Academic literature on the topic 'Nanofluidik'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanofluidik.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanofluidik"
Zhang, Li, and Xiaodong Chen. "“Gigantische” Energiegewinnung mittels Nanofluidik." Angewandte Chemie 125, no. 30 (June 17, 2013): 7792–94. http://dx.doi.org/10.1002/ange.201302707.
Full textHan, W. S., and S. H. Rhi. "Thermal characteristics of grooved heat pipe with hybrid nanofluids." Thermal Science 15, no. 1 (2011): 195–206. http://dx.doi.org/10.2298/tsci100209056h.
Full textMohd Mokhtar, Nurul Afiqah, Hoe Guan Beh, and Kean Chuan Lee. "The Potential Application of MnZn Ferrite Nanofluids for Wettability Alteration and Oil-Water Interfacial Tension Reduction." Crystals 9, no. 12 (November 27, 2019): 626. http://dx.doi.org/10.3390/cryst9120626.
Full textShajahan, Mohamed Iqbal, Chockalingam Sundar Raj, Sambandan Arul, and Palanisamy Rathnakumar. "Heat transfer intensification of Zirconia/water nanofluid." JOURNAL OF ADVANCES IN CHEMISTRY 13 (January 9, 2017): 01–08. http://dx.doi.org/10.24297/jac.v13i1.4530.
Full textBobbo, Sergio, Bernardo Buonomo, Oronzio Manca, Silvio Vigna, and Laura Fedele. "Analysis of the Parameters Required to Properly Define Nanofluids for Heat Transfer Applications." Fluids 6, no. 2 (February 2, 2021): 65. http://dx.doi.org/10.3390/fluids6020065.
Full textSuhaimi, Sabrina N., Abdul R. A. Rahman, Muhamad F. Md Din, Muhammad Zahir Hassan, Mohd Taufiq Ishak, and Mohd Taufik bin Jusoh. "A Review on Oil-Based Nanofluid as Next-Generation Insulation for Transformer Application." Journal of Nanomaterials 2020 (February 29, 2020): 1–17. http://dx.doi.org/10.1155/2020/2061343.
Full textSharifi, Amir Hossein, Iman Zahmatkesh, Fatemeh F. Bamoharram, Amir Hossein Shokouhi Tabrizi, Safieh Fazel Razavi, and Sara Saneinezhad. "Experimental Measurement of Thermophysical Properties of Alumina- MWCNTs/Salt–Water Hybrid Nanofluids." Current Nanoscience 16, no. 5 (October 5, 2020): 734–47. http://dx.doi.org/10.2174/1573413716666191218122600.
Full textAbdulwahid, Ammar Fakhir. "Experimental Investigation on the Multi-metallic Cu-Zn NanofluidsHeat Transfer Enhancement and Pressure Losses." Journal of University of Babylon for Engineering Sciences 26, no. 2 (January 1, 2018): 49–61. http://dx.doi.org/10.29196/jub.v26i2.381.
Full textBakthavatchalam, Balaji, Khairul Habib, R. Saidur, Nagoor Basha Shaik, and Turnad Lenggo Ginta. "Analysis of Multiwalled Carbon Nanotubes Porosimetry And Their Thermal Conductivity with Ionic Liquid-Based Solvents." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 77, no. 2 (November 14, 2020): 63–75. http://dx.doi.org/10.37934/arfmts.77.2.6375.
Full textLei, Lei. "Testing algorithm for heat transfer performance of nanofluid-filled heat pipe based on neural network." Open Physics 18, no. 1 (November 13, 2020): 751–60. http://dx.doi.org/10.1515/phys-2020-0170.
Full textDissertations / Theses on the topic "Nanofluidik"
Strobl, Christoph. "Mikro- und Nanofluidik auf piezoelektrischen Substraten." Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-37272.
Full textHenrich, Björn. "Partikelbasierte Simulationsmethoden in Pulvertechnologie und Nanofluidik." [S.l. : s.n.], 2007.
Find full textStöckle, Silke. "Thin liquid films with nanoparticles and rod-like ions as models for nanofluidics." Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2010/4637/.
Full textMit dem Heranwachsen der Nanotechnologie in den vergangenen zehn Jahren hat sich die Nanofluidik als Forschungsbereich etabliert und erfährt wachsende Aufmerksamkeit in der Wissenschaft, sowie auch in der Industrie. Im biomedizinischen Bereich, wo intrazelluläre Prozesse häufig komplexer, nanofluidischer Natur sind, wird sich vermehrt für ein detailliertes Verständnis von nanofluidischen Prozessen interessiert, z.B. für den Einfluss von Kolloiden verschiedenster Form oder elektrischer Ladung auf die Kanäle und auf das Fließverhalten oder die Auswirkungen der Einengung von Flüssigkeiten und Kolloiden in Nanometer Geometrien. In der vorliegenden Arbeit werden dünne flüssige Filme, hinsichtlich ihrer Funktion als nanofluidische Modelle untersucht. Im ersten Teil der Arbeit wurde die Fließgeschwindigkeit des Fluids aus dem dünnen Film, abhängig von der Konzentration der filmstabilisierenden Tensidmoleküle n – Dodecyl β – D – Maltoside ( β – C₁₂G₂) bei einer konstanten Elektrolytkonzentration von 0.2 mM NaCl untersucht. Mit einem theoretischen Modell konnte das Dünnungsverhalten nachgezeichnet werden. Es wurde eine kritische Tensidkonzentration gefunden, unter der die Oberflächen lateral mobil sind und über der sie sich wie fest verhalten. Dadurch konnten wir Aufschluss darüber erlangen, wie die Oberfläche des Films unter verschiedenen Bedingungen geschaffen ist, und das in Bezug zur Verteilungsdichte der Moleküle an den Oberflächen setzen. Im weiteren wurden komplexere, nanofluidische Systeme untersucht, wobei zum einen ~ 1 nm lange, stäbchenförmige, multivalent geladene Spermidin - Moleküle die punktförmigen Elektrolyte ersetzten. Es konnte eine deutliche Veränderung der Stabilität zwischen Filmen mit und ohne Stäbchen festgestellt werden. Die Filme, mit NaCl, blieben länger in dem metastabilen „Common Film“ (CF) Zustand als die Filme, die eine vergleichbare Konzentration von Spermidin Stäbchen beinhalteten. Die Ergebnisse deuteten auf eine zusätzliche Anziehungskraft durch Brückenbildung zwischen zwei geladenen Oberflächen durch gegensätzlich geladene Stäbchenförmige Moleküle hin. Es konnte gezeigt werden, dass dieser Effekt weder ein Ergebnis von spezifischer Ionenadsorption an die Filmoberfläche war, noch ein Unterschied in den Gleichgewichtszuständen von den Dicken der CFs und der Newton Black Films (NBFs) hervorrief, was auf die korrekte Annahme der Ionenstärke in der Lösung schließen ließ. Auch in Versuchen mit ebenfalls trivalenten Ionen YCl3 wurde festgestellt, dass kein vergleichbarer Überbrückungseffekt auftritt. Die Ergebnisse wurden mit theoretischen Simulationen verglichen und es wurde eine quantitative Übereinstimmung gefunden bezüglich der Größe des Systeminternen Energiegewinns durch den Überbrückungseffekt. Desweiteren wurde das Fließverhalten von Fluiden mit Kolloiden eingeengt in Nanometer Geometrien untersucht. Für zwei verschiedene Arten von Nanopartikeln (Fe3O4 stabilisiert mit Oleinsäure und polymerstabilisierte Goldpartikel) wurde eine Verlangsamung der Fließgeschwindigkeit festgestellt. Mit einem theoretischen Modell konnte das Fließverhalten nur für enorm erhöhte Viskositätswerte des Fluids erklärt werden. Die Viskositätserhöhung wurde mit Partikelaggregaten, die den Ausfluss behindern, erklärt und diskutiert, unter der Annahme eines nicht - Newtonischen Fließverhaltens der Dispersionen. Gleichermaßen wurde die strukturelle Anordnung der Partikel in den Filmen hinsichtlich ihrer vertikalen und lateralen Verteilung untersucht. In dieser Arbeit werden vorläufige Ergebnisse präsentiert, die noch weiteren Studien bedürfen. Mit Neutronenreflexion sollte die Anordnung der Partikel orthogonal zur Oberfläche im Film analysiert werden. Eine qualitative Analyse lässt schließen, dass bei einer höheren Konzentration von Partikeln in Lösung, sich auch eine erhöhte Konzentration von Partikeln im dünnen Film befindet. Leider konnten die Daten nicht hinsichtlich der Lage der Partikel analysiert werden. Zum ersten Mal wurden dünne flüssige Filme mit Kleinwinkelröntgenstreuung unter streifendem Einfall (GISAXS) analysiert. Mit Hilfe dieser Methode sollte eine laterale Anordnung der Partikel im Film untersucht werden. Es konnten erfolgreiche Messungen durchgeführt werden und mit Hilfe der rechnergestützten Analyse konnte eine Aussage gemacht werden, dass ~ 6 nm große Teilchen in ~ 43 nm Abstand sich im Film befinden. Die Aussage bezüglich der kleinen Teilchen könnte sich auf einzelne, kleinere Partikel beziehen, allerdings könnten auch die 43 nm eine relevante Strukturgröße darstellen, da es in der Dispersion gehäuft Aggregate mit dem Durchmesser in dem Größenbereich vorliegen. Zusammenfassend können sich mit dieser Arbeit die dünnen flüssigen Filme als eine wichtige Kernmethode der Untersuchung von nanofluidischen Prozessen, wie sie häufig in der Natur vorkommen, behaupten.
Mutlu, Yavuz Selim [Verfasser]. "Entwicklung einer Fluid-Drossel aus porösen Keramiken zur Einstellung von Volumenströmen in der Nanofluidik / Yavuz Selim Mutlu." Lübeck : Zentrale Hochschulbibliothek Lübeck, 2015. http://d-nb.info/1075025184/34.
Full textHaddad, Oriana. "Convection naturelle nanofluidique en cavité hémisphérique inclinée : approches numérique et expérimentale." Thesis, Paris 10, 2018. http://www.theses.fr/2018PA100091.
Full textThis numerical and experimental thesis deals with natural convective heat transfer that occurs in a hemispherical cavity in steady state. The enclosure is filled with water or ZnO / water nanofluid. The volume fraction varies between 0% (pure water) and 10%. The coupola of the cavity is kept at a cold temperature. This work corresponds to the field of electronics and the cooling of different actives composants. Three active heating sources are studied: the first one is plane and circular (the disc) and the followings, centered on the disc with the same surface, are cubical and hemispherical. The tilted angle varies between 0 (dome facing upwards) and 180° (dome facing downwards) with respect to the horizontal plane. Heat sources generate important heat fluxes leading to high Rayleigh numbers values. Numerical approach is done by means of the volume control method based on the SIMPLE algorithm and using monophasic model. For each active source, the convective heat transfer is analyzed and quantified by means of a correlation of the Nusselt-Rayleig-Prandtl-tilt angle type. Experimentally, the heat sources are built step by step and the average convective heat transfer coefficient is calculated. The comparison measures-correlations questions on the cooling nanofluid’s efficiency
Chen, Pin. "Amélioration de l'évaporation des gouttes à l'aide de nanoparticules et d'alcools." Thesis, Valenciennes, 2018. http://www.theses.fr/2018VALE0009/document.
Full textIn recent years, increasing requirement in high efficient heat dissipation for micro-electronics, spacecraft, nuclear reactors etc., encourage the development of next generation heat exchanger. Heat pipe is one of potential effective cooling equipments and most of mass and heat transfer take place at micro-region near triple phase (solid, liquid, vapor) contact line of working fluid, which is essential to thermal performance improvement of heat pipe. This study focuses on the evaporation process of sessile droplets of two novel working fluids (binary solution and nanofluid), which possess similar micro-region to that in heat pipe. Concentration gradient induced Marangoni flow and exceptional thermal conductivity are expected to significantly enhance evaporation rate of alcohol-water mixture and graphene nanofluid, respectively. A combination of acoustic and infrared techniques is developed to track alcohol concentration variation during evaporation of 1-butanol and ethanol aqueous droplets. According to observation of evaporation behavior at different substrate temperature, a series of empirical equations is suggested to predict evaporation rate of 1-butanol-water binary solution droplet considering thermal and solutal Marangoni effect. In addition, the effect of PEGylation, nanoparticle concentration and substrate temperature on drop evaporation of graphene nanofluid are investigated by microscopic, optical and infrared methods. Experimental results and thermodynamic analysis can contribute to the full understanding of involved mechanism concerning evaporation performance of graphene nanofluid
Cabral, Francismara Pires. "Estudo da ebulição convectiva de nanofluidos no interior de microcanais." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/18/18147/tde-16092013-163829/.
Full textThe present work aims the theoretical study of convective boiling of nanofluids in small diameter channels (called microchannel). It discusses an analysis of the literature on convective boiling of conventional fluids in microchannels which presents criteria for the transition between conventional and microchannels and the flow patterns observed in small diameter channels. Methods for predicting the transport properties of nanofluids were compiled from the literature and experimental studies of forced convection, nucleate boiling and convective boiling of nanofluids were discussed. A method for predicting the heat transfer coefficient of nanofluids in microchannels during convective boiling was proposed based on conventional models from literature adjusted to nanofluids. The conventional models fitting was performed by regression analysis of experimental data for nucleate boiling and forced convection of nanofluids compiled from the literature and by critical analysis of dimensionless numbers which enable to capture the influence of nanoparticles on heat transfer process. In general the proposed method in this work presents reasonable agreement with independent experimental data regarding the increase in heat transfer coefficient with increasing nanoparticles volume fraction. However the scarcity of experimental studies on the convective boiling of nanofluids, especially in microchannels, precluded further analysis of the proposed method.
Rueda, García Daniel. "Development of novel electroactive nanofluids for flow cells." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670918.
Full textLas celdas de flujo van camino de convertirse en una pieza clave para el almacenamiento de energía eléctrica (EES) gracias a su idoneidad como dispositivos de nivelación de carga, contribuyendo así al desarrollo de una red inteligente que pueda compensar la intermitencia de las fuentes de energía renovables. Hasta hace poco, las celdas de flujo se habían limitado a las baterías de flujo redox (RFB), donde el almacenamiento de energía está dado por las reacciones redox de los iones disueltos. Muy recientemente, se han propuesto nuevos tipos de electrodos líquidos basados en un mecanismo de almacenamiento capacitivo (condensadores de flujo electroquímicos o EFC). Nuestro grupo ha sido uno de los laboratorios pioneros en este tipo de nuevas celdas de flujo basadas en nanofluidos electroactivos. La presente Tesis ha tenido como objetivo aprovechar la actividad de especies electroactivas bien conocidas (quinonas, grafeno, polioxometalatos, LiFePO4) en nuevos nanofluidos electroactivos. Una parte importante de nuestra estrategia ha sido el diseño de formulaciones y sistemas híbridos que pudieran combinar mecanismos de almacenamiento faradaico (redox) y capacitivo (doble capa) para mejorar el rendimiento de las celdas de flujo resultantes. En la introducción de esta tesis se ha realizado una revisión y perspectiva ampliadas de las tecnologías de celdas de flujo electroquímicas y sus posibles líneas de evolución. Con esto se presentan el estado del arte, los problemas a resolver y las diferentes soluciones propuestas para estas tecnologías. Además, también mostramos nuestro punto de vista y perspectivas para estas tecnologías y el almacenamiento de energía eléctrica en general. Por ello esta parte constituye la parte principal de la introducción y una parte fundamental de esta tesis para entender los objetivos, motivaciones y el trabajo realizado. En el capítulo 4 se estudiaron los fundamentos electroquímicos de las quinonas en electrolitos orgánicos con sal de litio. Los mecanismos electroquímicos de las quinonas se han descrito ampliamente en la bibliografía pero en medios acuosos. En este trabajo, los estudiamos en un electrolito orgánico en un intento de aprovechar la mayor solubilidad y las ventanas de potencial más amplias disponibles en este medio. Encontramos y describimos en detalle varios problemas que impiden el funcionamiento reversible de las quinonas en los electrolitos orgánicos con Li+ que, a su vez, impiden su uso en celdas de flujo en esas condiciones. En el capítulo 5 se describe la síntesis, caracterización y rendimiento electroquímico de materiales híbridos basados en óxido de grafeno reducido (rGO) y polioxometalatos dispersos en un electrolito acuoso (H2SO4) para producir un nanofluido. Estos nanofluidos presentan baja viscosidad y muestran una respuesta electroquímica ultrarrápida e hibrida, con contribución tanto capacitiva del rGO como faradaica de los polioxometalatos. Demostrando así su funcionamiento como fluidos de almacenamiento de energía con plena carga y descarga de todo el material sólido disperso. El sexto capítulo presenta un nuevo tipo de nanofluido basado en rGO. En lugar de usar tensioactivos convencionales como en el capítulo descrito anteriormente, disolvimos una molécula aromática capaz de estabilizar el rGO en un electrolito acuoso mediante interacciones de tipo π-π. Con este enfoque logramos un gran aumento en la estabilidad del nanofluido. Además, este nuevo nanofluido también mostró una gran capacidad de transferencia de carga, como lo demuestra el hecho de que permite que se produzca actividad redox de nanopartículas de LiFePO4 (sin recubrimento conductor) simplemente dispersas en el nanofluido. Por lo tanto, gracias a la presencia de rGO en el nanofluido, los electrones podrían alcanzar las nanopartículas dispersas y, por lo tanto, cargarse y descargarse de manera efectiva y completa, algo que no es posible en nanofluidos que contienen solo nanopartículas de LiFePO4. La síntesis de grafeno también se ha estudiado en profundidad en esta tesis tal y como se puede ver en el capítulo 7, dado que el objetivo final es producir materiales que se puedan usar en aplicaciones reales, asegurarse de que los materiales con los que se trabaja se pueden producir en cantidades grandes, mediante métodos escalables y elementos abundantes es también importante. Como resultado, se ha desarrollado y patentado un nuevo método para la producción de grafeno por exfoliación electroquímica de grafito. En esta tesis se presenta la patente, un resumen de los resultados obtenidos y el estado del arte del método de exfoliación electroquímica de grafeno. En esta tesis hemos demostrado el potencial de los nanofluidos en el almacenamiento de energía electroquímica. A partir de los resultados mostrados aquí, podemos inducir conclusiones generales importantes sobre los efectos extendidos de pequeñas cantidades de sólidos en todo el volumen del nanofluido. Hemos demostrado que las dispersiones estables de rGO en agua pueden transferir la carga a través de todo el volumen de nanofluidos, lo que hace que todo el nanofluido actúe como un electrodo supercondensador que almacena la carga a través de un mecanismo capacitivo. De hecho, el nanofluido acuoso rGO mostró una transferencia de carga extremadamente rápida, pudiendo realizar ciclos a 10V·s-1. Gracias a esta rápida transferencia de carga, pudimos cargar y descargar por completo nanopartículas activas redox dispersas de LiFePO4 y detectar claramente picos redox incluso a 25 mV·s-1. Además, al dopar el rGO con especies redox activas moleculares como los polioxometalatos, desarrollamos sistemas híbridos con potencia y capacidad mejoradas con respecto al nanofluido rGO puro. Finalmente, demostramos que los nanofluidos de rGO acuosos pueden mejorar su estabilidad al disolver una molécula aromática (DABA) capaz de estabilizar rGO mediante interacciones π-π manteniendo su buena conductividad eléctrica. Todo esto ha sido posible manteniendo la viscosidad de los nanofluidos desarrollados muy cerca de los disolventes originales, lo que facilitará su aplicación final en dispositivos de flujo real. Por otro lado, la baja concentración de nanopartículas de grafeno podría ser una desventaja para la aplicación de estos materiales en dispositivos de alta densidad de energía. Por lo tanto, aumentar la carga de nanopartículas electroactivas es un objetivo importante. En resumen, hemos diseñado y preparado nanofluidos basados en grafeno pero también en híbridos de grafeno. Hemos mostrado en esta descripción general cómo estos novedosos materiales de nanofluidos pueden presentar rendimientos sobresalientes incluso en el caso de sistemas muy diluidos. Hemos demostrado efectos no lineales, que conducen a propiedades notables con pequeñas cantidades de grafeno dispersas en los nanofluidos. Por lo tanto, nuestro trabajo subraya el sólido potencial de estos sistemas para el almacenamiento de energía.
Haddad, Zoubida. "Instabilités thermoconvectives pour des fluides complexes." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4778.
Full textThe controversy regarding the proposed mechanisms of the exceptionally enhanced thermal conductivity of nanofluids, as well as sharp increase of nanofluid viscosity suggest that systematic experiment with well dispersed and well characterized nanofluids are highly desired. Therefore, on the basis of this suggestion, thermal conductivity and viscosity of silica-water and titania-water nanofluids were measured. It was observed that the thermal conductivity of both nanofluids agrees well with the effective medium theory, i.e., Maxwell model, and does not show any enhancement due to effects associated with the proposed mechanisms of thermal energy transfer in nanofluids like Brownian motion or liquid layering. To support these results, the thermal conductivity of water based nanofluid containing carbon nanotubes was measured. It was found that that thermal conductivity of CNTs nanofluids agrees well with Maxwell model up to 1 vol.%. The inconsistencies in the reported thermal conductivity and dynamic viscosity from different research groups are found to be mainly due to the characterization of the nanofluid, including determination of colloidal stability and particle size, (i.e, aggregates size) within nanofluid. The influence of uncertainties due to adopting various formulas for the dynamic viscosity on natural convection heat transfer was investigated. It was observed that uncertainties in the predictive models for the effective thermal conductivity and dynamic viscosity of nanofluids, leads to erroneous evaluation of the convective heat transfer with nanofluids, and this acts as a brake on research in the area
Rodríguez-Laguna, María del Rocío. "Heat transfer fluids: From fundamental aspects of graphene nanofluids at room temperature to molten salts formulations for solar-thermal conversion." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667803.
Full textHeat transfer fluids and nanofluids constitute an important element in the industry and their performance is key to the successful application in technologies that go from heat management and cooling to heat exchangers in thermal-solar energy and electricity generation. These industries demand heat transfer fluids with a wider liquid temperature range and better thermal performance than the conventional fluids. From low-temperature fluids to high-temperature molten salts, these fluids seem to benefit from the dispersion of solid nanoparticles, leading to nanofluids which frequently feature improved thermal conductivities and/or specific heats as compared with the bare fluids. However, there are some exceptions. Contradictory reports make it necessary to study these materials in greater depth than has been usual. Yet, the liquid nature of these materials poses a real challenge, both from the experimental point of view and from the conceptual framework. The work reported in this thesis has tackled two different challenges related to heat transfer fluids and nanofluids. In the first place, a careful and systematic study of thermal, morphological, rheological, stability, acoustic and vibrational properties of graphene-based nanofluids was carried out. We observed a huge increase of up to 48% in thermal conductivity and 18% in heat capacity of graphene-N,N-dimethylacetamide (DMAc) nanofluids. A significant enhancement was also observed in graphene-N,N-dimethylformamide (DMF) nanofluids of approximately 25% and 12% for thermal conductivity and heat capacity, respectively. The blue shift of several Raman bands (max. ~ 4 cm-1) with increasing graphene concentration in DMF and DMAc nanofluids suggested that graphene has the ability to affect solvent molecules at long-range, in terms of vibrational energy. In parallel, numerical simulations based on density functional theory (DFT) and molecular dynamics (MD) showed a parallel orientation of DMF towards graphene, favoring π–π stacking and contributing to the modification of the Raman spectra. Furthermore, a local order of DMF molecules around graphene was observed suggesting that both this special kind of interaction and the induced local order may contribute to the enhancement of the thermal properties of the fluid. Similar studies were also performed in graphene-N-methyl-2-pyrrolidinone nanofluids, however, no modification of the thermal conductivity or the Raman spectra was observed. All these observations together suggest that there is a correlation between the modification of the vibrational spectra and the increase in the thermal conductivity of the nanofluids. In light of these results, the mechanisms suggested in the literature to explain the enhancement of thermal conductivity in nanofluids were discussed and some of them were discarded. The second line of research focused on the development and characterization of novel molten salts formulations with low-melting temperature and high thermal stability. In this regard, two novel formulations of six components based on nitrates with a melting temperature of 60-75 °C and a thermal stability up to ~ 500 °C were synthesized. Moreover, the complexity of the samples led to establish a series of experimental methods which are proposed for the melting temperature detection of these materials as an alternative to conventional calorimetry. These methods are Raman spectroscopy, three-omega technique, and optical transmission.
Books on the topic "Nanofluidik"
Mutlu, Yavuz Selim. Einstellung von Volumenströmen im Bereich der Nanofluidik. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-11356-8.
Full textEdel, Joshua, Aleksandar Ivanov, and MinJun Kim, eds. Nanofluidics. Cambridge: Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781849735230.
Full textLi, Zhigang. Nanofluidics. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor &: CRC Press, 2018. http://dx.doi.org/10.1201/b22007.
Full textMichaelides, Efstathios E. Nanofluidics. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05621-0.
Full textEdel, Joshua, and Andrew deMello, eds. Nanofluidics. Cambridge: Royal Society of Chemistry, 2008. http://dx.doi.org/10.1039/9781847558909.
Full textPrabhu, K. Narayan, ed. Nanofluids. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2012. http://dx.doi.org/10.1520/stp1567-eb.
Full textKleinstreuer, Clement. Microfluidics and Nanofluidics. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118749890.
Full textBook chapters on the topic "Nanofluidik"
Mutlu, Yavuz Selim. "Einleitung und Motivation." In Einstellung von Volumenströmen im Bereich der Nanofluidik, 1–16. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-11356-8_1.
Full textMutlu, Yavuz Selim. "Methoden." In Einstellung von Volumenströmen im Bereich der Nanofluidik, 45–79. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-11356-8_3.
Full textMutlu, Yavuz Selim. "Ergebnisse." In Einstellung von Volumenströmen im Bereich der Nanofluidik, 81–121. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-11356-8_4.
Full textMutlu, Yavuz Selim. "Zusammenfassung, Diskussion und Ausblick." In Einstellung von Volumenströmen im Bereich der Nanofluidik, 123–42. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-11356-8_5.
Full textMutlu, Yavuz Selim. "Grundlagen." In Einstellung von Volumenströmen im Bereich der Nanofluidik, 17–43. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-11356-8_2.
Full textBhardwaj, Rashmi, and Saureesh Das. "Chaos in Nanofluidic Convection of CuO Nanofluid." In Industrial Mathematics and Complex Systems, 283–93. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3758-0_20.
Full textYoda, Minami, Jean-Luc Garden, Olivier Bourgeois, Aeraj Haque, Aloke Kumar, Hans Deyhle, Simone Hieber, et al. "Nanofluidic Channels." In Encyclopedia of Nanotechnology, 1543. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100499.
Full textKim, Daejoong, Kilsung Kwon, Deok Han Kim, and Longnan Li. "Nanofluidic RED." In SpringerBriefs in Applied Sciences and Technology, 43–44. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-0314-2_6.
Full textYoda, Minami, Jean-Luc Garden, Olivier Bourgeois, Aeraj Haque, Aloke Kumar, Hans Deyhle, Simone Hieber, et al. "Nanofluidics." In Encyclopedia of Nanotechnology, 1543. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100500.
Full textHan, Jongyoon. "Nanofluidics." In Introduction to Nanoscale Science and Technology, 575–97. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/1-4020-7757-2_24.
Full textConference papers on the topic "Nanofluidik"
O’Hanley, Harry, Jacopo Buongiorno, Thomas McKrell, and Lin-wen Hu. "Measurement and Model Correlation of Specific Heat Capacity of Water-Based Nanofluids With Silica, Alumina and Copper Oxide Nanoparticles." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62054.
Full textMu, Lijuan, Qunzhi Zhu, and Leilei Si. "Radiative Properties of Nanofluids and Performance of a Direct Solar Absorber Using Nanofluids." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18402.
Full textTaylor, Robert A., Patrick E. Phelan, Ronald J. Adrian, Todd Otanicar, and Ravi S. Prasher. "Experimental Results for Light-Induced Boiling in Water-Based Graphite Nanoparticle Suspensions." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88176.
Full textTaylor, Robert, Sylvain Coulombe, Todd Otanicar, Patrick Phelan, Andrey Gunawan, Wei Lv, Gary Rosengarten, Ravi Prasher, and Himanshu Tyagi. "Critical Review of the Novel Applications and Uses of Nanofluids." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75189.
Full textHe, Qinbo, Geni Yan, and Shuangfeng Wang. "Experimental Investigation on Solar Thermal Properties of Magnetic Nanofluids for Direct Absorption Solar Collector." In ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6620.
Full textNnanna, A. G. Agwu, Tom Fistrovich, Kurt Malinski, and S. U. S. Choi. "Thermal Transport Phenomena in Buoyancy-Driven Nanofluids." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62059.
Full textXuan, Yimin, and Qiang Li. "Energy Transport Mechanisms in Nanofluids and Its Applications." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82154.
Full textKanjirakat, Anoop, Khalifa Taimour, Mohammed Al-Jubouri, Reza Sadr, and Mahmood Amani. "Viscosity Measurements of Nanofluids at Elevated Temperatures and Pressures." In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73103.
Full textHan, Jongyoon, and Harold G. Craighead. "From microfluidics to nanofluidics: DNA separation using nanofluidic entropic trap array device." In Micromachining and Microfabrication, edited by Carlos H. Mastrangelo and Holger Becker. SPIE, 2000. http://dx.doi.org/10.1117/12.395654.
Full textMa, Xuehu, Fengmin Su, Zhong Lan, and Jiabin Chen. "Experimental Study on the Thermal Physical Properties of a CNTS-Ammonia Binary Nanofluid." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52153.
Full textReports on the topic "Nanofluidik"
Ramsey, J. Michael. Nanofluidic Structures for Electrokinetic-Based Hydraulic Pumps. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/839258.
Full textGourley, Paul Lee, Anthony Eugene McDonald, and Judy K. Hendricks. Nanofluidic devices for rapid detection of virus particles. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/921716.
Full textPawel Keblinski. Fundamentals of Energy Transport in Nanofluids. Office of Scientific and Technical Information (OSTI), February 2007. http://dx.doi.org/10.2172/924115.
Full textJohnson, Drew W. Characterizations of Nanofluid Heat Transfer Enhancements. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada590127.
Full textFornasiero, Francesco. Unraveling the physics of nanofluidic phenomena at the single-molecule level. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1240944.
Full textCropek, Donald M., Paul W. Bohn :In-Hyoung, Jonathan Sweedler, Yi Lu, Carla Swearingen, and Daryl Wernette. Metal Ion Sensor with Catalytic DNA in a Nanofluidic Intelligent Processor. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada631384.
Full textTaborek, Peter. Nanoscale Heat Transfer Due to Near Field Radiation and Nanofluidic Flows. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ada625941.
Full textGlobus, Tatiana, Aaron Moyer, Jerome Ferrance, Igor Sizov, and Tatyana Khromova. Development of a Biosensor Nanofluidic Platform for Integration with Terahertz Spectroscopic System. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada587044.
Full textGharagozloo, Patricia E., and Kenneth E. Goodson. Characterization and modeling of thermal diffusion and aggregation in nanofluids. Office of Scientific and Technical Information (OSTI), May 2010. http://dx.doi.org/10.2172/993305.
Full textJeyashekar, Nigil S. Scanning Electron Microscope Studies on Aggregation Characteristics of Alumina Nanofluids. Fort Belvoir, VA: Defense Technical Information Center, August 2013. http://dx.doi.org/10.21236/ada602578.
Full text