Academic literature on the topic 'Nanomaterials - Gas Sensing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanomaterials - Gas Sensing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanomaterials - Gas Sensing"
Yadav, Anshul, and Niraj Sinha. "Nanomaterial-based gas sensors: A review on experimental and theoretical studies." Materials Express 12, no. 1 (January 1, 2022): 1–33. http://dx.doi.org/10.1166/mex.2022.2121.
Full textZhong, Zhi-Cheng, Zhao-Jun Jing, Kui-Yuan Liu, and Tong Liu. "Acetylene Sensing by ZnO/TiO2 Nanoparticles." Journal of Nanoelectronics and Optoelectronics 15, no. 1 (January 1, 2020): 41–45. http://dx.doi.org/10.1166/jno.2020.2726.
Full textBogue, Robert. "Nanomaterials for gas sensing: a review of recent research." Sensor Review 34, no. 1 (January 14, 2014): 1–8. http://dx.doi.org/10.1108/sr-03-2013-637.
Full textZeng, Yamei, Shiwei Lin, Ding Gu, and Xiaogan Li. "Two-Dimensional Nanomaterials for Gas Sensing Applications: The Role of Theoretical Calculations." Nanomaterials 8, no. 10 (October 19, 2018): 851. http://dx.doi.org/10.3390/nano8100851.
Full textLun, Danyang, and Ke Xu. "Recent Progress in Gas Sensor Based on Nanomaterials." Micromachines 13, no. 6 (June 10, 2022): 919. http://dx.doi.org/10.3390/mi13060919.
Full textGalstyan, Vardan, Nicola Poli, and Elisabetta Comini. "Highly Sensitive and Selective H2S Chemical Sensor Based on ZnO Nanomaterial." Applied Sciences 9, no. 6 (March 19, 2019): 1167. http://dx.doi.org/10.3390/app9061167.
Full textMalik, Ritu, Vijay K. Tomer, Yogendra Kumar Mishra, and Liwei Lin. "Functional gas sensing nanomaterials: A panoramic view." Applied Physics Reviews 7, no. 2 (June 2020): 021301. http://dx.doi.org/10.1063/1.5123479.
Full textWang, Xiao-Feng, Xue-Zhi Song, Kai-Ming Sun, Li Cheng, and Wei Ma. "MOFs-derived porous nanomaterials for gas sensing." Polyhedron 152 (September 2018): 155–63. http://dx.doi.org/10.1016/j.poly.2018.06.037.
Full textDebéda, Hélène, Van Son Nguyen, Pierrick Clément, Véronique Jubera, and Eduard Llobet. "Printed transducers using nanomaterials for gas sensing." Materials Today: Proceedings 6 (2019): 306–9. http://dx.doi.org/10.1016/j.matpr.2018.10.421.
Full textLyson-Sypien, B., A. Czapla, M. Lubecka, E. Kusior, K. Zakrzewska, M. Radecka, A. Kusior, A. G. Balogh, S. Lauterbach, and H. J. Kleebe. "Gas sensing properties of TiO2–SnO2 nanomaterials." Sensors and Actuators B: Chemical 187 (October 2013): 445–54. http://dx.doi.org/10.1016/j.snb.2013.01.047.
Full textDissertations / Theses on the topic "Nanomaterials - Gas Sensing"
Piloto, Carlo. "Carbon nanomaterials for room temperature gas sensing." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/97743/1/Carlo_Piloto_Thesis_Redacted.pdf.
Full textTanvir, Nauman Bin [Verfasser], and Gerald A. [Akademischer Betreuer] Urban. "Investigation of metal oxide nanomaterials for CO2 gas sensing applications." Freiburg : Universität, 2017. http://d-nb.info/1138195316/34.
Full textAdnan, Rohul. "Gold-based Nanomaterials: Spectroscopy, Microscopy and Applications in Catalysis and Sensing." Thesis, University of Canterbury. Chemistry, 2015. http://hdl.handle.net/10092/10507.
Full textNavarrete, Gatell Eric. "Synthesis and gas sensing properties of inorganic semiconducting, p-n heterojunction nanomaterials." Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/672438.
Full textEn esta tesis utilizando principalmente Aerosol Assited Chemical Vapor Deposition, AACVD, como metodología de síntesis de óxido de tungsteno nanoestructurado se han fabricado diferentes sensores de gases. Para estudiar la mejora en la selectividad y la sensibilidad de los sensores de gases basados en óxido de tungsteno estos se han decorado, vía AACVD, con nanopartículas de otros óxidos metálicos para crear heterouniones para obtener un incremento en la sensibilidad electrónica, las propiedades químicas del material o bien ambas. En particular, se han trabajado en diferentes sensores de nanohilos de óxido de tungsteno decorados con nanopartículas de óxido de níquel, óxido de cobalto y óxido de iridio resultante en sensores con un gran incremento de respuesta y selectividad hacia el sulfuro de hidrógeno, para el amoníaco y para el óxido de nitrógeno respectivamente a concentraciones traza. Además, se han estudiado los mecanismos de reacción que tienen lugar entre las especies de oxígeno adsorbidas en la superficie del sensor cuando interactúa con un gas. Y también se ha trabajado en intentar controlar el potencial de superficie de las capas nanoestructuradas para controlar la deriva en la señal a lo largo del tiempo, cuando el sensor está trabajando, a través de un control de temperatura.
In this thesis, using mainly Aerosol Assited Chemical Vapor Deposition, AACVD, as a synthesis methodology for nanostructured tungsten oxide, different gas sensors have been manufactured. To study the improvement in the selectivity and sensitivity of gas sensors based on tungsten oxide, they have been decorated, via AACVD, with nanoparticles of other metal oxides to create heterojunctions to obtain an increase in electronic sensitivity, in the chemical properties of the material or at the same time in both. Particularly, we have worked on different tungsten oxide nanowire sensors decorated with nanoparticles of nickel oxide, cobalt oxide and iridium oxide resulting in sensors with a large increase in response and selectivity towards hydrogen sulfide, for ammonia. and for nitrogen oxide respectively at trace concentrations. In addition, the reaction mechanisms that take place between oxygen species adsorbed on the sensor surface when it interacts with a gas have been also studied. Furthermore, efforts have been put on trying to control the surface potential of the nanostructured layers to control the drift in the signal over time, when operating the sensors, through temperature control.
Priščák, Juraj. "Charakterizace senzitivních nanomateriálů pro MOX senzory plynů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442521.
Full textMehdi, Aghaei Sadegh. "Electronic and Magnetic Properties of Two-dimensional Nanomaterials beyond Graphene and Their Gas Sensing Applications: Silicene, Germanene, and Boron Carbide." FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3389.
Full textNagelli, Enoch A. "CONTROLLED FUNCTIONALIZATION AND ASSEMBLY OF GRAPHENE NANOSTRUCTURES FOR SENSING AND ENERGY STORAGE." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1402278821.
Full textNaik, A. J. T. "Hetero-junction and nanomaterial systems for metal oxide semiconductor based gas sensing." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1463687/.
Full textMiller, Derek. "Advancing electronic structure characterization of semiconducting oxide nano-heterostructures for gas sensing." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492639729205609.
Full textHong, Li Yang, and 洪力揚. "Ultraviolet Light and Nitric Oxide Gas Sensing Using Metal Oxide Semiconducting Nanomaterials." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/vj9b83.
Full text國立清華大學
材料科學工程學系
105
The scope of this thesis covers the fabrication of a single titanium oxide nanodot (ND) by atomic force microscopy (AFM) nanolithography, growth of Cu2O nanoparticle (NP) modified ZnO nanowires (NWs) and applications for ultraviolet (UV) light and NO gas sensing. In the first part of thesis, we report on the fabrication of a single titanium oxide ND UV sensor by AFM nanolithography. A single titanium NW is first fabricated by AFM nanomachining and gold contact electrodes are then created by photolithography. By subsequent AFM nano-oxidation, a single titanium oxide ND sensor is produced. Two types of ND sensors, namely ohmic contact and Schottky contact, have been obtained and the sensitivities are around 0.25 and 320, respectively, under ultraviolet illumination. The rise and the reset times of the Schottky contact sensor are also significantly faster. In the second part of thesis, gas sensing using the titanium oxide ND sensor is realized by the photo-activation and the photo-recovery approaches. It is found that a senor with a smaller ND has better performance than a larger one. A response of 31%, a response time of 91 s, and a recovery time of 184 s have been achieved at a concentration of 10 ppm for a ND with a size of around 80 nm. The present work demonstrates the potential application of single metal oxide NDs for gas sensing with performance that can be compared with metal oxide nanowire gas sensors. In the third part of thesis, we report on the NO gas sensing performance of Cu2O nanoparticle (NP) modified ZnO nanowires (NWs) under ambient environment. ZnO NWs are grown on Si substrates using a solution method and then modified with Cu2O NPs by photoreduction. The response of the NP modified NWs sensor to 1 ppm NO gas is 353%, which is 14.7 times as high as that of unmodified NW sensor. A response of 8.5% has been achieved at 60 ppb, showing the good potential for low concentration NO sensing.
Books on the topic "Nanomaterials - Gas Sensing"
Thomas, Sabu, Nirav Joshi, and Vijay K. Tomer. Functional Nanomaterials: Advances in Gas Sensing Technologies. Springer, 2020.
Find full textThomas, Sabu, Nirav Joshi, and Vijay K. Tomer. Functional Nanomaterials: Advances in Gas Sensing Technologies. Springer Singapore Pte. Limited, 2021.
Find full textShimpi, Navinchandra Gopal. Carbon-Based Nanomaterials and Nanocomposites for Gas Sensing. Elsevier, 2023.
Find full textShimpi, Navinchandra Gopal. Carbon-Based Nanomaterials and Nanocomposites for Gas Sensing. Elsevier, 2021.
Find full textToxic Gas Sensors and Biosensors. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901175.
Full textBook chapters on the topic "Nanomaterials - Gas Sensing"
Tittl, Andreas, Harald Giessen, and Na Liu. "Plasmonic Gas and Chemical Sensing." In Nanomaterials and Nanoarchitectures, 239–72. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9921-8_8.
Full textGabriel Kaufmann, Claudir, Rubia Young Sun Zampiva, Marco Rossi, and Annelise Kopp Alves. "Carbon Nanotubes for Gas Sensing." In Environmental Applications of Nanomaterials, 55–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86822-2_4.
Full textSrivastava, Meenakshi, and Narendra Singh. "Metal Oxide Nanostructures for Gas Sensing Applications." In Nanomaterials-Based Sensing Platforms, 117–53. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003199304-4.
Full textRaj, Sudarsan, and Aneeya K. Samantara. "Noble Metal Nanoparticles-Based Composites for Gas Sensing: Progress and Perspective." In Nanomaterials-Based Sensing Platforms, 213–43. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003199304-7.
Full textNair, Keerthi G., and P. Biji. "Carbon Nanomaterials for Hydrogen Gas Sensing Applications." In Carbon Composites, 163–90. New York: Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003331285-7.
Full textShingange, Katekani, and Gugu H. Mhlongo. "Correlating Luminescence Characteristics to Gas-Sensing Performance of Metal Oxides Based Heterostructures." In Luminescent Nanomaterials, 163–78. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003277385-4.
Full textAshraf, Waseem, Manika Khanuja, Abid Hussain, and P. K. Kulriya. "Functional 2D Nanomaterials for Selective Detection/Sensing of Hydrogen Gas: An Overview." In Gas Sensors, 185–207. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003278047-13.
Full textSemko, L. S., Ya I. Kruchek, and P. P. Gorbyk. "Gas-Sensing Composite Materials Based on Graphite and Polymers." In Nanomaterials and Supramolecular Structures, 369–82. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2309-4_28.
Full textPearton, Stephen J., David P. Norton, and Fan Ren. "ZnO Nanowires for Gas and Bio-Chemical Sensing." In Metal Oxide Nanomaterials for Chemical Sensors, 321–43. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5395-6_10.
Full textTao, Junguang, and Matthias Batzill. "Surface Science Studies of Metal Oxide Gas Sensing Materials." In Metal Oxide Nanomaterials for Chemical Sensors, 35–67. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5395-6_2.
Full textConference papers on the topic "Nanomaterials - Gas Sensing"
Bannov, Alexander G., Jan Prasek, Ondrej Jasek, Alexander A. Shibaev, and Lenka Zajickova. "Gas sensing properties of carbon nanomaterials." In 2016 39th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2016. http://dx.doi.org/10.1109/isse.2016.7563238.
Full textLyson-Sypien, B., A. Czapla, M. Lubecka, K. Zakrzewska, M. Radecka, A. Kusior, A. G. Balogh, S. Lauterbach, and H. J. Kleebe. "P2.7.3 Gas sensing properties of TiO2 - SnO2 nanomaterials." In 14th International Meeting on Chemical Sensors - IMCS 2012. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2012. http://dx.doi.org/10.5162/imcs2012/p2.7.3.
Full textProcek, Marcin, and Agnieszka Stolarczyk. "Influence of near UV irradiation on ZnO nanomaterials NO2 gas sensing properties." In 13th Conference on Integrated Optics: Sensors, Sensing Structures and Methods, edited by Przemyslaw Struk and Tadeusz Pustelny. SPIE, 2018. http://dx.doi.org/10.1117/12.2503471.
Full textCorreia, José, Cátia Rodrigues, Ricardo Esteves, Ricardo Cesar Bezerra de Melo, José Gutiérrez, André Pereira, and João Ventura. "Energy Harvesting Under Harsh Conditions for the Oil & Gas Upstream Industry." In SPE Middle East Oil & Gas Show and Conference. SPE, 2021. http://dx.doi.org/10.2118/204877-ms.
Full textGhosh, Dipannita, Md Ashiqur Rahman, Ali Ashraf, and Nazmul Islam. "Hydrogel and Graphene Embedded Piezoresistive Microcantilever Sensor for Solvent and Gas Flow Detection." In ASME 2022 17th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/msec2022-85544.
Full textAlagh, Aanchal, Fatima Ezahra Annanouch, Jean Francois Colomer, and Eduard Llobet. "3D assembly of WS2 nanomaterial for H2S gas sensing application." In 2020 IEEE SENSORS. IEEE, 2020. http://dx.doi.org/10.1109/sensors47125.2020.9278733.
Full textAleksandrova, Mariya. "Investigation of Conductive Organic Films Grown on Carbyne Gas Sensing Nanomaterial." In 2023 46th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2023. http://dx.doi.org/10.1109/isse57496.2023.10168424.
Full textLekshmi, M. S., and K. J. Suja. "Acetone gas sensing at room temperature using metal oxide semiconductor nanomaterial based gas sensor." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MICROELECTRONICS, SIGNALS AND SYSTEMS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0003942.
Full textYang, D., M. K. Fuadi, Z. Li, and I. Park. "Facile fabrication of heterogeneous nanomaterial array towards low-power and multiplexed gas sensing application." In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6627333.
Full textMacNaughton, S., and S. Sonkusale. "SINGLE CHIP MICRO GC WITH INTEGRATED HETEROGENEOUS NANOMATERIAL SENSOR ARRAY FOR MULTIPARAMETER GAS SENSING." In 2014 Solid-State, Actuators, and Microsystems Workshop. San Diego: Transducer Research Foundation, 2014. http://dx.doi.org/10.31438/trf.hh2014.57.
Full text