To see the other types of publications on this topic, follow the link: Nanocrystal Solids.

Journal articles on the topic 'Nanocrystal Solids'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nanocrystal Solids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Li, Zhaohan, Zachary L. Robinson, Paolo Elvati, Angela Violi, and Uwe R. Kortshagen. "Distance-dependent resonance energy transfer in alkyl-terminated Si nanocrystal solids." Journal of Chemical Physics 156, no. 12 (March 28, 2022): 124705. http://dx.doi.org/10.1063/5.0079571.

Full text
Abstract:
Understanding and controlling the energy transfer between silicon nanocrystals is of significant importance for the design of efficient optoelectronic devices. However, previous studies on silicon nanocrystal energy transfer were limited because of the strict requirements to precisely control the inter-dot distance and to perform all measurements in air-free environments to preclude the effect of ambient oxygen. Here, we systematically investigate the distance-dependent resonance energy transfer in alkyl-terminated silicon nanocrystals for the first time. Silicon nanocrystal solids with inter-dot distances varying from 3 to 5 nm are fabricated by varying the length and surface coverage of alkyl ligands in solution-phase and gas-phase functionalized silicon nanocrystals. The inter-dot energy transfer rates are extracted from steady-state and time-resolved photoluminescence measurements, enabling a direct comparison to theoretical predictions. Our results reveal that the distance-dependent energy transfer rates in Si NCs decay faster than predicted by the Förster mechanism, suggesting higher-order multipole interactions.
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Weyde M. M., Maksym Yarema, Mengxia Liu, Edward Sargent, and Vanessa Wood. "Nanocrystal Quantum Dot Devices: How the Lead Sulfide (PbS) System Teaches Us the Importance of Surfaces." CHIMIA International Journal for Chemistry 75, no. 5 (May 28, 2021): 398–413. http://dx.doi.org/10.2533/chimia.2021.398.

Full text
Abstract:
Semiconducting thin films made from nanocrystals hold potential as composite hybrid materials with new functionalities. With nanocrystal syntheses, composition can be controlled at the sub-nanometer level, and, by tuning size, shape, and surface termination of the nanocrystals as well as their packing, it is possible to select the electronic, phononic, and photonic properties of the resulting thin films. While the ability to tune the properties of a semiconductor from the atomistic- to macro-scale using solution-based techniques presents unique opportunities, it also introduces challenges for process control and reproducibility. In this review, we use the example of well-studied lead sulfide (PbS) nanocrystals and describe the key advances in nanocrystal synthesis and thin-film fabrication that have enabled improvement in performance of photovoltaic devices. While research moves forward with novel nanocrystal materials, it is important to consider what decades of work on PbS nanocrystals has taught us and how we can apply these learnings to realize the full potential of nanocrystal solids as highly flexible materials systems for functional semiconductor thin-film devices. One key lesson is the importance of controlling and manipulating surfaces.
APA, Harvard, Vancouver, ISO, and other styles
3

Bozyigit, D., and V. Wood. "Electrical characterization of nanocrystal solids." J. Mater. Chem. C 2, no. 17 (2014): 3172–84. http://dx.doi.org/10.1039/c3tc32235a.

Full text
Abstract:
Here we provide a primer for correctly selecting and implementing optoelectronic characterization techniques on semiconductor nanocrystal solids and choosing the appropriate models with which to interpret the data.
APA, Harvard, Vancouver, ISO, and other styles
4

Kovalenko, Maksym V. "Chemical Design of Nanocrystal Solids." CHIMIA International Journal for Chemistry 67, no. 5 (May 29, 2013): 316–21. http://dx.doi.org/10.2533/chimia.2013.316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gu, X. Wendy, Xingchen Ye, David M. Koshy, Shraddha Vachhani, Peter Hosemann, and A. Paul Alivisatos. "Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals." Proceedings of the National Academy of Sciences 114, no. 11 (February 27, 2017): 2836–41. http://dx.doi.org/10.1073/pnas.1618508114.

Full text
Abstract:
Large, freestanding membranes with remarkably high elastic modulus (>10 GPa) have been fabricated through the self-assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled. Recent developments in the synthesis of polymer-grafted nanocrystals have greatly expanded the library of accessible superlattice architectures, which allows superlattice mechanical behavior to be linked to specific structural features. Here, colloidal self-assembly is used to organize polystyrene-grafted Au nanocrystals at a fluid interface to form ordered solids with sub-10-nm periodic features. Thin-film buckling and nanoindentation are used to evaluate the mechanical behavior of polymer-grafted nanocrystal superlattices while exploring the role of polymer structural conformation, nanocrystal packing, and superlattice dimensions. Superlattices containing 3–20 vol % Au are found to have an elastic modulus of ∼6–19 GPa, and hardness of ∼120–170 MPa. We find that rapidly self-assembled superlattices have the highest elastic modulus, despite containing significant structural defects. Polymer extension, interdigitation, and grafting density are determined to be critical parameters that govern superlattice elastic and plastic deformation.
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, D. "n-Type Conducting CdSe Nanocrystal Solids." Science 300, no. 5623 (May 23, 2003): 1277–80. http://dx.doi.org/10.1126/science.1084424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kraabel, B., A. Malko, J. Hollingsworth, and V. I. Klimov. "Ultrafast dynamic holography in nanocrystal solids." Applied Physics Letters 78, no. 13 (March 26, 2001): 1814–16. http://dx.doi.org/10.1063/1.1358365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oh, Jae Taek, Sung Yong Bae, Su Ryong Ha, Hongjoo Cho, Sung Jun Lim, Danil W. Boukhvalov, Younghoon Kim, and Hyosung Choi. "Water-resistant AgBiS2 colloidal nanocrystal solids for eco-friendly thin film photovoltaics." Nanoscale 11, no. 19 (2019): 9633–40. http://dx.doi.org/10.1039/c9nr01192g.

Full text
Abstract:
The AgBiS2 nanocrystal solar cells exhibit no drop in their device performance before and after the water treatment, suggesting that AgBiS2 nanocrystal solids are highly water-resistant.
APA, Harvard, Vancouver, ISO, and other styles
9

Yazdani, Nuri, Deniz Bozyigit, Olesya Yarema, Maksym Yarema, and Vanessa Wood. "Hole Mobility in Nanocrystal Solids as a Function of Constituent Nanocrystal Size." Journal of Physical Chemistry Letters 5, no. 20 (October 3, 2014): 3522–27. http://dx.doi.org/10.1021/jz5015086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kinder, Erich, Pavel Moroz, Geoffrey Diederich, Alexa Johnson, Maria Kirsanova, Alexander Nemchinov, Timothy O’Connor, Dan Roth, and Mikhail Zamkov. "Fabrication of All-Inorganic Nanocrystal Solids through Matrix Encapsulation of Nanocrystal Arrays." Journal of the American Chemical Society 133, no. 50 (December 21, 2011): 20488–99. http://dx.doi.org/10.1021/ja208670r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yang, Mingrui, Pavel Moroz, Emily Miller, Dmitry Porotnikov, James Cassidy, Cole Ellison, Xenia Medvedeva, Anna Klinkova, and Mikhail Zamkov. "Energy Transport in CsPbBr3 Perovskite Nanocrystal Solids." ACS Photonics 7, no. 1 (December 27, 2019): 154–64. http://dx.doi.org/10.1021/acsphotonics.9b01316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Limpens, Rens, Arnon Lesage, Peter Stallinga, Alexander N. Poddubny, Minoru Fujii, and Tom Gregorkiewicz. "Resonant Energy Transfer in Si Nanocrystal Solids." Journal of Physical Chemistry C 119, no. 33 (August 7, 2015): 19565–70. http://dx.doi.org/10.1021/acs.jpcc.5b06339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kovalenko, Maksym V. "ChemInform Abstract: Chemical Design of Nanocrystal Solids." ChemInform 44, no. 41 (September 19, 2013): no. http://dx.doi.org/10.1002/chin.201341217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Furuta, Kenta, Minoru Fujii, Hiroshi Sugimoto, and Kenji Imakita. "Energy Transfer in Silicon Nanocrystal Solids Made from All-Inorganic Colloidal Silicon Nanocrystals." Journal of Physical Chemistry Letters 6, no. 14 (July 2015): 2761–66. http://dx.doi.org/10.1021/acs.jpclett.5b01067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Khabibullin, Artem R., Alexander L. Efros, and Steven C. Erwin. "The role of ligands in electron transport in nanocrystal solids." Nanoscale 12, no. 45 (2020): 23028–35. http://dx.doi.org/10.1039/d0nr06892f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kholmicheva, Natalia, Pavel Moroz, Ebin Bastola, Natalia Razgoniaeva, Jesus Bocanegra, Martin Shaughnessy, Zack Porach, Dmitriy Khon, and Mikhail Zamkov. "Mapping the Exciton Diffusion in Semiconductor Nanocrystal Solids." ACS Nano 9, no. 3 (February 19, 2015): 2926–37. http://dx.doi.org/10.1021/nn507322y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Talapin, Dmitri V. "Nanocrystal solids: A modular approach to materials design." MRS Bulletin 37, no. 1 (January 2012): 63–71. http://dx.doi.org/10.1557/mrs.2011.337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lepage, Hadrien, Anne Kaminski-Cachopo, Alain Poncet, and Gilles le Carval. "Simulation of Electronic Transport in Silicon Nanocrystal Solids." Journal of Physical Chemistry C 116, no. 20 (May 16, 2012): 10873–80. http://dx.doi.org/10.1021/jp301713v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Scalise, Emilio. "Tailoring the electronic properties of semiconducting nanocrystal-solids." Semiconductor Science and Technology 35, no. 1 (November 22, 2019): 013001. http://dx.doi.org/10.1088/1361-6641/ab52e0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

MAHADEVU, REKHA, DEV KUMAR THAPA, and ANSHU PANDEY. "Recent advances in the preparation of nanocrystal solids." Pramana 84, no. 6 (June 2015): 1065–71. http://dx.doi.org/10.1007/s12043-015-1004-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Moroz, Pavel, Geethika Liyanage, Natalia N. Kholmicheva, Sergii Yakunin, Upendra Rijal, Prakash Uprety, Ebin Bastola, et al. "Infrared Emitting PbS Nanocrystal Solids through Matrix Encapsulation." Chemistry of Materials 26, no. 14 (July 3, 2014): 4256–64. http://dx.doi.org/10.1021/cm501739h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hanrath, Tobias. "Colloidal nanocrystal quantum dot assemblies as artificial solids." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 30, no. 3 (May 2012): 030802. http://dx.doi.org/10.1116/1.4705402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Drndić, M., M. V. Jarosz, N. Y. Morgan, M. A. Kastner, and M. G. Bawendi. "Transport properties of annealed CdSe colloidal nanocrystal solids." Journal of Applied Physics 92, no. 12 (December 15, 2002): 7498–503. http://dx.doi.org/10.1063/1.1523148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Burian, Max, Carina Karner, Maksym Yarema, Wolfgang Heiss, Heinz Amenitsch, Christoph Dellago, and Rainer T. Lechner. "Nanocrystals: A Shape-Induced Orientation Phase within 3D Nanocrystal Solids (Adv. Mater. 32/2018)." Advanced Materials 30, no. 32 (August 2018): 1870235. http://dx.doi.org/10.1002/adma.201870235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Liu, Yao, Markelle Gibbs, James Puthussery, Steven Gaik, Rachelle Ihly, Hugh W. Hillhouse, and Matt Law. "Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids." Nano Letters 10, no. 5 (May 12, 2010): 1960–69. http://dx.doi.org/10.1021/nl101284k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhang, Feng, Tianye Zhou, Guogang Liu, Jianbing Shi, Haizheng Zhong, and Yuping Dong. "Tetraphenylethylene derivative capped CH3NH3PbBr3 nanocrystals: AIE-activated assembly into superstructures." Faraday Discussions 196 (2017): 91–99. http://dx.doi.org/10.1039/c6fd00167j.

Full text
Abstract:
The surfaces of semiconductor nanocrystals have been known to be a very important factor in determining their optical properties. The introduction of functionalized ligands can further enhance the interactions between nanocrystals, which is beneficial for the assembly of nanocrystals. In a previous report, we developed a ligand-assisted reprecipitation method to fabricate organometal halide perovskite nanocrystals capped with octylamine and oleic acid. Here, a TPE derivative 3-(4-(1,2,2-triphenylvinyl)phenoxy)propan-1-amine, which shows a typical aggregation induced emission feature, is applied to replace octylamine to fabricate CH3NH3PbBr3 nanocrystals. The obtained CH3NH3PbBr3 nanocrystals were nanocubes (average diameter ∼ 11.1 nm) and are likely to assemble into ordered superstructures. By adjusting the chain length of the TPE derivative, we found that the assembly of the CH3NH3PbBr3 nanocrystals was correlated with the interactions between the TPE groups. This provides a new platform to investigate the ligand effects in nanocrystal solids and may potentially achieve enhanced optical and electrical properties.
APA, Harvard, Vancouver, ISO, and other styles
27

Shcherbakov-Wu, Wenbi, and William A. Tisdale. "A time-domain view of charge carriers in semiconductor nanocrystal solids." Chemical Science 11, no. 20 (2020): 5157–67. http://dx.doi.org/10.1039/c9sc05925c.

Full text
Abstract:
Time-domain spectroscopy and transient photocurrent techniques have revealed new understanding of mesoscale carrier dynamics in nanocrystal solids, including the role of energetic disorder, interactions with trap states, and nonequilibrium dynamics
APA, Harvard, Vancouver, ISO, and other styles
28

Zhang, Hao, Yue Tang, Junhu Zhang, Minjie Li, Xi Yao, Xiao Li, and Bai Yang. "Manipulation of semiconductor nanocrystal growth in polymer soft solids." Soft Matter 5, no. 21 (2009): 4113. http://dx.doi.org/10.1039/b914213d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Liu, Heng, Emmanuel Lhuillier, and Philippe Guyot-Sionnest. "1/f noise in semiconductor and metal nanocrystal solids." Journal of Applied Physics 115, no. 15 (April 21, 2014): 154309. http://dx.doi.org/10.1063/1.4871682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kholmicheva, Natalia, Natalia Razgoniaeva, Priyanka Yadav, Adam Lahey, Christian Erickson, Pavel Moroz, Daniel Gamelin, and Mikhail Zamkov. "Enhanced Emission of Nanocrystal Solids Featuring Slowly Diffusive Excitons." Journal of Physical Chemistry C 121, no. 3 (January 11, 2017): 1477–87. http://dx.doi.org/10.1021/acs.jpcc.6b10994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Zhongyong, Arun Sundar S. Singaravelu, Rui Dai, Qiong Nian, Nikhilesh Chawla, and Robert Y. Wang. "Ligand Crosslinking Boosts Thermal Transport in Colloidal Nanocrystal Solids." Angewandte Chemie 132, no. 24 (April 2, 2020): 9643–50. http://dx.doi.org/10.1002/ange.201916760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, Zhongyong, Arun Sundar S. Singaravelu, Rui Dai, Qiong Nian, Nikhilesh Chawla, and Robert Y. Wang. "Ligand Crosslinking Boosts Thermal Transport in Colloidal Nanocrystal Solids." Angewandte Chemie International Edition 59, no. 24 (April 2, 2020): 9556–63. http://dx.doi.org/10.1002/anie.201916760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Burian, Max, Carina Karner, Maksym Yarema, Wolfgang Heiss, Heinz Amenitsch, Christoph Dellago, and Rainer T. Lechner. "A Shape-Induced Orientation Phase within 3D Nanocrystal Solids." Advanced Materials 30, no. 32 (June 26, 2018): 1802078. http://dx.doi.org/10.1002/adma.201802078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ghadimi, Arya, Ludovico Cademartiri, Ulrich Kamp, and Geoffrey A. Ozin. "Plasma within Templates: Molding Flexible Nanocrystal Solids into Multifunctional Architectures." Nano Letters 7, no. 12 (December 2007): 3864–68. http://dx.doi.org/10.1021/nl072026v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Pereira, Rui N., José Coutinho, Sabrina Niesar, Tiago A. Oliveira, Willi Aigner, Hartmut Wiggers, Mark J. Rayson, Patrick R. Briddon, Martin S. Brandt, and Martin Stutzmann. "Resonant Electronic Coupling Enabled by Small Molecules in Nanocrystal Solids." Nano Letters 14, no. 7 (June 3, 2014): 3817–26. http://dx.doi.org/10.1021/nl500932q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Liu, Minglu, Yuanyu Ma, and Robert Y. Wang. "Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry." ACS Nano 9, no. 12 (November 13, 2015): 12079–87. http://dx.doi.org/10.1021/acsnano.5b05085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bozyigit, Deniz, Michael Jakob, Olesya Yarema, and Vanessa Wood. "Deep Level Transient Spectroscopy (DLTS) on Colloidal-Synthesized Nanocrystal Solids." ACS Applied Materials & Interfaces 5, no. 8 (April 3, 2013): 2915–19. http://dx.doi.org/10.1021/am400326t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Yao, Markelle Gibbs, Craig L. Perkins, Jason Tolentino, Mohammad H. Zarghami, Jorge Bustamante, and Matt Law. "Robust, Functional Nanocrystal Solids by Infilling with Atomic Layer Deposition." Nano Letters 11, no. 12 (December 14, 2011): 5349–55. http://dx.doi.org/10.1021/nl2028848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hanrath, Tobias. "ChemInform Abstract: Colloidal Nanocrystal Quantum Dot Assemblies as Artificial Solids." ChemInform 44, no. 27 (June 13, 2013): no. http://dx.doi.org/10.1002/chin.201327199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Oh, S. J., D. B. Straus, T. Zhao, J. H. Choi, S. W. Lee, E. A. Gaulding, C. B. Murray, and C. R. Kagan. "Engineering the surface chemistry of lead chalcogenide nanocrystal solids to enhance carrier mobility and lifetime in optoelectronic devices." Chemical Communications 53, no. 4 (2017): 728–31. http://dx.doi.org/10.1039/c6cc07916d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhao, Qinghua, Guillaume Gouget, Jiacen Guo, Shengsong Yang, Tianshuo Zhao, Daniel B. Straus, Chengyang Qian, et al. "Enhanced Carrier Transport in Strongly Coupled, Epitaxially Fused CdSe Nanocrystal Solids." Nano Letters 21, no. 7 (April 1, 2021): 3318–24. http://dx.doi.org/10.1021/acs.nanolett.1c00860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jansen, Maximilian, Fanni Juranyi, Olesya Yarema, Tilo Seydel, and Vanessa Wood. "Ligand Dynamics in Nanocrystal Solids Studied with Quasi-Elastic Neutron Scattering." ACS Nano 15, no. 12 (December 8, 2021): 20517–26. http://dx.doi.org/10.1021/acsnano.1c09073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cihan, Ahmet Fatih, Pedro Ludwig Hernandez Martinez, Yusuf Kelestemur, Evren Mutlugun, and Hilmi Volkan Demir. "Observation of Biexcitons in Nanocrystal Solids in the Presence of Photocharging." ACS Nano 7, no. 6 (June 3, 2013): 4799–809. http://dx.doi.org/10.1021/nn305259g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ko, Dong-Kyun, Jeffrey J. Urban, and Christopher B. Murray. "Carrier Distribution and Dynamics of Nanocrystal Solids Doped with Artificial Atoms." Nano Letters 10, no. 5 (May 12, 2010): 1842–47. http://dx.doi.org/10.1021/nl100571m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bryant, G. W., and W. Jask�lski. "Designing Nanocrystal Nanosystems: Quantum-Dot Quantum-Wells to Quantum-Dot Solids." physica status solidi (b) 224, no. 3 (April 2001): 751–55. http://dx.doi.org/10.1002/(sici)1521-3951(200104)224:3<751::aid-pssb751>3.0.co;2-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Azzaro, Michael S., Amro Dodin, Diana Y. Zhang, Adam P. Willard, and Sean T. Roberts. "Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids." Nano Letters 18, no. 5 (April 13, 2018): 3259–70. http://dx.doi.org/10.1021/acs.nanolett.8b01079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Podsiadlo, Paul, Galyna Krylova, Byeongdu Lee, Kevin Critchley, David J. Gosztola, Dmitri V. Talapin, Paul D. Ashby, and Elena V. Shevchenko. "The Role of Order, Nanocrystal Size, and Capping Ligands in the Collective Mechanical Response of Three-Dimensional Nanocrystal Solids." Journal of the American Chemical Society 132, no. 26 (July 7, 2010): 8953–60. http://dx.doi.org/10.1021/ja100464a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Fafarman, Aaron T., Weon-kyu Koh, Benjamin T. Diroll, David K. Kim, Dong-Kyun Ko, Soong Ju Oh, Xingchen Ye, et al. "Thiocyanate-Capped Nanocrystal Colloids: Vibrational Reporter of Surface Chemistry and Solution-Based Route to Enhanced Coupling in Nanocrystal Solids." Journal of the American Chemical Society 133, no. 39 (October 5, 2011): 15753–61. http://dx.doi.org/10.1021/ja206303g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Jianpu, and Neil C. Greenham. "Charge transport in colloidal ZnO nanocrystal solids: The significance of surface states." Applied Physics Letters 104, no. 19 (May 12, 2014): 193111. http://dx.doi.org/10.1063/1.4878257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Miranti, Retno, Ricky Dwi Septianto, Maria Ibáñez, Maksym V. Kovalenko, Nobuhiro Matsushita, Yoshihiro Iwasa, and Satria Zulkarnaen Bisri. "Electron transport in iodide-capped core@shell PbTe@PbS colloidal nanocrystal solids." Applied Physics Letters 117, no. 17 (October 26, 2020): 173101. http://dx.doi.org/10.1063/5.0025965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography