Journal articles on the topic 'Nanofluidic chips'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 38 journal articles for your research on the topic 'Nanofluidic chips.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Peng, Ran, and Dongqing Li. "Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing." Lab on a Chip 16, no. 19 (2016): 3767–76. http://dx.doi.org/10.1039/c6lc00867d.
Full textShimizu, Hisashi, Shigenori Takeda, Kazuma Mawatari, and Takehiko Kitamori. "Ultrasensitive detection of nonlabelled bovine serum albumin using photothermal optical phase shift detection with UV excitation." Analyst 145, no. 7 (2020): 2580–85. http://dx.doi.org/10.1039/d0an00037j.
Full textPezzuoli, Denise, Elena Angeli, Diego Repetto, Giuseppe Firpo, Patrizia Guida, Roberto Lo Savio, Luca Repetto, and Ugo Valbusa. "Nanofluidic Chips for DNA and Nanoparticles Detection and Manipulation." Biophysical Journal 116, no. 3 (February 2019): 293a. http://dx.doi.org/10.1016/j.bpj.2018.11.1583.
Full textLiu, Junshan, Liang Wang, Wei Ouyang, Wei Wang, Jun Qin, Zheng Xu, Shenbo Xu, et al. "Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes." Biosensors and Bioelectronics 72 (October 2015): 288–93. http://dx.doi.org/10.1016/j.bios.2015.05.031.
Full textZhao, Wenda, Baojun Wang, and Wei Wang. "Biochemical sensing by nanofluidic crystal in a confined space." Lab on a Chip 16, no. 11 (2016): 2050–58. http://dx.doi.org/10.1039/c6lc00416d.
Full textChen, Xueye, and Lei Zhang. "Review in manufacturing methods of nanochannels of bio-nanofluidic chips." Sensors and Actuators B: Chemical 254 (January 2018): 648–59. http://dx.doi.org/10.1016/j.snb.2017.07.139.
Full textChen, H. Matthew, Lin Pang, Michael S. Gordon, and Yeshaiahu Fainman. "Nanofluidic Chips: Real-Time Template-Assisted Manipulation of Nanoparticles in a Multilayer Nanofluidic Chip (Small 19/2011)." Small 7, no. 19 (September 27, 2011): 2678. http://dx.doi.org/10.1002/smll.201190070.
Full textXu, Zheng, Jun-yao Wang, De-jia Wang, Chong Liu, Yun-liang Liu, Jun-shan Liu, and Li-ding Wang. "Flexible microassembly methods for micro/nanofluidic chips with an inverted microscope." Microelectronic Engineering 97 (September 2012): 1–7. http://dx.doi.org/10.1016/j.mee.2012.02.040.
Full textUtko, Pawel, Fredrik Persson, Anders Kristensen, and Niels B. Larsen. "Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments." Lab Chip 11, no. 2 (2011): 303–8. http://dx.doi.org/10.1039/c0lc00260g.
Full textSun, Lei, Lingpeng Liu, Liping Qi, Ran Guo, Kehong Li, Zhifu Yin, Dongjiang Wu, Jiangang Zhou, and Helin Zou. "Fabrication of SU-8 photoresist micro–nanofluidic chips by thermal imprinting and thermal bonding." Microsystem Technologies 26, no. 3 (July 30, 2019): 861–66. http://dx.doi.org/10.1007/s00542-019-04565-2.
Full textPezzuoli, Denise, Elena Angeli, Diego Repetto, Patrizia Guida, Giuseppe Firpo, and Luca Repetto. "Increased Flexibility in Lab-on-Chip Design with a Polymer Patchwork Approach." Nanomaterials 9, no. 12 (November 25, 2019): 1678. http://dx.doi.org/10.3390/nano9121678.
Full textBa, Dechun, Dongyang Wang, Kun Liu, Ming Hao, Guangyu Du, Yaoshuai Ba, Tong Zhu, and Zhiyong Wu. "Nanofluidic Chips for Bio-Molecules Manipulation Controlled by Back Electrodes Enclosed with Glass and Polydimethylsiloxane." Journal of Computational and Theoretical Nanoscience 13, no. 4 (April 1, 2016): 2237–44. http://dx.doi.org/10.1166/jctn.2016.4567.
Full textXu, Yan, Chenxi Wang, Yiyang Dong, Lixiao Li, Kihoon Jang, Kazuma Mawatari, Tadatomo Suga, and Takehiko Kitamori. "Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process." Analytical and Bioanalytical Chemistry 402, no. 3 (December 3, 2011): 1011–18. http://dx.doi.org/10.1007/s00216-011-5574-2.
Full textXu, Yan, Qian Wu, Yuji Shimatani, and Koji Yamaguchi. "Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures." Lab Chip 15, no. 19 (2015): 3856–61. http://dx.doi.org/10.1039/c5lc00604j.
Full textHrdlička, Jiří, Petr Červenka, Michal Přibyl, and Dalimil Šnita. "Mathematical modeling of AC electroosmosis in microfluidic and nanofluidic chips using equilibrium and non-equilibrium approaches." Journal of Applied Electrochemistry 40, no. 5 (July 28, 2009): 967–80. http://dx.doi.org/10.1007/s10800-009-9966-3.
Full textWang, Chenxi, Hui Fang, Shicheng Zhou, Xiaoyun Qi, Fanfan Niu, Wei Zhang, Yanhong Tian, and Tadatomo Suga. "Recycled low-temperature direct bonding of Si/glass and glass/glass chips for detachable micro/nanofluidic devices." Journal of Materials Science & Technology 46 (June 2020): 156–67. http://dx.doi.org/10.1016/j.jmst.2019.11.034.
Full textPeng, Ran, and Dongqing Li. "Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing." Nanoscale 9, no. 18 (2017): 5964–74. http://dx.doi.org/10.1039/c7nr00488e.
Full textMarie, Rodolphe, Jonas N. Pedersen, Loic Bærlocher, Kamila Koprowska, Marie Pødenphant, Céline Sabatel, Maksim Zalkovskij, et al. "Single-molecule DNA-mapping and whole-genome sequencing of individual cells." Proceedings of the National Academy of Sciences 115, no. 44 (October 15, 2018): 11192–97. http://dx.doi.org/10.1073/pnas.1804194115.
Full textXu, Yan, Chenxi Wang, Lixiao Li, Nobuhiro Matsumoto, Kihoon Jang, Yiyang Dong, Kazuma Mawatari, Tadatomo Suga, and Takehiko Kitamori. "Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment." Lab on a Chip 13, no. 6 (2013): 1048. http://dx.doi.org/10.1039/c3lc41345d.
Full textBusche, Jan F., Svenja Möller, Matthias Stehr, and Andreas Dietzel. "Cross-Flow Filtration of Escherichia coli at a Nanofluidic Gap for Fast Immobilization and Antibiotic Susceptibility Testing." Micromachines 10, no. 10 (October 12, 2019): 691. http://dx.doi.org/10.3390/mi10100691.
Full textPetruš, Ondrej, Andrej Oriňak, Renáta Oriňaková, Christian Muhmann, Ján Macko, Radim Hrdý, Jaromír Hubálek, Branislav Erdelyi, and Heinrich F. Arlinghaus. "Chemical Separation on Silver Nanorods Surface Monitored by TOF-SIMS." Journal of Chemistry 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/1608056.
Full textMohyud-Din, Syed Tauseef, Adnan, Umar Khan, Naveed Ahmed, Ilyas Khan, T. Abdeljawad, and Kottakkaran Sooppy Nisar. "Thermal Transport Investigation in Magneto-Radiative GO-MoS2/H2O-C2H6O2 Hybrid Nanofluid Subject to Cattaneo–Christov Model." Molecules 25, no. 11 (June 2, 2020): 2592. http://dx.doi.org/10.3390/molecules25112592.
Full textMital, Manu. "Evolutionary Optimization of Electronic Circuitry Cooling Using Nanofluid." Modelling and Simulation in Engineering 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/793462.
Full textAhmed Mohammed Adham, Ahmed Mohammed Adham. "Ammonia Base Nanofluid as a Coolant for Electronic Chips." International Journal of Mechanical and Production Engineering Research and Development 9, no. 3 (2019): 569–80. http://dx.doi.org/10.24247/ijmperdjun201960.
Full textRay, Dustin R., Roy Strandberg, and Debendra K. Das. "Thermal and Fluid Dynamic Performance Comparison of Three Nanofluids in Microchannels Using Analytical and Computational Models." Processes 8, no. 7 (June 29, 2020): 754. http://dx.doi.org/10.3390/pr8070754.
Full textEl-Khouly, M. M., M. A. El Bouz, and G. I. Sultan. "Experimental and computational study of using nanofluid for thermal management of electronic chips." Journal of Energy Storage 39 (July 2021): 102630. http://dx.doi.org/10.1016/j.est.2021.102630.
Full textSetti, Dinesh, Sudarsan Ghosh, and Venkateswara Rao Paruchuri. "Influence of nanofluid application on wheel wear, coefficient of friction and redeposition phenomenon in surface grinding of Ti-6Al-4V." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232, no. 1 (March 11, 2016): 128–40. http://dx.doi.org/10.1177/0954405416636039.
Full textHung Thang, Bui, Le Dinh Quang, Nguyen Manh Hong, Phan Hong Khoi, and Phan Ngoc Minh. "Application of Multiwalled Carbon Nanotube Nanofluid for 450 W LED Floodlight." Journal of Nanomaterials 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/347909.
Full textGhasemi, Seyed Ebrahim, A. A. Ranjbar, and M. J. Hosseini. "Experimental evaluation of cooling performance of circular heat sinks for heat dissipation from electronic chips using nanofluid." Mechanics Research Communications 84 (September 2017): 85–89. http://dx.doi.org/10.1016/j.mechrescom.2017.06.009.
Full textKandeal, A. W., Nagi M. El-Shafai, Mohamed R. Abdo, Amrit Kumar Thakur, Ibrahim M. El-Mehasseb, Ibrahem Maher, Maher Rashad, A. E. Kabeel, Nuo Yang, and Swellam W. Sharshir. "Improved thermo-economic performance of solar desalination via copper chips, nanofluid, and nano-based phase change material." Solar Energy 224 (August 2021): 1313–25. http://dx.doi.org/10.1016/j.solener.2021.06.085.
Full textBahiraei, Mehdi, Nima Mazaheri, and Mohammad Rasool Daneshyar. "Employing elliptical pin-fins and nanofluid within a heat sink for cooling of electronic chips regarding energy efficiency perspective." Applied Thermal Engineering 183 (January 2021): 116159. http://dx.doi.org/10.1016/j.applthermaleng.2020.116159.
Full textChen, Xueye, Shuai Zhang, Lei Zhang, Zhen Yao, Xiaodong Chen, Yue Zheng, and Yanlin Liu. "Applications and theory of electrokinetic enrichment in micro-nanofluidic chips." Biomedical Microdevices 19, no. 3 (March 31, 2017). http://dx.doi.org/10.1007/s10544-017-0168-1.
Full textWang, Jiqiang, Yongda Yan, Yanquan Geng, Yang Gan, and Zhuo Fang. "Fabrication of polydimethylsiloxane nanofluidic chips under AFM tip-based nanomilling process." Nanoscale Research Letters 14, no. 1 (April 17, 2019). http://dx.doi.org/10.1186/s11671-019-2962-6.
Full text"Developing the protein-concentrating nanofluidic chips for early diagnostics of neurodegenerative disorders." Первое Российско-Китайское рабочее совещание по интегративной биоинформатике и компьютерной системной биологии, August 1, 2018, 15. http://dx.doi.org/10.18699/wibsb-2018-05.
Full textWang, Chao, Sung-Wook Nam, John M. Cotte, Christopher V. Jahnes, Evan G. Colgan, Robert L. Bruce, Markus Brink, et al. "Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules." Nature Communications 8, no. 1 (January 23, 2017). http://dx.doi.org/10.1038/ncomms14243.
Full textReid, Russell C., Marriner H. Merrill, and James P. Thomas. "Stick–slip behavior during electrowetting-on-dielectric: polarization and substrate effects." Microfluidics and Nanofluidics 24, no. 10 (September 7, 2020). http://dx.doi.org/10.1007/s10404-020-02374-y.
Full textRamu, Nalla, and P. S. Ghoshdastidar. "Computer Simulation of Mixed Convection of Alumina-Deionized Water Nanofluid Over Four In-Line Electronic Chips Embedded in One Wall of a Vertical Rectangular Channel." Journal of Thermal Science and Engineering Applications 12, no. 4 (December 24, 2019). http://dx.doi.org/10.1115/1.4045696.
Full textVignesh, S., and U. Mohammed Iqbal. "Application of tri-hybridized carbonaceous nanocutting fluids in an end milling operation by the minimum quantity lubrication technique." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, September 13, 2021, 135065012110438. http://dx.doi.org/10.1177/13506501211043859.
Full text