To see the other types of publications on this topic, follow the link: Nanolaminate ceramics.

Journal articles on the topic 'Nanolaminate ceramics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nanolaminate ceramics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Alam, Md Shahinoor, Mohammad Asaduzzaman Chowdhury, Tasmina Khandaker, et al. "Advancements in MAX phase materials: structure, properties, and novel applications." RSC Advances 14, no. 37 (2024): 26995–7041. http://dx.doi.org/10.1039/d4ra03714f.

Full text
Abstract:
The MAX phase represents a diverse class of nanolaminate materials with intriguing properties that have received incredible global research attention because they bridge the divide separating metals and ceramics.
APA, Harvard, Vancouver, ISO, and other styles
2

Dubois, Sylvain, Thierry Cabioc'h, Patrick Chartier, Véronique Gauthier, and Michel Jaouen. "A New Ternary Nanolaminate Carbide: Ti3SnC2." Journal of the American Ceramic Society 90, no. 8 (2007): 2642–44. http://dx.doi.org/10.1111/j.1551-2916.2007.01766.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chlubny, Leszek, Jerzy Lis, and Mirosław M. Bućko. "Sintering and Hot-Pressing of Ti2AlC Obtained by SHS Process." Advances in Science and Technology 63 (October 2010): 282–86. http://dx.doi.org/10.4028/www.scientific.net/ast.63.282.

Full text
Abstract:
Some of ternary materials in the Ti-Al-C system are called MAX-phases and are characterised by heterodesmic layer structure. Their specific structure consisting of covalent and metallic chemical bonds influence its semi-ductile features locating them on the boundary between metals and ceramics, which may lead to many potential applications, for example as a part of a ceramic armour. Ti2AlC is one of this nanolaminate materials. Self-propagating High-temperature Synthesis (SHS) was applied to obtain sinterable powders of Ti2AlC Utilization of heat produced in exothermal reaction in adiabatic co
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Guorui, Jixin Chen, Yueming Li, et al. "In situ synthesis, structure, and properties of bulk nanolaminate YAl3C3 ceramic." Journal of the European Ceramic Society 37, no. 1 (2017): 83–89. http://dx.doi.org/10.1016/j.jeurceramsoc.2016.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ouabadi, Nadia, Véronique Gauthier-Brunet, Thierry Cabioc'h, Guo-Ping Bei, and Sylvain Dubois. "Formation Mechanisms of Ti3 SnC2 Nanolaminate Carbide Using Fe as Additive." Journal of the American Ceramic Society 96, no. 10 (2013): 3239–42. http://dx.doi.org/10.1111/jace.12427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Zhonghe, Yao Jiang, Xinli Liu, and Yuehui He. "Pore structure of reactively synthesized nanolaminate Ti3SiC2 alloyed with Al." Ceramics International 46, no. 1 (2020): 576–83. http://dx.doi.org/10.1016/j.ceramint.2019.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nizolek, T. J., M. R. Begley, R. J. McCabe, et al. "Strain fields induced by kink band propagation in Cu-Nb nanolaminate composites." Acta Materialia 133 (July 2017): 303–15. http://dx.doi.org/10.1016/j.actamat.2017.04.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Iatsunskyi, Igor, Margarita Baitimirova, Emerson Coy, et al. "Influence of ZnO/graphene nanolaminate periodicity on their structural and mechanical properties." Journal of Materials Science & Technology 34, no. 9 (2018): 1487–93. http://dx.doi.org/10.1016/j.jmst.2018.03.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Ben-Yang, Fang Chen, Heng-Na Xiong, Ling Tang, Ju-Xiang Shao, and Ze-Jin Yang. "Unified and ultimate high-pressure phase of several nanolaminate Mn+1AXn (n = 1, 2, 3, etc.) ceramics from first principles." Results in Physics 28 (September 2021): 104681. http://dx.doi.org/10.1016/j.rinp.2021.104681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Wei, Zongrui Pei, Xiahan Sang, et al. "Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability." Acta Materialia 170 (May 2019): 176–86. http://dx.doi.org/10.1016/j.actamat.2019.03.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gao, Rui, Miaomiao Jin, Fei Han, et al. "Superconducting Cu/Nb nanolaminate by coded accumulative roll bonding and its helium damage characteristics." Acta Materialia 197 (September 2020): 212–23. http://dx.doi.org/10.1016/j.actamat.2020.07.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rasheed, Adnan, and Iman Salehinia. "Atomistic Simulation of Scratch behavior of Ceramic/Metal (CerMet) nanolaminates." MRS Advances 2, no. 58-59 (2017): 3571–76. http://dx.doi.org/10.1557/adv.2017.455.

Full text
Abstract:
ABSTRACT: The promise of nanocomposites lies in their multi-functionality, the possibility of realizing unique combinations of properties that are not attainable in traditional materials. Ceramic/metal multilayers (CMMs) are one such unique combination that are becoming increasingly popular among researchers today. The idea is to combine the superior properties of ceramics like hardness and strength with favorable properties of metal such as ductility. Materials with these characteristics have potential for engineering applications such as highly efficient gas turbines, aerospace materials, au
APA, Harvard, Vancouver, ISO, and other styles
13

Firstov, Sergiy A., Victor F. Gorban, Inna I. Ivanova, and Engel P. Pechkovsky. "Mechanical Behavior of Sintered Porous Two-Phase Titanium Nanolaminate-Composites at High Temperatures." Key Engineering Materials 409 (March 2009): 300–303. http://dx.doi.org/10.4028/www.scientific.net/kem.409.300.

Full text
Abstract:
Regularities, features and mechanisms of deformation and fracture processes of new ceramic materials – porous (=3-35 %) two-phase titanium nanolaminate-composites Ti3SiC2/TiC, Ti3AlC2/TiC, Ti4AlN3/TiN (content of TiC or TiN – 5-70 % vol.) at 20-1300 оС are established. Composites are made by reaction sintering. On increase in mechanical properties and resistance to deformation they settle down in the following sequence: Ti3AlC2/TiC–Ti4AlN3/TiN–Ti3SiC2/TiC. In porous nanolaminate-composites containing less than 20 % TiC the increase in porosity  results in decrease in high-temperature strengt
APA, Harvard, Vancouver, ISO, and other styles
14

Lis, Jerzy, Leszek Chlubny, Michał Łopaciński, Ludosław Stobierski, and Mirosław M. Bućko. "Ceramic nanolaminates—Processing and application." Journal of the European Ceramic Society 28, no. 5 (2008): 1009–14. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.09.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Beyerlein, Irene J., Zezhou Li, and Nathan A. Mara. "Mechanical Properties of Metal Nanolaminates." Annual Review of Materials Research 52, no. 1 (2022): 281–304. http://dx.doi.org/10.1146/annurev-matsci-081320-031236.

Full text
Abstract:
This article reviews recent basic research on two categories of metal-based nanolaminates: those composed of metal/metal constituents and those composed of metal/ceramic constituents. We focus primarily on studies that aim to understand—via experiments, modeling, or both—the biphase interface structure and its role in changing the mechanisms that govern strength and deformability at a fundamental level. We anticipate that, by providing a broad perspective on the latest advances in nanolaminates, this review will aid design of new metallic materials with unprecedented combinations of mechanical
APA, Harvard, Vancouver, ISO, and other styles
16

Teixeira, V., A. Monteiro, J. Duarte, and A. Portinha. "Deposition of composite and nanolaminate ceramic coatings by sputtering." Vacuum 67, no. 3-4 (2002): 477–83. http://dx.doi.org/10.1016/s0042-207x(02)00235-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Singh, Danny R. P., and Nikhilesh Chawla. "Scratch resistance of Al/SiC metal/ceramic nanolaminates." Journal of Materials Research 27, no. 1 (2011): 278–83. http://dx.doi.org/10.1557/jmr.2011.274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chawla, N., D. R. P. Singh, Y. L. Shen, G. Tang, and K. K. Chawla. "Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites." Journal of Materials Science 43, no. 13 (2008): 4383–90. http://dx.doi.org/10.1007/s10853-008-2450-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mahesh, K. V., S. Balanand, R. Raimond, A. Peer Mohamed, and S. Ananthakumar. "Polyaryletherketone polymer nanocomposite engineered with nanolaminated Ti3SiC2 ceramic fillers." Materials & Design 63 (November 2014): 360–67. http://dx.doi.org/10.1016/j.matdes.2014.06.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tang, G., D. R. P. Singh, Y. L. Shen, and N. Chawla. "Elastic properties of metal–ceramic nanolaminates measured by nanoindentation." Materials Science and Engineering: A 502, no. 1-2 (2009): 79–84. http://dx.doi.org/10.1016/j.msea.2008.11.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Gajdardziska-Josifovska, M., and C. R. Aita. "Martensitic transformation in zirconia-alumina nanolaminates." Proceedings, annual meeting, Electron Microscopy Society of America 53 (August 13, 1995): 198–99. http://dx.doi.org/10.1017/s0424820100137367.

Full text
Abstract:
With an eye towards developing transformation-toughening ceramic coatings, we grew multilayers of polycrystalline zirconia and amorphous alumina in which the layer spacing was scaled to insure nanosize zirconia crystallites. In this manner, nanolaminates with a high volume fraction of tetragonal zirconia (t-ZrO2) were produced, independent of the deposition parameters and without the use of dopants.For a coating to be of practical use, not only must it contain a significant amount of t-ZrO2, but this phase must also transform locally to the monoclinic phase (m-ZrO2) m response to stress. In bu
APA, Harvard, Vancouver, ISO, and other styles
22

Lee, Hyo Chan, Kyungseop Kim, Sang Youn Han, et al. "Highly Conductive Flexible Metal–Ceramic Nanolaminate Electrode for High-Performance Soft Electronics." ACS Applied Materials & Interfaces 11, no. 2 (2018): 2211–17. http://dx.doi.org/10.1021/acsami.8b14821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yang, L. W., C. Mayer, N. Li, et al. "Mechanical properties of metal-ceramic nanolaminates: Effect of constraint and temperature." Acta Materialia 142 (January 2018): 37–48. http://dx.doi.org/10.1016/j.actamat.2017.09.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Aita, C. R. "Reactive spulter deposition of ceramic oxide nanolaminates: ZrO2–Al2O3and ZrO2–Y2O3model systems." Surface Engineering 14, no. 5 (1998): 421–26. http://dx.doi.org/10.1179/sur.1998.14.5.421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Salehinia, Iman. "Fundamental Atomistic Insights into Tunable Tribological Performance of NbC/Nb Films through Thickness and Depth Effects." Metals 14, no. 1 (2023): 2. http://dx.doi.org/10.3390/met14010002.

Full text
Abstract:
Ceramic–metal nanolaminates (CMNLs) are promising scratch-resistant coatings, but knowledge gaps remain regarding the interactive effects of individual layer thickness and scratch depth. This study employed molecular dynamics simulations to investigate the tribological performance of NbC/Nb CMNLs, systematically varying ceramic and metal layer thicknesses (0.5–7.5 nm) and scratch depths (3, 5 nm). Models were loaded under displacement-controlled indentation followed by scratching. Mechanical outputs like material removal, friction coefficients, normal, and friction forces quantified scratch re
APA, Harvard, Vancouver, ISO, and other styles
26

Mondal, Jayanta, Andreia Marques, Lauri Aarik, Jekaterina Kozlova, Alda Simões, and Väino Sammelselg. "Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel." Corrosion Science 105 (April 2016): 161–69. http://dx.doi.org/10.1016/j.corsci.2016.01.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gajdardziska-Josifovska, M., M. R. McCartney, W. J. de Ruijter, C. M. Scanlan, and C. R. Aita. "HREM study of tetragonal zirconia in Al2O3/ZrO2 multilayers." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 754–55. http://dx.doi.org/10.1017/s042482010017150x.

Full text
Abstract:
The bulk zirconia-alumina system is a model ceramic composite whose fracture toughness is increased via martensitic transformation: i.e. metastable tetragonal zirconia (t-ZrO2) transforms to its stable monoclinic form (m-ZrO2) upon application of stress. To achieve this desirable property it is important to retain a high volume fraction of t-ZrO2 at room temperature. In bulk synthesis this is accomplished by adding dopants, such as yttrium. Recently we have demonstrated that multilayer sputter deposition enables stabilization of tetragonal zirconia without the use of dopants.Amorphous alumina
APA, Harvard, Vancouver, ISO, and other styles
28

Eils, Nadine K., Peter Mechnich, Martin Schmücker, Hartmut Keune, Georg Wahl, and Claus-Peter Klages. "Nanolaminated Alumina Coatings Deposited by Metal-Organic Chemical Vapor Deposition." Journal of the American Ceramic Society 93, no. 10 (2010): 3512–16. http://dx.doi.org/10.1111/j.1551-2916.2010.03917.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hu, C., C. C. Lai, Q. Tao, et al. "Mo2Ga2C: a new ternary nanolaminated carbide." Chemical Communications 51, no. 30 (2015): 6560–63. http://dx.doi.org/10.1039/c5cc00980d.

Full text
Abstract:
We report the discovery of a new hexagonal Mo<sub>2</sub>Ga<sub>2</sub>C phase, wherein two Ga layers – instead of one – are stacked in a simple hexagonal arrangement in between Mo<sub>2</sub>C layers.
APA, Harvard, Vancouver, ISO, and other styles
30

Şopu, D., K. Albe, and J. Eckert. "Metallic glass nanolaminates with shape memory alloys." Acta Materialia 159 (October 2018): 344–51. http://dx.doi.org/10.1016/j.actamat.2018.08.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Huang, Yujia, Kouichi Yasuda, and Chunlei Wan. "Intercalation: Constructing Nanolaminated Reduced Graphene Oxide/Silica Ceramics for Lightweight and Mechanically Reliable Electromagnetic Interference Shielding Applications." ACS Applied Materials & Interfaces 12, no. 49 (2020): 55148–56. http://dx.doi.org/10.1021/acsami.0c15193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fusco, Michael A., Ian R. Woodward, Christopher J. Oldham, and Gregory N. Parsons. "Enhanced Corrosion Protection of Copper in Salt Environments with Nanolaminate Ceramic Coatings Deposited by Atomic Layer Deposition." ECS Transactions 85, no. 13 (2018): 683–91. http://dx.doi.org/10.1149/08513.0683ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lotfian, S., M. Rodríguez, K. E. Yazzie, N. Chawla, J. Llorca, and J. M. Molina-Aldareguía. "High temperature micropillar compression of Al/SiC nanolaminates." Acta Materialia 61, no. 12 (2013): 4439–51. http://dx.doi.org/10.1016/j.actamat.2013.04.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Huang, L., Z. Q. Chen, P. Huang, X. K. Meng, and F. Wang. "Irradiation-induced homogeneous plasticity in amorphous/amorphous nanolaminates." Journal of Materials Science & Technology 57 (November 2020): 70–77. http://dx.doi.org/10.1016/j.jmst.2020.03.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

AITA, C. R. "ChemInform Abstract: Reactive Sputter Deposition of Ceramic Oxide Nanolaminates: Zirconia-Alumina and Zirconia-Yttria Model Systems." ChemInform 29, no. 48 (2010): no. http://dx.doi.org/10.1002/chin.199848284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Aita, C. R. "ChemInform Abstract: Reactive Sputter Deposition of Ceramic Oxide Nanolaminates: ZrO2-Al2O3 and ZrO2-Y2O3 Model Systems." ChemInform 30, no. 16 (2010): no. http://dx.doi.org/10.1002/chin.199916275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Cheng, Bin, and Jason R. Trelewicz. "Design of crystalline-amorphous nanolaminates using deformation mechanism maps." Acta Materialia 153 (July 2018): 314–26. http://dx.doi.org/10.1016/j.actamat.2018.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Han, W. Z., E. K. Cerreta, N. A. Mara, et al. "Deformation and failure of shocked bulk Cu–Nb nanolaminates." Acta Materialia 63 (January 2014): 150–61. http://dx.doi.org/10.1016/j.actamat.2013.10.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yang, Ganting, Yifan Han, Anliang Lu, and Qiang Guo. "Enhanced damping capacity of nanolaminated graphene (reduced graphene oxide)/Al-Mg-Si composite." Composites Part A: Applied Science and Manufacturing 156 (May 2022): 106887. http://dx.doi.org/10.1016/j.compositesa.2022.106887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Pak, Anna, Kambiz Nanbakhsh, Ole Hölck, et al. "Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation." Micromachines 13, no. 4 (2022): 544. http://dx.doi.org/10.3390/mi13040544.

Full text
Abstract:
Liquid crystal polymer (LCP) has gained wide interest in the electronics industry largely due to its flexibility, stable insulation and dielectric properties and chip integration capabilities. Recently, LCP has also been investigated as a biocompatible substrate for the fabrication of multielectrode arrays. Realizing a fully implantable LCP-based bioelectronic device, however, still necessitates a low form factor packaging solution to protect the electronics in the body. In this work, we investigate two promising encapsulation coatings based on thin-film technology as the main packaging for LC
APA, Harvard, Vancouver, ISO, and other styles
41

Ma, Y., G. J. Peng, H. Chen, W. F. Jiang, and T. H. Zhang. "On the nanoindentation hardness of Cu-Zr-Al/Cu nanolaminates." Journal of Non-Crystalline Solids 482 (February 2018): 208–12. http://dx.doi.org/10.1016/j.jnoncrysol.2017.12.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Shuo, Fei Wang, Jia-Le Li, and Ping Huang. "Length scale dependent plasticity of amorphous/amorphous NiNb/ZrCuNiALSI nanolaminates." Journal of Non-Crystalline Solids 535 (May 2020): 119996. http://dx.doi.org/10.1016/j.jnoncrysol.2020.119996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Reddy, K. Vijay, Chuang Deng, and Snehanshu Pal. "Dynamic characterization of shock response in crystalline-metallic glass nanolaminates." Acta Materialia 164 (February 2019): 347–61. http://dx.doi.org/10.1016/j.actamat.2018.10.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Xu, W., X. C. Liu, X. Y. Li, and K. Lu. "Deformation induced grain boundary segregation in nanolaminated Al–Cu alloy." Acta Materialia 182 (January 2020): 207–14. http://dx.doi.org/10.1016/j.actamat.2019.10.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhang, Hui, Yifa Qin, Tao Hu, Xiaohui Wang, and Yanchun Zhou. "On the Faceted and Inclined Twin Boundary of Titanium Carbide Derived from Nanolaminated Ti3 AlC2." Journal of the American Ceramic Society 98, no. 5 (2015): 1664–67. http://dx.doi.org/10.1111/jace.13510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fang, X. M., X. H. Wang, H. Zhang, and Y. C. Zhou. "Electrically Conductive Honeycomb Monolith of Nanolaminated Ti3AlC2: Preparation and Characterization." Journal of Materials Science & Technology 31, no. 1 (2015): 125–28. http://dx.doi.org/10.1016/j.jmst.2014.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bugnet, M., V. Mauchamp, P. Eklund, M. Jaouen, and T. Cabioc’h. "Contribution of core-loss fine structures to the characterization of ion irradiation damages in the nanolaminated ceramic Ti3AlC2." Acta Materialia 61, no. 19 (2013): 7348–63. http://dx.doi.org/10.1016/j.actamat.2013.08.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Y. Q., R. Fritz, D. Kiener, et al. "Fracture behavior and deformation mechanisms in nanolaminated crystalline/amorphous micro-cantilevers." Acta Materialia 180 (November 2019): 73–83. http://dx.doi.org/10.1016/j.actamat.2019.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhang, J. Y., G. Liu, and J. Sun. "Self-toughening crystalline Cu/amorphous Cu–Zr nanolaminates: Deformation-induced devitrification." Acta Materialia 66 (March 2014): 22–31. http://dx.doi.org/10.1016/j.actamat.2013.11.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yang, Kun, Eun Been Lee, Dong Hyun Lee, et al. "Energy conversion and storage using artificially induced antiferroelectricity in HfO2/ZrO2 nanolaminates." Composites Part B: Engineering 236 (May 2022): 109824. http://dx.doi.org/10.1016/j.compositesb.2022.109824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!