Journal articles on the topic 'Nanomaterials - Gas Sensing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanomaterials - Gas Sensing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yadav, Anshul, and Niraj Sinha. "Nanomaterial-based gas sensors: A review on experimental and theoretical studies." Materials Express 12, no. 1 (January 1, 2022): 1–33. http://dx.doi.org/10.1166/mex.2022.2121.
Full textZhong, Zhi-Cheng, Zhao-Jun Jing, Kui-Yuan Liu, and Tong Liu. "Acetylene Sensing by ZnO/TiO2 Nanoparticles." Journal of Nanoelectronics and Optoelectronics 15, no. 1 (January 1, 2020): 41–45. http://dx.doi.org/10.1166/jno.2020.2726.
Full textBogue, Robert. "Nanomaterials for gas sensing: a review of recent research." Sensor Review 34, no. 1 (January 14, 2014): 1–8. http://dx.doi.org/10.1108/sr-03-2013-637.
Full textZeng, Yamei, Shiwei Lin, Ding Gu, and Xiaogan Li. "Two-Dimensional Nanomaterials for Gas Sensing Applications: The Role of Theoretical Calculations." Nanomaterials 8, no. 10 (October 19, 2018): 851. http://dx.doi.org/10.3390/nano8100851.
Full textLun, Danyang, and Ke Xu. "Recent Progress in Gas Sensor Based on Nanomaterials." Micromachines 13, no. 6 (June 10, 2022): 919. http://dx.doi.org/10.3390/mi13060919.
Full textGalstyan, Vardan, Nicola Poli, and Elisabetta Comini. "Highly Sensitive and Selective H2S Chemical Sensor Based on ZnO Nanomaterial." Applied Sciences 9, no. 6 (March 19, 2019): 1167. http://dx.doi.org/10.3390/app9061167.
Full textMalik, Ritu, Vijay K. Tomer, Yogendra Kumar Mishra, and Liwei Lin. "Functional gas sensing nanomaterials: A panoramic view." Applied Physics Reviews 7, no. 2 (June 2020): 021301. http://dx.doi.org/10.1063/1.5123479.
Full textWang, Xiao-Feng, Xue-Zhi Song, Kai-Ming Sun, Li Cheng, and Wei Ma. "MOFs-derived porous nanomaterials for gas sensing." Polyhedron 152 (September 2018): 155–63. http://dx.doi.org/10.1016/j.poly.2018.06.037.
Full textDebéda, Hélène, Van Son Nguyen, Pierrick Clément, Véronique Jubera, and Eduard Llobet. "Printed transducers using nanomaterials for gas sensing." Materials Today: Proceedings 6 (2019): 306–9. http://dx.doi.org/10.1016/j.matpr.2018.10.421.
Full textLyson-Sypien, B., A. Czapla, M. Lubecka, E. Kusior, K. Zakrzewska, M. Radecka, A. Kusior, A. G. Balogh, S. Lauterbach, and H. J. Kleebe. "Gas sensing properties of TiO2–SnO2 nanomaterials." Sensors and Actuators B: Chemical 187 (October 2013): 445–54. http://dx.doi.org/10.1016/j.snb.2013.01.047.
Full textDinu, Livia Alexandra, Valentin Buiculescu, and Angela Mihaela Baracu. "Recent Progress on Nanomaterials for NO2 Surface Acoustic Wave Sensors." Nanomaterials 12, no. 12 (June 20, 2022): 2120. http://dx.doi.org/10.3390/nano12122120.
Full textRen, Pengyu, Qingwei Shi, and Lingling Qi. "A Gas Sensor Based on Network Nanowire for H2S Monitor in Construction Waste Landfill." Chemosensors 9, no. 7 (June 25, 2021): 156. http://dx.doi.org/10.3390/chemosensors9070156.
Full textVilanova, Xavier. "Special Issue “Advanced Nanomaterials Based Gas Sensors”." Sensors 20, no. 5 (March 2, 2020): 1373. http://dx.doi.org/10.3390/s20051373.
Full textYang, Wei, Lin Gan, Huiqiao Li, and Tianyou Zhai. "Two-dimensional layered nanomaterials for gas-sensing applications." Inorganic Chemistry Frontiers 3, no. 4 (2016): 433–51. http://dx.doi.org/10.1039/c5qi00251f.
Full textSahay, P. P. "Multifunctional metal oxide nanomaterials for chemical gas sensing." Procedia Engineering 215 (2017): 145–51. http://dx.doi.org/10.1016/j.proeng.2017.11.003.
Full textKusior, A., J. Klich-Kafel, A. Trenczek-Zajac, K. Swierczek, M. Radecka, and K. Zakrzewska. "TiO2–SnO2 nanomaterials for gas sensing and photocatalysis." Journal of the European Ceramic Society 33, no. 12 (October 2013): 2285–90. http://dx.doi.org/10.1016/j.jeurceramsoc.2013.01.022.
Full textMistry, Kissan, Khaled H. Ibrahim, Inna Novodchuk, Hyunh Thien Ngo, Gaku Imamura, Joseph Sanderson, Mustafa Yavuz, Genki Yoshikawa, and Kevin P. Musselman. "Nanomechanical Gas Sensing with Laser Treated 2D Nanomaterials." Advanced Materials Technologies 5, no. 12 (November 3, 2020): 2000704. http://dx.doi.org/10.1002/admt.202000704.
Full textBannov, Alexander G., Maxim V. Popov, Andrei E. Brester, and Pavel B. Kurmashov. "Recent Advances in Ammonia Gas Sensors Based on Carbon Nanomaterials." Micromachines 12, no. 2 (February 12, 2021): 186. http://dx.doi.org/10.3390/mi12020186.
Full textXue, Shirui, Sicheng Cao, Zhaoling Huang, Daoguo Yang, and Guoqi Zhang. "Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review." Materials 14, no. 15 (July 30, 2021): 4263. http://dx.doi.org/10.3390/ma14154263.
Full textGurlo, Aleksander, and Ralf Riedel. "Control of Gas Sensing Activity in Tailored Nanomaterials for Gas Sensors." Zeitschrift für anorganische und allgemeine Chemie 636, no. 11 (September 2010): 2044. http://dx.doi.org/10.1002/zaac.201008014.
Full textAverin, I. A., A. A. Karmanov, I. A. Pronin, S. E. Igoshina, N. D. Yakushova, and V. A. Moshnikov. "Kinetic models for sensory response of multicomponent oxide nanomaterials with a hierarchical pore system." Journal of Physics: Conference Series 2059, no. 1 (October 1, 2021): 012001. http://dx.doi.org/10.1088/1742-6596/2059/1/012001.
Full textJuang, Feng-Renn, Yi-Hsiang Huang, Hung-Chieh Lan, and Ming-Che Tsai. "Nanocomposite of Tin Oxide and Tungsten Oxide for Ethanol Sensing Applications." ECS Journal of Solid State Science and Technology 11, no. 4 (April 1, 2022): 045013. http://dx.doi.org/10.1149/2162-8777/ac6698.
Full textGalstyan, V., E. Comini, I. Kholmanov, A. Ponzoni, V. Sberveglieri, N. Poli, G. Faglia, and G. Sberveglieri. "Graphene-zinc Oxide Based Nanomaterials for Gas Sensing Devices." Procedia Engineering 168 (2016): 1172–75. http://dx.doi.org/10.1016/j.proeng.2016.11.395.
Full textLyson-Sypien, B., M. Radecka, M. Rekas, K. Swierczek, K. Michalow-Mauke, T. Graule, and K. Zakrzewska. "Grain-size-dependent gas-sensing properties of TiO2 nanomaterials." Sensors and Actuators B: Chemical 211 (May 2015): 67–76. http://dx.doi.org/10.1016/j.snb.2015.01.050.
Full textSun, Menghan, Yanyan Yin, Chengwen Song, Yonggang Wang, Jingkun Xiao, Shengchun Qu, Weibao Zheng, Chen Li, Wei Dong, and Li Zhang. "Preparation of Bi2MoO6 Nanomaterials and Theirs Gas-Sensing Properties." Journal of Inorganic and Organometallic Polymers and Materials 26, no. 2 (December 16, 2015): 294–301. http://dx.doi.org/10.1007/s10904-015-0316-0.
Full textHashtroudi, Hanie, Ian D. R. Mackinnon, and Mahnaz Shafiei. "Emerging 2D hybrid nanomaterials: towards enhanced sensitive and selective conductometric gas sensors at room temperature." Journal of Materials Chemistry C 8, no. 38 (2020): 13108–26. http://dx.doi.org/10.1039/d0tc01968b.
Full textSteinhauer, Stephan. "Gas Sensors Based on Copper Oxide Nanomaterials: A Review." Chemosensors 9, no. 3 (March 5, 2021): 51. http://dx.doi.org/10.3390/chemosensors9030051.
Full textZhou, Xinyuan, Zhenjie Xue, Xiangyu Chen, Chuanhui Huang, Wanqiao Bai, Zhili Lu, and Tie Wang. "Nanomaterial-based gas sensors used for breath diagnosis." Journal of Materials Chemistry B 8, no. 16 (2020): 3231–48. http://dx.doi.org/10.1039/c9tb02518a.
Full textLyson-Sypien, Barbara, Anna Kusior, Mieczylaw Rekas, Jan Zukrowski, Marta Gajewska, Katarzyna Michalow-Mauke, Thomas Graule, Marta Radecka, and Katarzyna Zakrzewska. "Nanocrystalline TiO2/SnO2 heterostructures for gas sensing." Beilstein Journal of Nanotechnology 8 (January 12, 2017): 108–22. http://dx.doi.org/10.3762/bjnano.8.12.
Full textVuong, Dang Duc, Le Tung Ung, Nguyen Thanh Nghi, Luong Huu Phuoc, Cao Tien Khoa, Vu Xuan Hien, and Nguyen Duc Chien. "Enhanced synthesis of Mg(OH)2 hexagonal nanosheets using Mg powder and H2O2 solution and an observation of its NH3 sensing behaviour at room temperature." Advances in Natural Sciences: Nanoscience and Nanotechnology 13, no. 3 (September 1, 2022): 035013. http://dx.doi.org/10.1088/2043-6262/ac8d90.
Full textLiao, Zhijia, Yao Yu, Zhenyu Yuan, and Fanli Meng. "Ppb-Level Butanone Sensor Based on ZnO-TiO2-rGO Nanocomposites." Chemosensors 9, no. 10 (October 6, 2021): 284. http://dx.doi.org/10.3390/chemosensors9100284.
Full textNguyen, Hieu Van, Hong Si Hoang, Trung Dang Do, Binh Thi Bui, Chinh Duc Nguyen, Duy Van Nguyen, and Hoa Duc Nguyen. "Our recent study on nanomaeterials for gas sensing applictaion." Science and Technology Development Journal 16, no. 1 (March 31, 2013): 112–37. http://dx.doi.org/10.32508/stdj.v16i1.1426.
Full textMeng, Fanli, Tao Zhu, Zhenyu Yuan, Wenbo Qin, Hongliang Gao, and Hua Zhang. "Investigation of Mixed-Phase WS2 Nanomaterials for Ammonia Gas Sensing." IEEE Sensors Journal 21, no. 6 (March 15, 2021): 7268–74. http://dx.doi.org/10.1109/jsen.2021.3050145.
Full textZhu, Yunjing, Yunlei Ma, Dandan Wu, and Guojian Jiang. "Preparation and gas sensing properties of ZnO/MXene composite nanomaterials." Sensors and Actuators A: Physical 344 (September 2022): 113740. http://dx.doi.org/10.1016/j.sna.2022.113740.
Full textTang, Hong, Lingling Qi, and Yulun Pan. "Nickel Oxide Nanomaterials: Growth, Characterization and Formaldehyde Gas Sensing Applications." Journal of Nanoelectronics and Optoelectronics 13, no. 8 (August 1, 2018): 1128–33. http://dx.doi.org/10.1166/jno.2018.2385.
Full textLi, Lei, Huiming Lin, and Fengyu Qu. "Synthesis of mesoporous SnO2 nanomaterials with selective gas-sensing properties." Journal of Sol-Gel Science and Technology 67, no. 3 (July 23, 2013): 545–55. http://dx.doi.org/10.1007/s10971-013-3113-7.
Full textGovardhan, K., and Andrews Nirmala Grace. "Temperature Optimized Ammonia and Ethanol Sensing Using Ce Doped Tin Oxide Thin Films in a Novel Flow Metric Gas Sensing Chamber." Journal of Sensors 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/7652450.
Full textBhati, Vijendra Singh, Vishakha Takhar, Ramesh Raliya, Mahesh Kumar, and Rupak Banerjee. "Recent advances in g-C3N4 based gas sensors for the detection of toxic and flammable gases: a review." Nano Express 3, no. 1 (March 1, 2022): 014003. http://dx.doi.org/10.1088/2632-959x/ac477b.
Full textShi, Yushu, Huiyan Xu, Tongyao Liu, Shah Zeb, Yong Nie, Yiming Zhao, Chengyuan Qin, and Xuchuan Jiang. "Advanced development of metal oxide nanomaterials for H2 gas sensing applications." Materials Advances 2, no. 5 (2021): 1530–69. http://dx.doi.org/10.1039/d0ma00880j.
Full textWu, Yu, Jing Feng, Guang Hu, En Zhang, and Huan-Huan Yu. "Colorimetric Sensors for Chemical and Biological Sensing Applications." Sensors 23, no. 5 (March 2, 2023): 2749. http://dx.doi.org/10.3390/s23052749.
Full textŁysoń-Sypień, B., K. Zakrzewska, M. Gajewska, and M. Radecka. "Hydrogen Sensor Of TiO2-Based Nanomaterials." Archives of Metallurgy and Materials 60, no. 2 (June 1, 2015): 935–40. http://dx.doi.org/10.1515/amm-2015-0233.
Full textWang, Ze, Lei Zhu, Shiyi Sun, Jianan Wang, and Wei Yan. "One-Dimensional Nanomaterials in Resistive Gas Sensor: From Material Design to Application." Chemosensors 9, no. 8 (July 30, 2021): 198. http://dx.doi.org/10.3390/chemosensors9080198.
Full textKałużyński, Piotr Dariusz, Marcin Procek, and Agnieszka Stolarczyk. "Impact of UV radiation on sensing properties of conductive polymer and ZnO blend for NO2 gas sensing at room temperature." Photonics Letters of Poland 11, no. 3 (September 30, 2019): 69. http://dx.doi.org/10.4302/plp.v11i3.911.
Full textWang, Tao, Hongli Ma, Wenkai Jiang, Hexin Zhang, Min Zeng, Jianhua Yang, Xue Wang, Ke Liu, Renhua Huang, and Zhi Yang. "Type discrimination and concentration prediction towards ethanol using a machine learning–enhanced gas sensor array with different morphology-tuning characteristics." Physical Chemistry Chemical Physics 23, no. 41 (2021): 23933–44. http://dx.doi.org/10.1039/d1cp02394b.
Full textPandhi, Twinkle, Ashita Chandnani, Harish Subbaraman, and David Estrada. "A Review of Inkjet Printed Graphene and Carbon Nanotubes Based Gas Sensors." Sensors 20, no. 19 (October 2, 2020): 5642. http://dx.doi.org/10.3390/s20195642.
Full textBerni, Rossella, and Francesco Bertocci. "Optimization of Gas Sensors Based on Advanced Nanomaterials through Split-Plot Designs and GLMMs." Sensors 18, no. 11 (November 9, 2018): 3858. http://dx.doi.org/10.3390/s18113858.
Full textMintcheva, Neli, Dinesh Kumar Subbiah, Marat E. Turabayev, Stanislav O. Gurbatov, John Bosco Balaguru Rayappan, Aleksandr A. Kuchmizhak, and Sergei A. Kulinich. "Gas Sensing of Laser-Produced Hybrid TiO2-ZnO Nanomaterials under Room-Temperature Conditions." Nanomaterials 13, no. 4 (February 9, 2023): 670. http://dx.doi.org/10.3390/nano13040670.
Full textCai, Ya Hui, Shu Yi Ma, Ting Ting Yang, Peng Fei Cao, Li Wang, Hao Sheng, and Miao Miao Liu. "Preparation of YVO4 octahedral nanomaterials and gas-sensing characteristics to triethylamine." Journal of Alloys and Compounds 897 (March 2022): 163167. http://dx.doi.org/10.1016/j.jallcom.2021.163167.
Full textKononova, Irina, Vyacheslav Moshnikov, and Pavel Kononov. "SnO2-Based Porous Nanomaterials: Sol-Gel Formation and Gas-Sensing Application." Gels 9, no. 4 (March 31, 2023): 283. http://dx.doi.org/10.3390/gels9040283.
Full textYuan, Zhenyu, Rui Li, Fanli Meng, Junjie Zhang, Kaiyuan Zuo, and Erchou Han. "Approaches to Enhancing Gas Sensing Properties: A Review." Sensors 19, no. 7 (March 27, 2019): 1495. http://dx.doi.org/10.3390/s19071495.
Full text