Functional Optoelectronic Nanocrystal Solids : CuIn(Ga)Se2, InxSey and GaAs / Jannika Lauth. Betreuer: Horst Weller." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2014. http://d-nb.info/1048626369/34.
Full textRoyo, Romero Luis. "Optoelectronic Characteristics of Inorganic Nanocrystals and Their Solids." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1555422820907262.
Full textAl-Ahmadi, Ameenah N. "EXCITATION ENERGY TRANSFER IN QUANTUM-DOT SOLIDS." Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1146849631.
Full textSchmall, Nicholas Edward. "Fabrication of Binary Quantum Solids From Colloidal Semiconductor Quantum Dots." Bowling Green State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1245257669.
Full textLópez, Vidrier Julià. "Silicon Nanocrystal Superlattices for Light-Emitting and Photovoltaic Devices." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/334396.
Full textEls nanocristalls de silici han esdevingut objecte d'estudi durant l'últim quart de segle, degut a què presenten, a causa de l'efecte de confinament quàntic, unes propietats físiques dependents de la seva mida. A més, la compatibilitat del silici massiu amb la ben establerta tecnologia microelectrònica juga en favor de la seva utilització i el seu desenvolupament per a futures aplicacions en el camp de la fotònica i l'optoelectrónica. El control del creixement de nanocristalls de silici es pot dur a terme mitjançant el dipòsit de superxarxes d'entre 2 i 4 nm de gruix, on capes de material estequiomètric basat en silici s'alternen amb altres de material ric en silici. Un posterior procés de recuit a alta temperatura permet la precipitació de l'excés de silici i la seva cristal.lització, tot originant una xarxa ordenada de nanocristalls de silici de mida controlada. En aquesta Tesi, s'han estudiat les propietats estructurals, òptiques, elèctriques i electro-òptiques de superxarxes de nanocristalls de silici embeguts en dues matrius diferents: òxid de silici i carbur de silici. Amb tal objectiu, s'han emprat tot un seguit de tècniques experimentals, que comprenen la caracterització estructural (microscòpia electrònica de transmissió i d'escombrat, difracció de raigs X), òptica (espectroscòpies d'absorció òptica, de fotoluminescència i dispersió Raman) i elèctrica / electro-òptica (caracterització intensitat-voltatge en foscor o sota il.luminació, electroluminescència, resposta electro-òptica), entre d'altres. Des del punt de vista del material, s'han estudiat les propietats estructurals òptimes per tal d'obtenir un perfecte ordenament en la xarxa de nanocristalls, una major qualitat cristal.lina i unes propietats d'emissió òptimes. L'optimització del material s'ha dut a terme en vistes a la seva utilització com a capa activa dins de dispositius emissors de llum i fotovoltaics, l'eficiència dels quals ha estat monitoritzada segons els diferents paràmetres estructurals (gruix de les capes nanomètriques involucrades, estequiometria, temperatura de recuit). Finalment, els nanocristalls de silici embeguts en òxid de silici han demostrat un major rendiment com a emissors de llum, mentre que una matriu de carbur de silici beneficia les propietats d'absorció i extracció (fotovoltaiques) del sistema.
Tu, Wei-Lun Scharf Thomas W. "Processing, structure, and tribological property interrelationships in sputtered nanocrystalline ZnO coatings." [Denton, Tex.] : University of North Texas, 2009. http://digital.library.unt.edu/ark:/67531/metadc12207.
Full textSmith, Andrew Michael. "Engineering semiconductor nanocrystals for molecular, cellular, and in vivo imaging." Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/37124.
Full textSong, Guangjie. "Structure analyses of cellobiose and cellulose using X-ray diffraction and solid-state NMR spectroscopy on oriented samples." Kyoto University, 2015. http://hdl.handle.net/2433/199362.
Full text0048
新制・課程博士
博士(農学)
甲第19038号
農博第2116号
新制||農||1031(附属図書館)
学位論文||H27||N4920(農学部図書室)
31989
京都大学大学院農学研究科森林科学専攻
(主査)教授 木村 恒久, 教授 西尾 嘉之, 教授 髙野 俊幸
学位規則第4条第1項該当
Books on the topic "Nanocrystal Solids"
I, Klimov Victor, ed. Semiconductor and metal nanocrystals: Synthesis and electronic and optical properties. New York: Marcel Dekker, Inc., 2004.
Find full textB, Cantor, ed. Novel nanocrystalline alloys and magnetic nanomaterials: An Oxford-Kobe materials text. Bristol: Institute of Physics Pub., 2005.
Find full text1945-, Švec Petr, Idzikowski Bogdan, Miglierini Marcel, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Properties and applications of nanocrystalline alloys from amorphous precursors. Dordrecht: Kluwer Academic Publishers, 2005.
Find full textStrek, Wieslaw, and Lukasz Marciniak. Nanocrystals for Laser-Induced Solid State Lighting. Elsevier Science & Technology Books, 2019.
Find full textEfros, Alexander L. Semiconductor Nanocrystals: From Basic Principles To Applications. Springer, 2010.
Find full textEfros, Alexander L. Semiconductor Nanocrystals: From Basic Principles to Applications. 2003.
Find full textKlimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.
Find full textKlimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.
Find full textKlimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.
Find full textKlimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.
Find full textBook chapters on the topic "Nanocrystal Solids"
Gizhevskii, B. A., A. Ya Fishman, E. A. Kozlov, T. E. Kurennykh, S. A. Petrova, I. Sh Trakhtenberg, E. V. Vykhodets, V. B. Vykhodets, and R. G. Zakharov. "Oxygen Isotope Exchange between Gaseous Phase Enriched with 18O Isotope and Nanocrystal Oxides LaMnO3+δ Obtained by Severe Plastic Deformation." In Diffusion in Solids and Liquids III, 233–38. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-51-5.233.
Full textLeite, Edson Roberto, and Caue Ribeiro. "Oriented Attachment (OA) with Solid–Solid Interface." In Crystallization and Growth of Colloidal Nanocrystals, 69–81. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1308-0_5.
Full textHe, Junhui, and Toyoki Kunitake. "In Situ Fabrication of Metal Nanoparticles in Solid Matrices." In Nanocrystals Forming Mesoscopic Structures, 91–117. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607587.ch4.
Full textZacharias, Margit. "Size Controlled Si Nanocrystals." In Advances in Solid State Physics 44, 351–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39970-4_27.
Full textFei, Bin, Yi He Zhang, and J. H. Xin. "Titania Nanocrystals Mixture for Cloths Finishing." In Solid State Phenomena, 1217–20. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.1217.
Full textMillers, Donats, Larisa Grigorjeva, Witold Łojkowski, and A. Opalińska. "Luminescence of ZrO2 Nanocrystals." In Solid State Phenomena, 103–8. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-10-8.103.
Full textOsipov, V. A. "Topological Defects in Carbon Nanocrystals." In Springer Series in Solid-State Sciences, 93–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-31264-1_5.
Full textYang, C. C., and Qing Jiang. "Size Effect on the Bandgap of Semiconductor Nanocrystals." In Solid State Phenomena, 1069–72. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.1069.
Full textLiu, Xian Ming, and Shao Yun Fu. "Synthesis and Magnetic Properties of Spherical NiO Nanocrystals." In Solid State Phenomena, 1437–42. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.1437.
Full textKim, Young Mi, Seok Ju Lee, and Ik Jin Kim. "Synthesis and Characterization of TMA-A Zeolite Nanocrystals." In Solid State Phenomena, 563–66. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.563.
Full textConference papers on the topic "Nanocrystal Solids"
Wood, Vanessa. "Charge Transport in Nanocrystal Solids." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.009.
Full textWood, Vanessa. "Charge Transport in Nanocrystal Solids." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nfm.2018.009.
Full textEfros, Alexander, and Steven Erwin. "Ligand Control of Electron Transport in Nanocrystal Solids." In Internet NanoGe Conference on Nanocrystals. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.059.
Full textCellek, O., and Matt Law. "Modeling and simulation of nanocrystal solids with rate equations." In SPIE OPTO, edited by Bernd Witzigmann, Fritz Henneberger, Yasuhiko Arakawa, and Alexandre Freundlich. SPIE, 2011. http://dx.doi.org/10.1117/12.875358.
Full textTisdale, William. "Persistent Enhancement of Exciton Diffusivity in CsPbBr3 Nanocrystal Solids." In International Conference on Emerging Light Emitting Materials. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.emlem.2022.042.
Full textTisdale, William. "Persistent Enhancement of Exciton Diffusivity in CsPbBr3 Nanocrystal Solids." In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.263.
Full textWalravens, Willem, Filip Geenen, Eduardo Solano, Jolien Dendooven, Athmane Tadjine, Nayyera Mahmoud, Gunther Roelkens, Christophe Delerue, Christophe Detavernier, and Zeger Hens. "Setting Carriers Free – Healing Faulty Interfaces Promotes Delocalization and Transport in Nanocrystal Solids." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.208.
Full textWalravens, Willem, Filip Geenen, Eduardo Solano, Jolien Dendooven, Athmane Tadjine, Nayyera Mahmoud, Gunther Roelkens, Christophe Delerue, Christophe Detavernier, and Zeger Hens. "Setting Carriers Free – Healing Faulty Interfaces Promotes Delocalization and Transport in Nanocrystal Solids." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nfm.2018.208.
Full textNizamoglu, Sedat, and Hilmi Volkan Demir. "Enhanced spontaneous emission in semiconductor nanocrystal solids using resonant energy transfer for integrated devices." In LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2008). IEEE, 2008. http://dx.doi.org/10.1109/leos.2008.4688754.
Full textCicek, Neslihan, Sedat Nizamoglu, Tuncay Ozel, Evren Mutlugun, Durmus Ugur Karatay, Tobias Otto, Vladimir Lesnyak, Nikolai Gaponik, Alexander Eychmuller, and Hilmi Volkan Demir. "Architectural tuning of color chromaticity by controlled nonradiative resonance energy transfer in CdTe nanocrystal solids." In LEOS 2009 -22nd Annuall Meeting of the IEEE Lasers and Electro-Optics Society. LEO 2009. IEEE, 2009. http://dx.doi.org/10.1109/leos.2009.5343408.
Full textReports on the topic "Nanocrystal Solids"
Sachleben, Joseph Robert. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10120364.
Full textMenkara, Hisham, and Zhitao Kang. Stable Perovskite Core-Shell Nanocrystals as Down-Converting Phosphors for Solid State Lighting. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1498642.
Full textP. D. Persans and T. M. Hayes. Final Report for Nucleation and growth of semiconductor nanocrystals by solid-phase reaction. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/861277.
Full textKundu, Janardan, Yagnaseni Ghosh, Allison M. Dennis, Han Htoon, and Jennifer A. Hollingsworth. Giant Nanocrystal Quantum Dots as Stable and Efficient Down-Conversion Phosphor for LED based Solid State Lighting. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1052390.
Full textand Moungi Bawendi, Vladimir Bulovic. Final Report for DE-FG36-08GO18007 "All-Inorganic, Efficient Photovoltaic Solid State Devices Utilizing Semiconducting Colloidal Nanocrystal Quantum Dots". Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1048894.
Full textNanocrystal-enabled solid state bonding. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/992782.
Full text