Journal articles on the topic 'Nanolaminate ceramics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanolaminate ceramics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Alam, Md Shahinoor, Mohammad Asaduzzaman Chowdhury, Tasmina Khandaker, et al. "Advancements in MAX phase materials: structure, properties, and novel applications." RSC Advances 14, no. 37 (2024): 26995–7041. http://dx.doi.org/10.1039/d4ra03714f.
Full textDubois, Sylvain, Thierry Cabioc'h, Patrick Chartier, Véronique Gauthier, and Michel Jaouen. "A New Ternary Nanolaminate Carbide: Ti3SnC2." Journal of the American Ceramic Society 90, no. 8 (2007): 2642–44. http://dx.doi.org/10.1111/j.1551-2916.2007.01766.x.
Full textChlubny, Leszek, Jerzy Lis, and Mirosław M. Bućko. "Sintering and Hot-Pressing of Ti2AlC Obtained by SHS Process." Advances in Science and Technology 63 (October 2010): 282–86. http://dx.doi.org/10.4028/www.scientific.net/ast.63.282.
Full textZhao, Guorui, Jixin Chen, Yueming Li, et al. "In situ synthesis, structure, and properties of bulk nanolaminate YAl3C3 ceramic." Journal of the European Ceramic Society 37, no. 1 (2017): 83–89. http://dx.doi.org/10.1016/j.jeurceramsoc.2016.08.001.
Full textOuabadi, Nadia, Véronique Gauthier-Brunet, Thierry Cabioc'h, Guo-Ping Bei, and Sylvain Dubois. "Formation Mechanisms of Ti3 SnC2 Nanolaminate Carbide Using Fe as Additive." Journal of the American Ceramic Society 96, no. 10 (2013): 3239–42. http://dx.doi.org/10.1111/jace.12427.
Full textWang, Zhonghe, Yao Jiang, Xinli Liu, and Yuehui He. "Pore structure of reactively synthesized nanolaminate Ti3SiC2 alloyed with Al." Ceramics International 46, no. 1 (2020): 576–83. http://dx.doi.org/10.1016/j.ceramint.2019.09.005.
Full textNizolek, T. J., M. R. Begley, R. J. McCabe, et al. "Strain fields induced by kink band propagation in Cu-Nb nanolaminate composites." Acta Materialia 133 (July 2017): 303–15. http://dx.doi.org/10.1016/j.actamat.2017.04.050.
Full textIatsunskyi, Igor, Margarita Baitimirova, Emerson Coy, et al. "Influence of ZnO/graphene nanolaminate periodicity on their structural and mechanical properties." Journal of Materials Science & Technology 34, no. 9 (2018): 1487–93. http://dx.doi.org/10.1016/j.jmst.2018.03.022.
Full textLi, Ben-Yang, Fang Chen, Heng-Na Xiong, Ling Tang, Ju-Xiang Shao, and Ze-Jin Yang. "Unified and ultimate high-pressure phase of several nanolaminate Mn+1AXn (n = 1, 2, 3, etc.) ceramics from first principles." Results in Physics 28 (September 2021): 104681. http://dx.doi.org/10.1016/j.rinp.2021.104681.
Full textGuo, Wei, Zongrui Pei, Xiahan Sang, et al. "Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability." Acta Materialia 170 (May 2019): 176–86. http://dx.doi.org/10.1016/j.actamat.2019.03.024.
Full textGao, Rui, Miaomiao Jin, Fei Han, et al. "Superconducting Cu/Nb nanolaminate by coded accumulative roll bonding and its helium damage characteristics." Acta Materialia 197 (September 2020): 212–23. http://dx.doi.org/10.1016/j.actamat.2020.07.031.
Full textRasheed, Adnan, and Iman Salehinia. "Atomistic Simulation of Scratch behavior of Ceramic/Metal (CerMet) nanolaminates." MRS Advances 2, no. 58-59 (2017): 3571–76. http://dx.doi.org/10.1557/adv.2017.455.
Full textFirstov, Sergiy A., Victor F. Gorban, Inna I. Ivanova, and Engel P. Pechkovsky. "Mechanical Behavior of Sintered Porous Two-Phase Titanium Nanolaminate-Composites at High Temperatures." Key Engineering Materials 409 (March 2009): 300–303. http://dx.doi.org/10.4028/www.scientific.net/kem.409.300.
Full textLis, Jerzy, Leszek Chlubny, Michał Łopaciński, Ludosław Stobierski, and Mirosław M. Bućko. "Ceramic nanolaminates—Processing and application." Journal of the European Ceramic Society 28, no. 5 (2008): 1009–14. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.09.033.
Full textBeyerlein, Irene J., Zezhou Li, and Nathan A. Mara. "Mechanical Properties of Metal Nanolaminates." Annual Review of Materials Research 52, no. 1 (2022): 281–304. http://dx.doi.org/10.1146/annurev-matsci-081320-031236.
Full textTeixeira, V., A. Monteiro, J. Duarte, and A. Portinha. "Deposition of composite and nanolaminate ceramic coatings by sputtering." Vacuum 67, no. 3-4 (2002): 477–83. http://dx.doi.org/10.1016/s0042-207x(02)00235-x.
Full textSingh, Danny R. P., and Nikhilesh Chawla. "Scratch resistance of Al/SiC metal/ceramic nanolaminates." Journal of Materials Research 27, no. 1 (2011): 278–83. http://dx.doi.org/10.1557/jmr.2011.274.
Full textChawla, N., D. R. P. Singh, Y. L. Shen, G. Tang, and K. K. Chawla. "Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites." Journal of Materials Science 43, no. 13 (2008): 4383–90. http://dx.doi.org/10.1007/s10853-008-2450-3.
Full textMahesh, K. V., S. Balanand, R. Raimond, A. Peer Mohamed, and S. Ananthakumar. "Polyaryletherketone polymer nanocomposite engineered with nanolaminated Ti3SiC2 ceramic fillers." Materials & Design 63 (November 2014): 360–67. http://dx.doi.org/10.1016/j.matdes.2014.06.034.
Full textTang, G., D. R. P. Singh, Y. L. Shen, and N. Chawla. "Elastic properties of metal–ceramic nanolaminates measured by nanoindentation." Materials Science and Engineering: A 502, no. 1-2 (2009): 79–84. http://dx.doi.org/10.1016/j.msea.2008.11.013.
Full textGajdardziska-Josifovska, M., and C. R. Aita. "Martensitic transformation in zirconia-alumina nanolaminates." Proceedings, annual meeting, Electron Microscopy Society of America 53 (August 13, 1995): 198–99. http://dx.doi.org/10.1017/s0424820100137367.
Full textLee, Hyo Chan, Kyungseop Kim, Sang Youn Han, et al. "Highly Conductive Flexible Metal–Ceramic Nanolaminate Electrode for High-Performance Soft Electronics." ACS Applied Materials & Interfaces 11, no. 2 (2018): 2211–17. http://dx.doi.org/10.1021/acsami.8b14821.
Full textYang, L. W., C. Mayer, N. Li, et al. "Mechanical properties of metal-ceramic nanolaminates: Effect of constraint and temperature." Acta Materialia 142 (January 2018): 37–48. http://dx.doi.org/10.1016/j.actamat.2017.09.042.
Full textAita, C. R. "Reactive spulter deposition of ceramic oxide nanolaminates: ZrO2–Al2O3and ZrO2–Y2O3model systems." Surface Engineering 14, no. 5 (1998): 421–26. http://dx.doi.org/10.1179/sur.1998.14.5.421.
Full textSalehinia, Iman. "Fundamental Atomistic Insights into Tunable Tribological Performance of NbC/Nb Films through Thickness and Depth Effects." Metals 14, no. 1 (2023): 2. http://dx.doi.org/10.3390/met14010002.
Full textMondal, Jayanta, Andreia Marques, Lauri Aarik, Jekaterina Kozlova, Alda Simões, and Väino Sammelselg. "Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel." Corrosion Science 105 (April 2016): 161–69. http://dx.doi.org/10.1016/j.corsci.2016.01.013.
Full textGajdardziska-Josifovska, M., M. R. McCartney, W. J. de Ruijter, C. M. Scanlan, and C. R. Aita. "HREM study of tetragonal zirconia in Al2O3/ZrO2 multilayers." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 754–55. http://dx.doi.org/10.1017/s042482010017150x.
Full textEils, Nadine K., Peter Mechnich, Martin Schmücker, Hartmut Keune, Georg Wahl, and Claus-Peter Klages. "Nanolaminated Alumina Coatings Deposited by Metal-Organic Chemical Vapor Deposition." Journal of the American Ceramic Society 93, no. 10 (2010): 3512–16. http://dx.doi.org/10.1111/j.1551-2916.2010.03917.x.
Full textHu, C., C. C. Lai, Q. Tao, et al. "Mo2Ga2C: a new ternary nanolaminated carbide." Chemical Communications 51, no. 30 (2015): 6560–63. http://dx.doi.org/10.1039/c5cc00980d.
Full textŞopu, D., K. Albe, and J. Eckert. "Metallic glass nanolaminates with shape memory alloys." Acta Materialia 159 (October 2018): 344–51. http://dx.doi.org/10.1016/j.actamat.2018.08.034.
Full textHuang, Yujia, Kouichi Yasuda, and Chunlei Wan. "Intercalation: Constructing Nanolaminated Reduced Graphene Oxide/Silica Ceramics for Lightweight and Mechanically Reliable Electromagnetic Interference Shielding Applications." ACS Applied Materials & Interfaces 12, no. 49 (2020): 55148–56. http://dx.doi.org/10.1021/acsami.0c15193.
Full textFusco, Michael A., Ian R. Woodward, Christopher J. Oldham, and Gregory N. Parsons. "Enhanced Corrosion Protection of Copper in Salt Environments with Nanolaminate Ceramic Coatings Deposited by Atomic Layer Deposition." ECS Transactions 85, no. 13 (2018): 683–91. http://dx.doi.org/10.1149/08513.0683ecst.
Full textLotfian, S., M. Rodríguez, K. E. Yazzie, N. Chawla, J. Llorca, and J. M. Molina-Aldareguía. "High temperature micropillar compression of Al/SiC nanolaminates." Acta Materialia 61, no. 12 (2013): 4439–51. http://dx.doi.org/10.1016/j.actamat.2013.04.013.
Full textHuang, L., Z. Q. Chen, P. Huang, X. K. Meng, and F. Wang. "Irradiation-induced homogeneous plasticity in amorphous/amorphous nanolaminates." Journal of Materials Science & Technology 57 (November 2020): 70–77. http://dx.doi.org/10.1016/j.jmst.2020.03.050.
Full textAITA, C. R. "ChemInform Abstract: Reactive Sputter Deposition of Ceramic Oxide Nanolaminates: Zirconia-Alumina and Zirconia-Yttria Model Systems." ChemInform 29, no. 48 (2010): no. http://dx.doi.org/10.1002/chin.199848284.
Full textAita, C. R. "ChemInform Abstract: Reactive Sputter Deposition of Ceramic Oxide Nanolaminates: ZrO2-Al2O3 and ZrO2-Y2O3 Model Systems." ChemInform 30, no. 16 (2010): no. http://dx.doi.org/10.1002/chin.199916275.
Full textCheng, Bin, and Jason R. Trelewicz. "Design of crystalline-amorphous nanolaminates using deformation mechanism maps." Acta Materialia 153 (July 2018): 314–26. http://dx.doi.org/10.1016/j.actamat.2018.05.006.
Full textHan, W. Z., E. K. Cerreta, N. A. Mara, et al. "Deformation and failure of shocked bulk Cu–Nb nanolaminates." Acta Materialia 63 (January 2014): 150–61. http://dx.doi.org/10.1016/j.actamat.2013.10.019.
Full textYang, Ganting, Yifan Han, Anliang Lu, and Qiang Guo. "Enhanced damping capacity of nanolaminated graphene (reduced graphene oxide)/Al-Mg-Si composite." Composites Part A: Applied Science and Manufacturing 156 (May 2022): 106887. http://dx.doi.org/10.1016/j.compositesa.2022.106887.
Full textPak, Anna, Kambiz Nanbakhsh, Ole Hölck, et al. "Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation." Micromachines 13, no. 4 (2022): 544. http://dx.doi.org/10.3390/mi13040544.
Full textMa, Y., G. J. Peng, H. Chen, W. F. Jiang, and T. H. Zhang. "On the nanoindentation hardness of Cu-Zr-Al/Cu nanolaminates." Journal of Non-Crystalline Solids 482 (February 2018): 208–12. http://dx.doi.org/10.1016/j.jnoncrysol.2017.12.045.
Full textLi, Shuo, Fei Wang, Jia-Le Li, and Ping Huang. "Length scale dependent plasticity of amorphous/amorphous NiNb/ZrCuNiALSI nanolaminates." Journal of Non-Crystalline Solids 535 (May 2020): 119996. http://dx.doi.org/10.1016/j.jnoncrysol.2020.119996.
Full textReddy, K. Vijay, Chuang Deng, and Snehanshu Pal. "Dynamic characterization of shock response in crystalline-metallic glass nanolaminates." Acta Materialia 164 (February 2019): 347–61. http://dx.doi.org/10.1016/j.actamat.2018.10.062.
Full textXu, W., X. C. Liu, X. Y. Li, and K. Lu. "Deformation induced grain boundary segregation in nanolaminated Al–Cu alloy." Acta Materialia 182 (January 2020): 207–14. http://dx.doi.org/10.1016/j.actamat.2019.10.036.
Full textZhang, Hui, Yifa Qin, Tao Hu, Xiaohui Wang, and Yanchun Zhou. "On the Faceted and Inclined Twin Boundary of Titanium Carbide Derived from Nanolaminated Ti3 AlC2." Journal of the American Ceramic Society 98, no. 5 (2015): 1664–67. http://dx.doi.org/10.1111/jace.13510.
Full textFang, X. M., X. H. Wang, H. Zhang, and Y. C. Zhou. "Electrically Conductive Honeycomb Monolith of Nanolaminated Ti3AlC2: Preparation and Characterization." Journal of Materials Science & Technology 31, no. 1 (2015): 125–28. http://dx.doi.org/10.1016/j.jmst.2014.04.004.
Full textBugnet, M., V. Mauchamp, P. Eklund, M. Jaouen, and T. Cabioc’h. "Contribution of core-loss fine structures to the characterization of ion irradiation damages in the nanolaminated ceramic Ti3AlC2." Acta Materialia 61, no. 19 (2013): 7348–63. http://dx.doi.org/10.1016/j.actamat.2013.08.041.
Full textWang, Y. Q., R. Fritz, D. Kiener, et al. "Fracture behavior and deformation mechanisms in nanolaminated crystalline/amorphous micro-cantilevers." Acta Materialia 180 (November 2019): 73–83. http://dx.doi.org/10.1016/j.actamat.2019.09.002.
Full textZhang, J. Y., G. Liu, and J. Sun. "Self-toughening crystalline Cu/amorphous Cu–Zr nanolaminates: Deformation-induced devitrification." Acta Materialia 66 (March 2014): 22–31. http://dx.doi.org/10.1016/j.actamat.2013.11.061.
Full textYang, Kun, Eun Been Lee, Dong Hyun Lee, et al. "Energy conversion and storage using artificially induced antiferroelectricity in HfO2/ZrO2 nanolaminates." Composites Part B: Engineering 236 (May 2022): 109824. http://dx.doi.org/10.1016/j.compositesb.2022.109824.
Full text