Academic literature on the topic 'Nanocrystal Solids'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanocrystal Solids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanocrystal Solids"

1

Li, Zhaohan, Zachary L. Robinson, Paolo Elvati, Angela Violi, and Uwe R. Kortshagen. "Distance-dependent resonance energy transfer in alkyl-terminated Si nanocrystal solids." Journal of Chemical Physics 156, no. 12 (March 28, 2022): 124705. http://dx.doi.org/10.1063/5.0079571.

Full text
Abstract:
Understanding and controlling the energy transfer between silicon nanocrystals is of significant importance for the design of efficient optoelectronic devices. However, previous studies on silicon nanocrystal energy transfer were limited because of the strict requirements to precisely control the inter-dot distance and to perform all measurements in air-free environments to preclude the effect of ambient oxygen. Here, we systematically investigate the distance-dependent resonance energy transfer in alkyl-terminated silicon nanocrystals for the first time. Silicon nanocrystal solids with inter-dot distances varying from 3 to 5 nm are fabricated by varying the length and surface coverage of alkyl ligands in solution-phase and gas-phase functionalized silicon nanocrystals. The inter-dot energy transfer rates are extracted from steady-state and time-resolved photoluminescence measurements, enabling a direct comparison to theoretical predictions. Our results reveal that the distance-dependent energy transfer rates in Si NCs decay faster than predicted by the Förster mechanism, suggesting higher-order multipole interactions.
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Weyde M. M., Maksym Yarema, Mengxia Liu, Edward Sargent, and Vanessa Wood. "Nanocrystal Quantum Dot Devices: How the Lead Sulfide (PbS) System Teaches Us the Importance of Surfaces." CHIMIA International Journal for Chemistry 75, no. 5 (May 28, 2021): 398–413. http://dx.doi.org/10.2533/chimia.2021.398.

Full text
Abstract:
Semiconducting thin films made from nanocrystals hold potential as composite hybrid materials with new functionalities. With nanocrystal syntheses, composition can be controlled at the sub-nanometer level, and, by tuning size, shape, and surface termination of the nanocrystals as well as their packing, it is possible to select the electronic, phononic, and photonic properties of the resulting thin films. While the ability to tune the properties of a semiconductor from the atomistic- to macro-scale using solution-based techniques presents unique opportunities, it also introduces challenges for process control and reproducibility. In this review, we use the example of well-studied lead sulfide (PbS) nanocrystals and describe the key advances in nanocrystal synthesis and thin-film fabrication that have enabled improvement in performance of photovoltaic devices. While research moves forward with novel nanocrystal materials, it is important to consider what decades of work on PbS nanocrystals has taught us and how we can apply these learnings to realize the full potential of nanocrystal solids as highly flexible materials systems for functional semiconductor thin-film devices. One key lesson is the importance of controlling and manipulating surfaces.
APA, Harvard, Vancouver, ISO, and other styles
3

Bozyigit, D., and V. Wood. "Electrical characterization of nanocrystal solids." J. Mater. Chem. C 2, no. 17 (2014): 3172–84. http://dx.doi.org/10.1039/c3tc32235a.

Full text
Abstract:
Here we provide a primer for correctly selecting and implementing optoelectronic characterization techniques on semiconductor nanocrystal solids and choosing the appropriate models with which to interpret the data.
APA, Harvard, Vancouver, ISO, and other styles
4

Kovalenko, Maksym V. "Chemical Design of Nanocrystal Solids." CHIMIA International Journal for Chemistry 67, no. 5 (May 29, 2013): 316–21. http://dx.doi.org/10.2533/chimia.2013.316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gu, X. Wendy, Xingchen Ye, David M. Koshy, Shraddha Vachhani, Peter Hosemann, and A. Paul Alivisatos. "Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals." Proceedings of the National Academy of Sciences 114, no. 11 (February 27, 2017): 2836–41. http://dx.doi.org/10.1073/pnas.1618508114.

Full text
Abstract:
Large, freestanding membranes with remarkably high elastic modulus (>10 GPa) have been fabricated through the self-assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled. Recent developments in the synthesis of polymer-grafted nanocrystals have greatly expanded the library of accessible superlattice architectures, which allows superlattice mechanical behavior to be linked to specific structural features. Here, colloidal self-assembly is used to organize polystyrene-grafted Au nanocrystals at a fluid interface to form ordered solids with sub-10-nm periodic features. Thin-film buckling and nanoindentation are used to evaluate the mechanical behavior of polymer-grafted nanocrystal superlattices while exploring the role of polymer structural conformation, nanocrystal packing, and superlattice dimensions. Superlattices containing 3–20 vol % Au are found to have an elastic modulus of ∼6–19 GPa, and hardness of ∼120–170 MPa. We find that rapidly self-assembled superlattices have the highest elastic modulus, despite containing significant structural defects. Polymer extension, interdigitation, and grafting density are determined to be critical parameters that govern superlattice elastic and plastic deformation.
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, D. "n-Type Conducting CdSe Nanocrystal Solids." Science 300, no. 5623 (May 23, 2003): 1277–80. http://dx.doi.org/10.1126/science.1084424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kraabel, B., A. Malko, J. Hollingsworth, and V. I. Klimov. "Ultrafast dynamic holography in nanocrystal solids." Applied Physics Letters 78, no. 13 (March 26, 2001): 1814–16. http://dx.doi.org/10.1063/1.1358365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oh, Jae Taek, Sung Yong Bae, Su Ryong Ha, Hongjoo Cho, Sung Jun Lim, Danil W. Boukhvalov, Younghoon Kim, and Hyosung Choi. "Water-resistant AgBiS2 colloidal nanocrystal solids for eco-friendly thin film photovoltaics." Nanoscale 11, no. 19 (2019): 9633–40. http://dx.doi.org/10.1039/c9nr01192g.

Full text
Abstract:
The AgBiS2 nanocrystal solar cells exhibit no drop in their device performance before and after the water treatment, suggesting that AgBiS2 nanocrystal solids are highly water-resistant.
APA, Harvard, Vancouver, ISO, and other styles
9

Yazdani, Nuri, Deniz Bozyigit, Olesya Yarema, Maksym Yarema, and Vanessa Wood. "Hole Mobility in Nanocrystal Solids as a Function of Constituent Nanocrystal Size." Journal of Physical Chemistry Letters 5, no. 20 (October 3, 2014): 3522–27. http://dx.doi.org/10.1021/jz5015086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kinder, Erich, Pavel Moroz, Geoffrey Diederich, Alexa Johnson, Maria Kirsanova, Alexander Nemchinov, Timothy O’Connor, Dan Roth, and Mikhail Zamkov. "Fabrication of All-Inorganic Nanocrystal Solids through Matrix Encapsulation of Nanocrystal Arrays." Journal of the American Chemical Society 133, no. 50 (December 21, 2011): 20488–99. http://dx.doi.org/10.1021/ja208670r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nanocrystal Solids"

1

Kholmicheva, Natalia N. "Exciton Diffusion in Nanocrystal Solids." Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1498061834549115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moroz, Pavel. "A Novel Approach for the Fabrication of All-Inorganic Nanocrystal Solids: Semiconductor Matrix Encapsulated Nanocrystal Arrays." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1435324105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lauth, Jannika [Verfasser], and Horst [Akademischer Betreuer] Weller. "Towards Functional Optoelectronic Nanocrystal Solids : CuIn(Ga)Se2, InxSey and GaAs / Jannika Lauth. Betreuer: Horst Weller." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2014. http://d-nb.info/1048626369/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Royo, Romero Luis. "Optoelectronic Characteristics of Inorganic Nanocrystals and Their Solids." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1555422820907262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Al-Ahmadi, Ameenah N. "EXCITATION ENERGY TRANSFER IN QUANTUM-DOT SOLIDS." Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1146849631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schmall, Nicholas Edward. "Fabrication of Binary Quantum Solids From Colloidal Semiconductor Quantum Dots." Bowling Green State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1245257669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

López, Vidrier Julià. "Silicon Nanocrystal Superlattices for Light-Emitting and Photovoltaic Devices." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/334396.

Full text
Abstract:
During the last decades, silicon nanocrystals have focused great attention due to the size-dependent physical properties they present, attributed to the quantum confinement effect. This, added to the bulk silicon compatibility with the well-established microelectronics technology and the low mining and manipulation costs this material presents, makes silicon a potential candidate for the growing photonics and optoelectronics fields. In particular, the tunnability of the electronic properties of silicon nanocrystals can be reached by controlling the nanocrystal size. This has been recently achieved by means of the superlattice approach, consisting of the alternated deposition of ultra-thin (2-4 nm) stoichiometric and silicon-rich layers of a given silicon-rich material. After a high-temperature annealing treatment, the silicon excess precipitates and crystallizes in the final form of nanocrystals, whose properties strongly depend on the fabrication process. Consequently, an ordered arrange of size-controlled nanocrystals (the superlattice) is obtained. In this Thesis Project, the structural, optical, electrical and electro-optical properties of silicon nanocrystal superlattices have been studied, using two different silicon-based materials as host matrices: silicon oxide and silicon carbide. The fabrication of these material systems has been carried out at different European institutions, specialists in the controlled deposition of nm¬thick films. Aiming at the nanocrystal superlattices characterization, different experimental techniques have been employed, which yield structural (transmission and scanning electron microscopies, X-ray diffraction), optical (optical absorption, photoluminescence and Raman scattering spectroscopies) and electrical / electro-optical (current versus voltage analysis in dark and under illumination, and electroluminescence, electro-optical response and light-beam induced photocurrent spectroscopies) information. From the material's point of view, the optimum structural properties that allow an almost perfect nanocrystal arrangement, size control and crystalline degree have been determined, always aiming at an optimum light emission and/or light absorption. Within this frame, fundamental studies have been performed to assess the crystalline degree of the nanostructures (confirming an atomic-thin transition layer between the crystalline nanocrystal core and the surrounding matrix), and to carefully inspect the controversial origin of luminescence within the nanocrystals when embedded in a silicon oxide matrix; as well, the structural conditions under which size-confinement of nanocrystals is reached when embedded in silicon carbide are reported. Once the best structural and optical properties from silicon nanocrystal superlattices were found, these material systems have been employed as active layers for light emitting and light converter (i.e. photovoltaic) devices. In oxide-based systems, the mechanisms that govern charge transport through the superlattices have been studied, and impact ionization has been hypothesized as the main electroluminescence excitation mechanism according to the experimental observations. In addition, the structural conditions (sublayer thicknesses, silicon-rich layer stoichiometry) that yield a maximum electroluminescence efficiency have been determined. Regarding silicon nanocrystals embedded in silicon carbide, a correlation has been established between the charge photogeneration and extraction when acting as an absorber material, which allowed assessing the structural conditions that maximize charge transport while minimizing the non-desirable recombination. Finally, via spectral response measurements, quantum confinement of excitons within silicon nanocrystals has been reported in silicon carbide matrix for the first time. In conclusion, the study on silicon nanocrystal superlattices developed within the present Thesis Project reveals the potential of silicon oxide as host matrix for silicon nanostructures to be used as light-emitting devices; instead, silicon carbide has proved a more suitable host material for photovoltaic applications, which sheds light to the future application of silicon nanocrystals as the top cell of an all-Si tandem cell.
Els nanocristalls de silici han esdevingut objecte d'estudi durant l'últim quart de segle, degut a què presenten, a causa de l'efecte de confinament quàntic, unes propietats físiques dependents de la seva mida. A més, la compatibilitat del silici massiu amb la ben establerta tecnologia microelectrònica juga en favor de la seva utilització i el seu desenvolupament per a futures aplicacions en el camp de la fotònica i l'optoelectrónica. El control del creixement de nanocristalls de silici es pot dur a terme mitjançant el dipòsit de superxarxes d'entre 2 i 4 nm de gruix, on capes de material estequiomètric basat en silici s'alternen amb altres de material ric en silici. Un posterior procés de recuit a alta temperatura permet la precipitació de l'excés de silici i la seva cristal.lització, tot originant una xarxa ordenada de nanocristalls de silici de mida controlada. En aquesta Tesi, s'han estudiat les propietats estructurals, òptiques, elèctriques i electro-òptiques de superxarxes de nanocristalls de silici embeguts en dues matrius diferents: òxid de silici i carbur de silici. Amb tal objectiu, s'han emprat tot un seguit de tècniques experimentals, que comprenen la caracterització estructural (microscòpia electrònica de transmissió i d'escombrat, difracció de raigs X), òptica (espectroscòpies d'absorció òptica, de fotoluminescència i dispersió Raman) i elèctrica / electro-òptica (caracterització intensitat-voltatge en foscor o sota il.luminació, electroluminescència, resposta electro-òptica), entre d'altres. Des del punt de vista del material, s'han estudiat les propietats estructurals òptimes per tal d'obtenir un perfecte ordenament en la xarxa de nanocristalls, una major qualitat cristal.lina i unes propietats d'emissió òptimes. L'optimització del material s'ha dut a terme en vistes a la seva utilització com a capa activa dins de dispositius emissors de llum i fotovoltaics, l'eficiència dels quals ha estat monitoritzada segons els diferents paràmetres estructurals (gruix de les capes nanomètriques involucrades, estequiometria, temperatura de recuit). Finalment, els nanocristalls de silici embeguts en òxid de silici han demostrat un major rendiment com a emissors de llum, mentre que una matriu de carbur de silici beneficia les propietats d'absorció i extracció (fotovoltaiques) del sistema.
APA, Harvard, Vancouver, ISO, and other styles
8

Tu, Wei-Lun Scharf Thomas W. "Processing, structure, and tribological property interrelationships in sputtered nanocrystalline ZnO coatings." [Denton, Tex.] : University of North Texas, 2009. http://digital.library.unt.edu/ark:/67531/metadc12207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, Andrew Michael. "Engineering semiconductor nanocrystals for molecular, cellular, and in vivo imaging." Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/37124.

Full text
Abstract:
Biomedicine has recently exploited many nanotechnology platforms for the detection and treatment of disease as well as for the fundamental study of cellular biology. A prime example of these successes is the implementation of semiconductor quantum dots in a wide range of biological and medical applications, from in vitro biosensing to in vivo cancer imaging. Quantum dots are nearly spherical nanocrystals composed of semiconductor materials that can emit fluorescent light with high intensity and a strong resistance to degradation. The aim of this thesis is to understand the fundamental physics of colloidal quantum dots, to engineer their optical and structural properties for applications in biology and medicine, and to examine the interaction of these particles with biomolecules and living cells. Toward these goals, new synthetic strategies for colloidal nanocrystals have been developed, implementing a cation exchange method for independent tuning of size and fluorescence, and a bandgap engineering technique that utilizes mechanical strain imposed by coherent shell growth. In addition, stable nanocrystals have been prepared with ultrathin coatings (< 2 nm), 'amphibious' solubility, and broadly tunable bioaffinity, induced by self-assembly with polyhistidine-sequences on recombinant proteins. Finally, colloidal quantum dots have been studied in biological fluids and living cells in order to elucidate their interactions with biological systems. It was found that these interactions are strongly dependent on the size of the nanocrystal, and cytotoxic effects of these particles are largely independent of their composition of heavy metal atoms, demonstrating that the rule book for toxicology must be rewritten for nanomaterials.
APA, Harvard, Vancouver, ISO, and other styles
10

Song, Guangjie. "Structure analyses of cellobiose and cellulose using X-ray diffraction and solid-state NMR spectroscopy on oriented samples." Kyoto University, 2015. http://hdl.handle.net/2433/199362.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第19038号
農博第2116号
新制||農||1031(附属図書館)
学位論文||H27||N4920(農学部図書室)
31989
京都大学大学院農学研究科森林科学専攻
(主査)教授 木村 恒久, 教授 西尾 嘉之, 教授 髙野 俊幸
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Nanocrystal Solids"

1

I, Klimov Victor, ed. Semiconductor and metal nanocrystals: Synthesis and electronic and optical properties. New York: Marcel Dekker, Inc., 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

B, Cantor, ed. Novel nanocrystalline alloys and magnetic nanomaterials: An Oxford-Kobe materials text. Bristol: Institute of Physics Pub., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1945-, Švec Petr, Idzikowski Bogdan, Miglierini Marcel, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Properties and applications of nanocrystalline alloys from amorphous precursors. Dordrecht: Kluwer Academic Publishers, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Strek, Wieslaw, and Lukasz Marciniak. Nanocrystals for Laser-Induced Solid State Lighting. Elsevier Science & Technology Books, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Efros, Alexander L. Semiconductor Nanocrystals: From Basic Principles To Applications. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Efros, Alexander L. Semiconductor Nanocrystals: From Basic Principles to Applications. 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Klimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Klimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Klimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klimov, Victor I. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. Taylor & Francis Group, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanocrystal Solids"

1

Gizhevskii, B. A., A. Ya Fishman, E. A. Kozlov, T. E. Kurennykh, S. A. Petrova, I. Sh Trakhtenberg, E. V. Vykhodets, V. B. Vykhodets, and R. G. Zakharov. "Oxygen Isotope Exchange between Gaseous Phase Enriched with 18O Isotope and Nanocrystal Oxides LaMnO3+δ Obtained by Severe Plastic Deformation." In Diffusion in Solids and Liquids III, 233–38. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-51-5.233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leite, Edson Roberto, and Caue Ribeiro. "Oriented Attachment (OA) with Solid–Solid Interface." In Crystallization and Growth of Colloidal Nanocrystals, 69–81. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1308-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

He, Junhui, and Toyoki Kunitake. "In Situ Fabrication of Metal Nanoparticles in Solid Matrices." In Nanocrystals Forming Mesoscopic Structures, 91–117. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607587.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zacharias, Margit. "Size Controlled Si Nanocrystals." In Advances in Solid State Physics 44, 351–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39970-4_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fei, Bin, Yi He Zhang, and J. H. Xin. "Titania Nanocrystals Mixture for Cloths Finishing." In Solid State Phenomena, 1217–20. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.1217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Millers, Donats, Larisa Grigorjeva, Witold Łojkowski, and A. Opalińska. "Luminescence of ZrO2 Nanocrystals." In Solid State Phenomena, 103–8. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-10-8.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Osipov, V. A. "Topological Defects in Carbon Nanocrystals." In Springer Series in Solid-State Sciences, 93–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-31264-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, C. C., and Qing Jiang. "Size Effect on the Bandgap of Semiconductor Nanocrystals." In Solid State Phenomena, 1069–72. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.1069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Xian Ming, and Shao Yun Fu. "Synthesis and Magnetic Properties of Spherical NiO Nanocrystals." In Solid State Phenomena, 1437–42. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.1437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Young Mi, Seok Ju Lee, and Ik Jin Kim. "Synthesis and Characterization of TMA-A Zeolite Nanocrystals." In Solid State Phenomena, 563–66. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.563.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanocrystal Solids"

1

Wood, Vanessa. "Charge Transport in Nanocrystal Solids." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wood, Vanessa. "Charge Transport in Nanocrystal Solids." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nfm.2018.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Efros, Alexander, and Steven Erwin. "Ligand Control of Electron Transport in Nanocrystal Solids." In Internet NanoGe Conference on Nanocrystals. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cellek, O., and Matt Law. "Modeling and simulation of nanocrystal solids with rate equations." In SPIE OPTO, edited by Bernd Witzigmann, Fritz Henneberger, Yasuhiko Arakawa, and Alexandre Freundlich. SPIE, 2011. http://dx.doi.org/10.1117/12.875358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tisdale, William. "Persistent Enhancement of Exciton Diffusivity in CsPbBr3 Nanocrystal Solids." In International Conference on Emerging Light Emitting Materials. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.emlem.2022.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tisdale, William. "Persistent Enhancement of Exciton Diffusivity in CsPbBr3 Nanocrystal Solids." In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Walravens, Willem, Filip Geenen, Eduardo Solano, Jolien Dendooven, Athmane Tadjine, Nayyera Mahmoud, Gunther Roelkens, Christophe Delerue, Christophe Detavernier, and Zeger Hens. "Setting Carriers Free – Healing Faulty Interfaces Promotes Delocalization and Transport in Nanocrystal Solids." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Walravens, Willem, Filip Geenen, Eduardo Solano, Jolien Dendooven, Athmane Tadjine, Nayyera Mahmoud, Gunther Roelkens, Christophe Delerue, Christophe Detavernier, and Zeger Hens. "Setting Carriers Free – Healing Faulty Interfaces Promotes Delocalization and Transport in Nanocrystal Solids." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nfm.2018.208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nizamoglu, Sedat, and Hilmi Volkan Demir. "Enhanced spontaneous emission in semiconductor nanocrystal solids using resonant energy transfer for integrated devices." In LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2008). IEEE, 2008. http://dx.doi.org/10.1109/leos.2008.4688754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cicek, Neslihan, Sedat Nizamoglu, Tuncay Ozel, Evren Mutlugun, Durmus Ugur Karatay, Tobias Otto, Vladimir Lesnyak, Nikolai Gaponik, Alexander Eychmuller, and Hilmi Volkan Demir. "Architectural tuning of color chromaticity by controlled nonradiative resonance energy transfer in CdTe nanocrystal solids." In LEOS 2009 -22nd Annuall Meeting of the IEEE Lasers and Electro-Optics Society. LEO 2009. IEEE, 2009. http://dx.doi.org/10.1109/leos.2009.5343408.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nanocrystal Solids"

1

Sachleben, Joseph Robert. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10120364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Menkara, Hisham, and Zhitao Kang. Stable Perovskite Core-Shell Nanocrystals as Down-Converting Phosphors for Solid State Lighting. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1498642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

P. D. Persans and T. M. Hayes. Final Report for Nucleation and growth of semiconductor nanocrystals by solid-phase reaction. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/861277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kundu, Janardan, Yagnaseni Ghosh, Allison M. Dennis, Han Htoon, and Jennifer A. Hollingsworth. Giant Nanocrystal Quantum Dots as Stable and Efficient Down-Conversion Phosphor for LED based Solid State Lighting. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1052390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

and Moungi Bawendi, Vladimir Bulovic. Final Report for DE-FG36-08GO18007 "All-Inorganic, Efficient Photovoltaic Solid State Devices Utilizing Semiconducting Colloidal Nanocrystal Quantum Dots". Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1048894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nanocrystal-enabled solid state bonding. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/992782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography