Academic literature on the topic 'Nanogenerator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanogenerator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanogenerator"
Li, Weiping, Yupeng Zhang, and Chunxu Pan. "Graphene-based Nanogenerator: Experiments, Theories and Applications." MRS Proceedings 1782 (2015): 15–21. http://dx.doi.org/10.1557/opl.2015.677.
Full textMishra, Siju, P. Supraja, Vishnu V. Jaiswal, et al. "Enhanced output of ZnO nanosheet-based piezoelectric nanogenerator with a novel device structure." Engineering Research Express 3, no. 4 (2021): 045022. http://dx.doi.org/10.1088/2631-8695/ac34c3.
Full textAmangeldinova, Yerkezhan, Dimaral Aben, Xiaoting Ma, et al. "Enhancing Electrical Outputs of Piezoelectric Nanogenerators by Controlling the Dielectric Constant of ZnO/PDMS Composite." Micromachines 12, no. 6 (2021): 630. http://dx.doi.org/10.3390/mi12060630.
Full textShao, Yicheng, Maoliang Shen, Yuankai Zhou, Xin Cui, Lijie Li, and Yan Zhang. "Nanogenerator-based self-powered sensors for data collection." Beilstein Journal of Nanotechnology 12 (July 8, 2021): 680–93. http://dx.doi.org/10.3762/bjnano.12.54.
Full textElvira-Hernández, Ernesto A., Omar I. Nava-Galindo, Elisa K. Martínez-Lara, et al. "A Portable Triboelectric Nanogenerator Based on Dehydrated Nopal Powder for Powering Electronic Devices." Sensors 23, no. 9 (2023): 4195. http://dx.doi.org/10.3390/s23094195.
Full textElvira-Hernández, Ernesto A., Juan C. Anaya-Zavaleta, Eustaquio Martínez-Cisneros, Francisco López-Huerta, Luz Antonio Aguilera-Cortés, and Agustín L. Herrera-May. "Electromechanical Modeling of Vibration-Based Piezoelectric Nanogenerator with Multilayered Cross-Section for Low-Power Consumption Devices." Micromachines 11, no. 9 (2020): 860. http://dx.doi.org/10.3390/mi11090860.
Full textBlanquer, Andreu, Oriol Careta, Laura Anido-Varela, et al. "Biocompatibility and Electrical Stimulation of Skeletal and Smooth Muscle Cells Cultured on Piezoelectric Nanogenerators." International Journal of Molecular Sciences 23, no. 1 (2021): 432. http://dx.doi.org/10.3390/ijms23010432.
Full textRafique, Sumera, Ajab Khan Kasi, Jafar Khan Kasi, Aminullah, Muzamil Bokhari, and Zafar Shakoor. "Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system." Nanomaterials and Nanotechnology 10 (January 1, 2020): 184798041989574. http://dx.doi.org/10.1177/1847980419895741.
Full textJiang, Yijing, Yongju Deng, and Hongyan Qi. "Microstructure Dependence of Output Performance in Flexible PVDF Piezoelectric Nanogenerators." Polymers 13, no. 19 (2021): 3252. http://dx.doi.org/10.3390/polym13193252.
Full textDayana Kamaruzaman, Mohamad Hafiz Mamat, Nurul Izzati Kamal Ariffin, et al. "Effects of Thermal Annealing on The Morphology and Structural Characteristics of Zinc Oxide Nanopowders for Triboelectric Nanogenerator Applications." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 99, no. 1 (2022): 17–27. http://dx.doi.org/10.37934/arfmts.99.1.1727.
Full textDissertations / Theses on the topic "Nanogenerator"
Van, den Heever Thomas Stanley. "Development and optimisation of a zinc oxide nanowire nanogenerator." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85781.
Full textENGLISH ABSTRACT: This study developed and optimised zinc oxide (ZnO) nanowire-based nanogenerator. The nanogenerator works on the piezoelectric effect that is, a mechanical force is converted to an electrical voltage. The ZnO nanowires are piezoelectric and when any force is applied to the nanowires an output voltage is generated. This ZnO nanowire-based nanogenerator can be used to power small electronic devices, such as pacemakers. The nanogenerator can also be incorporated into clothes and shoes to generate electricity to charge a cell phone for example. The problem experienced currently is that the nanogenerator does not generate enough electricity to be of practical use and needs to be further optimised. Simulations and mathematical models were used to identify areas where the nanogenerator could be optimised in order to increase the output voltage. It is shown that the morphology of the nanowires can have a considerable effect on the output voltage. For this reason the growth of the nanowires was investigated first. Different methods were used to propagate the nanowires in order to select the method that, on average, has the highest output voltage. Accordingly, one parameter at a time and design of experiments were used to optimise the nanowire growth. Consequently, these two methods were used to optimise the growth parameters with the respect to the output voltage. The aqueous solution method was found to yield nanowires that give the highest generated output voltage. After growing over 600 nanowire samples, optimal growth parameters for this method were found. These optimal growth parameters were subsequently used to grow nanowires that were used to manufacture the nanogenerator. The nanowires were grown on a solid substrate and hence the nanogenerator was also manufactured on the solid substrate. Through various optimisations of the manufacturing process the maximum output voltage achieved was about 500 mV. However, this output voltage is too low to be of practical use, even though the output has been raised considerably. The main problem was found to be the fact that the contact between the nanowires and the electrode was weak due to contamination. A new method was therefore required where the electrode and the nanowires would be in proper contact to ensure that higher output voltages were achieved. Subsequently, a flexible nanogenerator was manufactured in order to solve this problem. Accordingly, the nanowires were grown on the flexible polyimide film and a buffer layer was then spun onto the flexible substrate, leaving only the nanowire tips exposed. The electrode was then sputtered on top of this buffer layer, covering the nanowire tips. This ensured proper contact between the nanowires and the electrode. The nanogenerator, which was manufactured with non-optimal growth parameters, gives a maximum voltage output of 1 V, double the maximum achieved with the solid nanogenerator. When the optimal growth parameters were used the output voltage was raised to 2 V. Various optimisation techniques were performed on the nanogenerator, including plasma treatment and annealing and the use of various materials in the buffer layer. Combining these optimisation methods subsequently led to an optimised nanogenerator that can generate an output voltage of over 5 V. This was achieved after over 1200 nanogenerators had been manufactured. However, the output voltage was not in a usable form. Circuitry was therefore developed to transform the voltage generated by the nanogenerator to a useable form. The best circuit, the LTC3588, was used to power an LED for 10 seconds. The completed device was found to achieve a power output of 0.3 mW, enough for small electronic devices.
AFRIKAANSE OPSOMMING: ‘n Sink-oksied (ZnO) nanodraad gebaseerde nanogenerator is ontwikkeld en geöptimeer. Die nanogenerator werk met behulp van die piezoelektriese effek - meganiese krag work omgesit in ‘n elektriese spanning. Die ZnO nanodrade is piezoelektries en wanneer ‘n krag op die drade aangewend word, word ‘n uittree spanning gegenereer. Die nanogenerator kan gebruik word om klein elektroniese toestelle, soos ‘n pasaangeër, van krag te voorsien. Die nanogenerator kan in klere en skoene geïnkorporeer word om elektrisiteit op te wek vir die laai van ‘n selfoon. Die probleem is egter dat die nanogenerator tans nie genoeg krag opwek om prakties van nut te wees nie en verdere optimasie word benodig. Simulasies en wikundige modelle work gebruik om areas te identifiseer waar die nanogenerator geöptimeer kan word, met die doel om die uittreespanning te verhoog. Dit word bewys dat die morfologie van die nanodrade ‘n groot effek het op die uittreespanning. Dus word die groei van die nanodrade eerste ondersoek. Verskillende metodes word gebruik om die nanodrade te groei en die beste metode, wat die hoogste uittreespanning op gemiddeld verskaf, word gekies. Een parameter op ‘n slag en ontwerp van eksperimente word gebruik om die nanodraad groei te optimeer. Die groei parameters word geöptimeer deur van die twee metodes gebruik te maak, en die optimeering word gedoen in terme van die uittreespanning. Die oplossing groei metode lei tot nanodrade wat die hoogste uittreespanning verskaf. Na oor die 600 nanodraad monsters gegroei is, is die optimale parameters gevind. Hierdie optimale parameters word uitsluitlik gebruik om die nanogenerator te vervaardig. Die nanodrade word op ‘n soliede substraat gegroei en dus word die nanogenerator op dieselfde soliede substraat vervaardig. Verskeie metodes is gebruik om die vervaardiging te optimeer en die hoogste uittreespanning wat bereik is, is 500 mV. Die uittreespanning is te laag om van praktiese nut te wees alhoewel dit heelwat verhoog is. Die grootste probleem is die swak kontak tussen die nanodrade en die elektrode, wat veroorsaak word deur kontaminasie. ‘n Nuwe metode word verlang wat beter kontak tussen die nanodrade en elektrode sal verseker. ‘n Buigbare nanogenerator is vervaardig om die probleem op te los. Die nanodrade word nou op ‘n buigbare film gegroei. ‘n Bufferlaag word tussen die nanodrade in gedraai, tot net die punte van die nanodrade nog sigbaar is. Die elektrode word bo-op die bufferlaag gedeponeer, wat behoorlike kontak tussen die nanodrade en elektrode verseker. Die nanogenerator wat met nie-optimale groei parameters vervaardig is, bereik ‘n uittreespanning van 1 V, dubbel die soliede nanogenerator. Met optimale groei parameters word die uittreespanning tot 2 V verhoog. Verskeie optimasie tegnieke word op die nanogenerator toegepas. Die metodes sluit in suurstof plasma behandeling, verhitting en die inkorporasie van verskillende materiale in die bufferlaag. ‘n Kombinasie van die metodes geïnkorporeer in een nanogenerator lei tot ‘n uittreespanning van 5 V. Die uittreespanning is bereik na oor die 1200 nanogenerators vervaardig is. The uittreespanning is nog nie in ‘n bruikbare vorm nie. Spesiale stroombane is ontwikkel wat die nanogenerator spanning omskakel na ‘n bruikbare vorm. Die beste stroombaan, die LTC3588, kan ‘n LED aanskakel vir 10 sekondes. The toestel kan ook 0.3mWuittreekrag voorsien, genoeg vir klein elektroniese toestelle om te werk.
Dönmez, Noyan Inci. "Improving the performance of an all-Si based thermoelectric micro/nanogenerator." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/650830.
Full textThis thesis presents the development of a thermoelectric microgenerator (μTEG) with the aim of powering low power wireless sensor nodes for Internet of Things applications. The proposed μTEG is fabricated by means of silicon micromachining technologies and makes use of silicon (Si) and silicon/germanium (SiGe) nanowire (NW) arrays as thermoelectric material. Specific technological routes are designed to increase the power density of the μTEG. Particularly, this thesis has been focused on increasing the power density through i) thermal and electrical optimization of the thermoelectric microplatform, ii) integration of a heat exchanger on the proposed μTEGs. The thermal performance of the μTEG is enhanced by reducing the parasitic thermal losses between the hot and cold ends which ended up in %34 decrease of the thermal conductance. The electrical performance, on the other hand is improved tremendously by lowering the device internal resistance 7 to 20 times. Both has been achieved through the redesign of the architecture and processing steps for μTEG. Even though the power densities obtained from the optimized μTEGs are close to meet the expectations for low power sensor nodes (10-100 μW/cm2), further improvement is aimed by the integration of a heat exchanger. Two different routes with different heat flow directions have been designed for the integration of a heat exchanger. With the integration of the heat exchanger, a significant amount of improvement has been observed for all tested μTEGs based on different thermoelectric materials (Si NWs, SiGe NWs and Si microbeams). μTEGs with integrated heat exchanger were able to harvest 41.2 (Si NWs), 45.2 (SiGe NWs) and 34.5 μW/cm2 (Si microbeams) when they were placed on a waste heat source of 100 ◦C. This is 50-1000 times more than for similar devices without heat exchanger at the same hot plate temperature. Results obtained in this thesis are well positioned compared with the state-of-the-art μTEGs. In addition, this thesis, together with the one performed in collaboration at IREC, reports for first time on the performance of SiGe NWs based μTEG.
Wang, Sihong. "Nanogenerator for mechanical energy harvesting and its hybridization with li-ion battery." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53437.
Full textDhakras, D. "Novel flexible device platforms using electrospinning process for sensor and nanogenerator applications." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2015. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2254.
Full textSong, Jinhui. "Nanogenerators." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24772.
Full textCommittee Chair: Zhong lin Wang; Committee Member: Christopher J. Summers; Committee Member: Kenneth A. Gall; Committee Member: Robert L. Snyder; Committee Member: Russell D. Dupuis.
Pradel, Ken Charles. "Antimony doped p-type zinc oxide for piezotronics and optoelectronics." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54386.
Full textArmas, Jeremy A. "Influence of High Aspect Ratio Nanoparticle Filler Addition on Piezoelectric Nanocomposites." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/2026.
Full textSatti, Nour Eiman. "Development of Zinc Oxide Piezoelectric Nanogenerators for Low Frequency Applications." Doctoral thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131858.
Full textFeng, Ziang. "Wearable Power Sources and Self-powered Sensors Based on the Triboelectric Nanogenerators." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/103020.
Full textPh.D.
Portable electronic devices have become important components in our daily lives, and we are entering the era of the Internet of Things (IoTs), where everyday objects can be interconnected by the internet. While electricity is essential to all of these devices, the traditional power sources are commonly heavy and bulky and need to be recharged or directly connected to the immobile power plants. Researchers have been working to address this mismatch between the device and power systems. The triboelectric nanogenerators (TENG) are good candidates because they can harvest energy in the ambient environment. The users can use them to generate electricity by merely making the rubbing motion. In this work, we report two fabrication methods of the fiber-based triboelectric nanogenerators (FTENG). With the thermal drawing process, we have fabricated sub-kilometer-long FTENG and wove it with the regular cotton yarn into textiles. The wearable power source is human friendly as it does not induce any extra weight load for the user. Besides, we have demonstrated that such long fibers can work as self-powered distributed sensors, such as a Morse code generator. With 3D printing, we have fabricated FTENG-based devices that conform to the working substrates, which can be any shape. We have employed them as biofriendly sensors to translate the chin movement during speaking to language and to monitor the perfusion rate of a pig kidney. The FTENGs have offered excellent comfortability to the users and can play a vital role in reframing the power structure to be compatible with IoTs.
Chen, Jun. "Triboelectric nanogenerators." Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54956.
Full textBooks on the topic "Nanogenerator"
Han, Mengdi, Xiaosheng Zhang, and Haixia Zhang, eds. Flexible and Stretchable Triboelectric Nanogenerator Devices. Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527820153.
Full textInamuddin, Mohd Imran Ahamed, Rajender Boddula, and Tariq Altalhi. Nanogenerators. CRC Press, 2022. http://dx.doi.org/10.1201/9781003187615.
Full textWang, Zhong Lin, Long Lin, Jun Chen, Simiao Niu, and Yunlong Zi. Triboelectric Nanogenerators. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40039-6.
Full textWang, Zhong Lin, Ya Yang, Junyi Zhai, and Jie Wang, eds. Handbook of Triboelectric Nanogenerators. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-05722-9.
Full textZhang, Xiaosheng, Mengdi Han, and Haixia Zhang. Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems. Wiley & Sons, Incorporated, John, 2019.
Zhang, Xiaosheng, Mengdi Han, and Haixia Zhang. Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems. Wiley & Sons, Incorporated, John, 2019.
Zhang, Xiaosheng, Mengdi Han, and Haixia Zhang. Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems. Wiley & Sons, Incorporated, John, 2019.
Zhang, Xiaosheng, Mengdi Han, and Haixia Zhang. Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems. Wiley-VCH Verlag GmbH, 2019.
Jae Kim, Sang, Arunkumar Chandrasekhar, and Nagamalleswara Rao Alluri, eds. Nanogenerators. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.78915.
Full textInamuddin, Rajender Boddula, Mohd Imran Ahamed, and Tariq Altalhi. Nanogenerators. Taylor & Francis Group, 2022.
Book chapters on the topic "Nanogenerator"
Xiao, Xiao, Junyi Yin, and Jun Chen. "Triboelectric Nanogenerator for Healthcare." In Handbook of Triboelectric Nanogenerators. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05722-9_18-1.
Full textPrasanna, Asokan Poorani Sathya, Gaurav Khandelwal, and Sang-Jae Kim. "Triboelectric Nanogenerator for Sports." In Handbook of Triboelectric Nanogenerators. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-05722-9_28-1.
Full textXiao, Xiao, Junyi Yin, and Jun Chen. "Triboelectric Nanogenerator for Healthcare." In Handbook of Triboelectric Nanogenerators. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28111-2_18.
Full textPrasanna, Asokan Poorani Sathya, Gaurav Khandelwal, and Sang-Jae Kim. "Triboelectric Nanogenerator for Sports." In Handbook of Triboelectric Nanogenerators. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28111-2_28.
Full textWang, Zhong Lin, Long Lin, Jun Chen, Simiao Niu, and Yunlong Zi. "Triboelectric Nanogenerator: Lateral Sliding Mode." In Triboelectric Nanogenerators. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40039-6_3.
Full textWang, Zhong Lin, Long Lin, Jun Chen, Simiao Niu, and Yunlong Zi. "Triboelectric Nanogenerator: Single-Electrode Mode." In Triboelectric Nanogenerators. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40039-6_4.
Full textWang, Zhong Lin, Long Lin, Jun Chen, Simiao Niu, and Yunlong Zi. "Hybrid Cell Composed of Triboelectric Nanogenerator." In Triboelectric Nanogenerators. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40039-6_12.
Full textWang, Zhong Lin, Long Lin, Jun Chen, Simiao Niu, and Yunlong Zi. "Triboelectric Nanogenerator: Vertical Contact-Separation Mode." In Triboelectric Nanogenerators. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40039-6_2.
Full textWang, Zhong Lin, Long Lin, Jun Chen, Simiao Niu, and Yunlong Zi. "Triboelectric Nanogenerator: Freestanding Triboelectric-Layer Mode." In Triboelectric Nanogenerators. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40039-6_5.
Full textGuo, Hengyu, and Jie Chen. "Triboelectric Nanogenerator for Particle Filtering." In Handbook of Triboelectric Nanogenerators. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-05722-9_37-1.
Full textConference papers on the topic "Nanogenerator"
Voiculescu, Ioana, Fang Li, Glen Kowach, Hao Su, and Kun Lin Lee. "Wearable and Stretchable Piezoelectric Nanogenerator for Skin Applications." In 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6874.
Full textGhosh, Sujoy Kumar, Mengying Xie, Christopher Rhys Bowen, and Dipankar Mandal. "All-fiber pyroelectric nanogenerator." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029156.
Full textWang, Zhong Lin. "Nanogenerator and nano-piezotronics." In 8th International Vacuum Electron Sources Conference and Nanocarbon (2010 IVESC). IEEE, 2010. http://dx.doi.org/10.1109/ivesc.2010.5644379.
Full textVoiculescu, Ioana, and Kun Lin Lee. "Stretchable nanogenerator for optoelectronics." In Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology, edited by Jannick P. Rolland, Virgil-Florin Duma, and Adrian G. H. Podoleanu. SPIE, 2022. http://dx.doi.org/10.1117/12.2599645.
Full textBarri, Kaveh, Qianyun Zhang, Pengcheng Jiao, Zhong Lin Wang, and Amir H. Alavi. "Multifunctional metamaterial sensor and nanogenerator." In Behavior and Mechanics of Multifunctional Materials XV, edited by Ryan L. Harne. SPIE, 2021. http://dx.doi.org/10.1117/12.2581050.
Full textYang, Ya. "Hybridized Nanogenerator for Scavenging Mechanical Energy." In Photonics for Energy. OSA, 2015. http://dx.doi.org/10.1364/pfe.2015.pt1f.4.
Full textSultana, Ayesha, Tapas Ranjan Middya, and Dipankar Mandal. "ZnS-paper based flexible piezoelectric nanogenerator." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029058.
Full textKaur, Navjot, and Kaushik Pal. "Oxidized graphene nanoribbons based triboelectric nanogenerator." In Proceedings of the International Conference on Nanotechnology for Better Living. Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-185.
Full textAli, Mehran, Saeed Ahmed Khan, Abdul Qadir Rahimoon, et al. "Triboelectric Nanogenerator Scavenging Sliding Motion Energy." In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). IEEE, 2019. http://dx.doi.org/10.1109/icomet.2019.8673440.
Full textChang, Chieh, Yiin-Kuen Fuh, and Liwei Lin. "A direct-write piezoelectric PVDF nanogenerator." In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285796.
Full textReports on the topic "Nanogenerator"
Wang, Zhong L. Piezoelectric Nanogenerators for Self-Powered Nanosystems and Nanosensors. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada587995.
Full textArmas, J. A. Morphological and Electrical Properties of P(VDF-TrFE) Piezoelectric Nanogenerators Modified with High Aspect Ratio Fillers. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1476201.
Full text