Journal articles on the topic 'Nanoelectronic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanoelectronic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
He, Qianxi. "Characteristics and Improvement Methods of Carbon Nanodevices." Highlights in Science, Engineering and Technology 106 (July 16, 2024): 94–100. http://dx.doi.org/10.54097/8s3ra054.
Full textMishra, Manoj, and Shil Ja. "Germanium Nanowires (GeNW): Synthesis, Structural Properties, and Electrical Characterization for Advanced Nanoelectronic Devices." Migration Letters 20, S13 (2023): 236–45. http://dx.doi.org/10.59670/ml.v20is13.6289.
Full textS, Anusankari, and Rajabrundha A. "MODELING, VERIFICATION AND TESTING TECHNIQUES IN NANOELECTRONICS INSTRUMENTATION FOR ENHANCED PRECISION AND RELIABILITY." ICTACT Journal on Microelectronics 10, no. 3 (2024): 1854–61. https://doi.org/10.21917/ijme.2024.0319.
Full textHULL, ROBERT, RICHARD MARTEL, and J. M. XU. "NANOELECTRONICS: SOME CURRENT ASPECTS AND PROSPECTS." International Journal of High Speed Electronics and Systems 12, no. 02 (2002): 353–64. http://dx.doi.org/10.1142/s0129156402001174.
Full textSnider, G., P. Kuekes, T. Hogg, and R. Stanley Williams. "Nanoelectronic architectures." Applied Physics A 80, no. 6 (2005): 1183–95. http://dx.doi.org/10.1007/s00339-004-3154-4.
Full textCsurgay, Árpád I., and Wolfgang Porod. "Nanoelectronic Circuits." International Journal of Circuit Theory and Applications 38, no. 9 (2010): 881–82. http://dx.doi.org/10.1002/cta.727.
Full textMelnyk, Oleksandr, and Viktoriia Kozarevych. "SIMULATION OF PROGRAMMABLE SINGLE-ELECTRON NANOCIRCUITS." Bulletin of the National Technical University "KhPI". Series: Mathematical modeling in engineering and technologies, no. 1 (March 5, 2021): 64–68. http://dx.doi.org/10.20998/2222-0631.2020.01.05.
Full textSha, Junjiang, Chong Xu, and Ke Xu. "Progress of Research on the Application of Nanoelectronic Smelling in the Field of Food." Micromachines 13, no. 5 (2022): 789. http://dx.doi.org/10.3390/mi13050789.
Full textWang, Yanfeng, Haoping Ji, and Junwei Sun. "Design and Control for Four-Variable Chaotic Nanoelectronic Circuits Based on DNA Reaction Networks." Journal of Nanoelectronics and Optoelectronics 16, no. 8 (2021): 1248–62. http://dx.doi.org/10.1166/jno.2021.3062.
Full textSangwan, Vinod K., and Mark C. Hersam. "Neuromorphic nanoelectronic materials." Nature Nanotechnology 15, no. 7 (2020): 517–28. http://dx.doi.org/10.1038/s41565-020-0647-z.
Full textLiu, Ying, Zheng Jia, Yi Huang, Yu Gao, Lan Yang, and Dianbao Zhang. "Wearable Nanoelectronic Devices for Skin Wound Healing." Journal of Nanoelectronics and Optoelectronics 20, no. 1 (2025): 1–15. https://doi.org/10.1166/jno.2025.3709.
Full textNithilam, D. N., and B. Paulchamy. "Design and Implementation of Nanoelectronics-Based Advanced Associative Memory Architecture for Autonomous Vehicles." Journal of Nanoelectronics and Optoelectronics 20, no. 1 (2025): 106–18. https://doi.org/10.1166/jno.2025.3707.
Full textChen, Jierui, Xunguo Zhu, Kai Lu, Xihao Che, and Fu Su. "Multi-Layer Spatial Feature Fusion YOLOv8s: Enhanced Multi-Layer Spatial Feature Fusion for Underwater Optoelectronic Imaging Systems in Marine Nanoelectronics." Journal of Nanoelectronics and Optoelectronics 20, no. 2 (2025): 216–25. https://doi.org/10.1166/jno.2025.3720.
Full textItoh, Kohei. "Isotopes for nanoelectronic devices." Nature Nanotechnology 4, no. 8 (2009): 480–81. http://dx.doi.org/10.1038/nnano.2009.214.
Full textGoldhaber-Gordon, D., M. S. Montemerlo, J. C. Love, G. J. Opiteck, and J. C. Ellenbogen. "Overview of nanoelectronic devices." Proceedings of the IEEE 85, no. 4 (1997): 521–40. http://dx.doi.org/10.1109/5.573739.
Full textLuscombe, J. H., and W. R. Frensley. "Models for nanoelectronic devices." Nanotechnology 1, no. 2 (1990): 131–40. http://dx.doi.org/10.1088/0957-4484/1/2/002.
Full textBeausoleil, R. G., P. J. Kuekes, G. S. Snider, Shih-Yuan Wang, and R. S. Williams. "Nanoelectronic and Nanophotonic Interconnect." Proceedings of the IEEE 96, no. 2 (2008): 230–47. http://dx.doi.org/10.1109/jproc.2007.911057.
Full textde Alencar Braga, Bianca Maria Matos, and Janaina Gonçalves Guimarães. "Nanoelectronic content-addressable memory." Microelectronics Journal 45, no. 8 (2014): 1118–24. http://dx.doi.org/10.1016/j.mejo.2014.05.022.
Full textRusser, Peter, and Johannes A. Russer. "Nanoelectronic RF Josephson Devices." IEEE Transactions on Microwave Theory and Techniques 59, no. 10 (2011): 2685–701. http://dx.doi.org/10.1109/tmtt.2011.2164549.
Full textPark, Chul Soon, Hyeonseok Yoon, and Oh Seok Kwon. "Graphene-based nanoelectronic biosensors." Journal of Industrial and Engineering Chemistry 38 (June 2016): 13–22. http://dx.doi.org/10.1016/j.jiec.2016.04.021.
Full textStar, A., T. R. Han, V. Joshi, J. C. P. Gabriel, and G. Grüner. "Nanoelectronic Carbon Dioxide Sensors." Advanced Materials 16, no. 22 (2004): 2049–52. http://dx.doi.org/10.1002/adma.200400322.
Full textSchrecongost, Dustin, Hai-Tian Zhang, Roman Engel-Herbert, and Cheng Cen. "Oxygen vacancy dynamics in monoclinic metallic VO2 domain structures." Applied Physics Letters 120, no. 8 (2022): 081602. http://dx.doi.org/10.1063/5.0083771.
Full textHomberger, Melanie, and Ulrich Simon. "On the application potential of gold nanoparticles in nanoelectronics and biomedicine." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1915 (2010): 1405–53. http://dx.doi.org/10.1098/rsta.2009.0275.
Full textG, Suresh, Manikandan G, Bhuvaneswari G, and Vishnu Priyan S. "ADVANCEMENTS IN NANOELECTRONICS LEVERAGING TRANSFORMER ALGORITHMS FOR ENHANCED BIOMEDICAL DATA SCIENCE APPLICATIONS." ICTACT Journal on Microelectronics 10, no. 2 (2024): 1807–11. https://doi.org/10.21917/ijme.2024.0312.
Full textGarg, M., and K. Kern. "Attosecond coherent manipulation of electrons in tunneling microscopy." Science 367, no. 6476 (2019): 411–15. http://dx.doi.org/10.1126/science.aaz1098.
Full textLoganathan, P., and P. Kumar. "Nanoelectronic Multi-Layered Hybrid Systems for Ultra-High Efficiency in Communication and Processing Devices." Journal of Nanoelectronics and Optoelectronics 20, no. 4 (2025): 389–96. https://doi.org/10.1166/jno.2025.3744.
Full textStrukov, Dmitri B., and Konstantin K. Likharev. "Defect-Tolerant Architectures for Nanoelectronic Crossbar Memories." Journal of Nanoscience and Nanotechnology 7, no. 1 (2007): 151–67. http://dx.doi.org/10.1166/jnn.2007.18012.
Full textMillar, Campbell, Scott Roy, Andrew R. Brown, and Asen Asenov. "Simulating the bio–nanoelectronic interface." Journal of Physics: Condensed Matter 19, no. 21 (2007): 215205. http://dx.doi.org/10.1088/0953-8984/19/21/215205.
Full textGromov, D. V., V. V. Elesin, G. V. Petrov, I. I. Bobrinetskii, and V. K. Nevolin. "Radiation effects in nanoelectronic elements." Semiconductors 44, no. 13 (2010): 1699–702. http://dx.doi.org/10.1134/s1063782610130166.
Full textChen, An. "(Invited) Dielectrics in Nanoelectronic Computing." ECS Meeting Abstracts MA2020-01, no. 15 (2020): 1040. http://dx.doi.org/10.1149/ma2020-01151040mtgabs.
Full textRoychowdhury, V. P., D. B. Janes, and S. Bandyopadhyay. "Nanoelectronic architecture for Boolean logic." Proceedings of the IEEE 85, no. 4 (1997): 574–88. http://dx.doi.org/10.1109/5.573742.
Full textOgnev, A. V., E. V. Sukovatitsina, K. S. Diga, et al. "Granulated media for nanoelectronic applications." Journal of Physics: Conference Series 345 (February 9, 2012): 012010. http://dx.doi.org/10.1088/1742-6596/345/1/012010.
Full textSacchetti, Andrea. "Electrical current in nanoelectronic devices." Physics Letters A 374, no. 39 (2010): 4057–60. http://dx.doi.org/10.1016/j.physleta.2010.08.001.
Full textTkachenko, O. A., V. A. Tkachenko, Z. D. Kvon, A. V. Latyshev, and A. L. Aseev. "Introscopy of quantum nanoelectronic devices." Nanotechnologies in Russia 5, no. 9-10 (2010): 676–95. http://dx.doi.org/10.1134/s1995078010090132.
Full textMartorell, Ferran, and Antonio Rubio. "Cell architecture for nanoelectronic design." Microelectronics Journal 39, no. 8 (2008): 1041–50. http://dx.doi.org/10.1016/j.mejo.2007.10.008.
Full textLin, Yung-Chen, Yu Chen, and Yu Huang. "Nanoelectronic Devices from Nanowire Heterostructures." ECS Transactions 33, no. 9 (2019): 3–11. http://dx.doi.org/10.1149/1.3493678.
Full textRandall, John, Gary Frazier, Alan Seabaugh, and Tom Broekaert. "Potential nanoelectronic integrated circuit technologies." Microelectronic Engineering 32, no. 1-4 (1996): 15–30. http://dx.doi.org/10.1016/0167-9317(96)00002-0.
Full textGerousis, C., S. M. Goodnick, and W. Porod. "Toward nanoelectronic cellular neural networks." International Journal of Circuit Theory and Applications 28, no. 6 (2000): 523–35. http://dx.doi.org/10.1002/1097-007x(200011/12)28:6<523::aid-cta125>3.0.co;2-r.
Full textTürel, Özgür, Jung Hoon Lee, Xiaolong Ma, and Konstantin K. Likharev. "Neuromorphic architectures for nanoelectronic circuits." International Journal of Circuit Theory and Applications 32, no. 5 (2004): 277–302. http://dx.doi.org/10.1002/cta.282.
Full textLee, Jung Hoon, and Konstantin K. Likharev. "Defect-tolerant nanoelectronic pattern classifiers." International Journal of Circuit Theory and Applications 35, no. 3 (2007): 239–64. http://dx.doi.org/10.1002/cta.410.
Full textSharma, Pankaj, Peggy Schoenherr, and Jan Seidel. "Functional Ferroic Domain Walls for Nanoelectronics." Materials 12, no. 18 (2019): 2927. http://dx.doi.org/10.3390/ma12182927.
Full textZhang, Fang, Xianqi Dai, Liangliang Shang, and Wei Li. "Tunable Band Alignment in the Arsenene/WS2 Heterostructure by Applying Electric Field and Strain." Crystals 12, no. 10 (2022): 1390. http://dx.doi.org/10.3390/cryst12101390.
Full textEom, Kitae, Muqing Yu, Jinsol Seo, et al. "Electronically reconfigurable complex oxide heterostructure freestanding membranes." Science Advances 7, no. 33 (2021): eabh1284. http://dx.doi.org/10.1126/sciadv.abh1284.
Full textDmitriev, Victor, Fernando Gomes, and Clerisson Nascimento. "Nanoelectronic Devices Based on Carbon Nanotubes." Journal of Aerospace Technology and Management 7, no. 1 (2015): 53–62. http://dx.doi.org/10.5028/jatm.v7i1.358.
Full textZhbanov, A. I., N. I. Sinitsyn, and G. V. Torgashov. "Nanoelectronic Devices Based on Carbon Nanotubes." Radiophysics and Quantum Electronics 47, no. 5/6 (2004): 435–52. http://dx.doi.org/10.1023/b:raqe.0000046318.53459.6e.
Full textLee, Sang-Kwon, and Ahmad Umar. "A Special Section on Nanoelectronic Devices." Journal of Nanoelectronics and Optoelectronics 12, no. 10 (2017): 1105–7. http://dx.doi.org/10.1166/jno.2017.2249.
Full textWorschech, L., D. Hartmann, S. Reitzenstein, and A. Forchel. "Nonlinear properties of ballistic nanoelectronic devices." Journal of Physics: Condensed Matter 17, no. 29 (2005): R775—R802. http://dx.doi.org/10.1088/0953-8984/17/29/r01.
Full textForshaw, M., R. Stadler, D. Crawley, and K. Nikoli. "A short review of nanoelectronic architectures." Nanotechnology 15, no. 4 (2004): S220—S223. http://dx.doi.org/10.1088/0957-4484/15/4/019.
Full textStrukov, Dmitri B., and Konstantin K. Likharev. "Prospects for terabit-scale nanoelectronic memories." Nanotechnology 16, no. 1 (2004): 137–48. http://dx.doi.org/10.1088/0957-4484/16/1/028.
Full textLikharev, Konstantin K. "CrossNets: Neuromorphic Hybrid CMOS/Nanoelectronic Networks." Science of Advanced Materials 3, no. 3 (2011): 322–31. http://dx.doi.org/10.1166/sam.2011.1177.
Full text