To see the other types of publications on this topic, follow the link: Nanooptics.

Journal articles on the topic 'Nanooptics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nanooptics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Letokhov, V. S. "Problems of nanooptics." Physics-Uspekhi 42, no. 3 (March 31, 1999): 281–82. http://dx.doi.org/10.1070/pu1999v042n03abeh000525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carney, P. Scott, Bradley Deutsch, Alexander A. Govyadinov, and Rainer Hillenbrand. "Phase in Nanooptics." ACS Nano 6, no. 1 (January 3, 2012): 8–12. http://dx.doi.org/10.1021/nn205008y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Letokhov, V. S. "Problems of nanooptics." Uspekhi Fizicheskih Nauk 169, no. 3 (1999): 345. http://dx.doi.org/10.3367/ufnr.0169.199903h.0345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shvartsburg, Aleksandr B., Mikhail B. Agranat, and O. V. Chefonov. "Nanooptics of gradient dielectric films." Quantum Electronics 39, no. 10 (October 31, 2009): 948–52. http://dx.doi.org/10.1070/qe2009v039n10abeh014109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jahns, J., Q. Cao, and S. Sinzinger. "Micro- and nanooptics - an overview." Laser & Photonics Review 2, no. 4 (August 18, 2008): 249–63. http://dx.doi.org/10.1002/lpor.200810009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Benz, Felix, Christos Tserkezis, Lars O. Herrmann, Bart de Nijs, Alan Sanders, Daniel O. Sigle, Laurynas Pukenas, Stephen D. Evans, Javier Aizpurua, and Jeremy J. Baumberg. "Nanooptics of Molecular-Shunted Plasmonic Nanojunctions." Nano Letters 15, no. 1 (December 16, 2014): 669–74. http://dx.doi.org/10.1021/nl5041786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gschneidtner, Tina A., Sarah Lerch, Erik Olsén, Xin Wen, Amelia C. Y. Liu, Alicja Stolaś, Joanne Etheridge, Eva Olsson, and Kasper Moth-Poulsen. "Constructing a library of metal and metal–oxide nanoparticle heterodimers through colloidal assembly." Nanoscale 12, no. 20 (2020): 11297–305. http://dx.doi.org/10.1039/d0nr02787a.

Full text
Abstract:
Nanoparticle dimers composed of different metals or metal oxides, as well as different shapes and sizes, are of wide interest for applications ranging from nanoplasmonic sensing to nanooptics to biomedical engineering.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Wei, Weidong Zhou, Richard Soref, and Weiping Qin. "A Special Issue on Nanooptics and Nanophotonics." Journal of Nanoscience and Nanotechnology 10, no. 3 (March 1, 2010): 1415–17. http://dx.doi.org/10.1166/jnn.2010.2022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hohenau, Andreas, Harald Ditlbacher, Bernhard Lamprecht, Joachim R. Krenn, Alfred Leitner, and Franz R. Aussenegg. "Electron beam lithography, a helpful tool for nanooptics." Microelectronic Engineering 83, no. 4-9 (April 2006): 1464–67. http://dx.doi.org/10.1016/j.mee.2006.01.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jiang, Tao, Vasily Kravtsov, Mikhail Tokman, Alexey Belyanin, and Markus B. Raschke. "Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene." Nature Nanotechnology 14, no. 9 (August 5, 2019): 838–43. http://dx.doi.org/10.1038/s41565-019-0515-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kamp, Marlous, Bart de Nijs, Nuttawut Kongsuwan, Matthias Saba, Rohit Chikkaraddy, Charlie A. Readman, William M. Deacon, et al. "Cascaded nanooptics to probe microsecond atomic-scale phenomena." Proceedings of the National Academy of Sciences 117, no. 26 (June 15, 2020): 14819–26. http://dx.doi.org/10.1073/pnas.1920091117.

Full text
Abstract:
Plasmonic nanostructures can focus light far below the diffraction limit, and the nearly thousandfold field enhancements obtained routinely enable few- and single-molecule detection. However, for processes happening on the molecular scale to be tracked with any relevant time resolution, the emission strengths need to be well beyond what current plasmonic devices provide. Here, we develop hybrid nanostructures incorporating both refractive and plasmonic optics, by creating SiO2nanospheres fused to plasmonic nanojunctions. Drastic improvements in Raman efficiencies are consistently achieved, with (single-wavelength) emissions reaching 107counts⋅mW−1⋅s−1and 5 × 105counts∙mW−1∙s−1∙molecule−1, for enhancement factors >1011. We demonstrate that such high efficiencies indeed enable tracking of single gold atoms and molecules with 17-µs time resolution, more than a thousandfold improvement over conventional high-performance plasmonic devices. Moreover, the obtained (integrated) megahertz count rates rival (even exceed) those of luminescent sources such as single-dye molecules and quantum dots, without bleaching or blinking.
APA, Harvard, Vancouver, ISO, and other styles
12

Bondarev, I. V., M. F. Gelin, and W. Domcke. "Plasmon nanooptics with individual single wall carbon nanotubes." Journal of Physics: Conference Series 393 (November 26, 2012): 012024. http://dx.doi.org/10.1088/1742-6596/393/1/012024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Balykin, V. I., V. V. Klimov, and V. S. Letokhov. "Atom nanooptics based on photon dots and photon holes." Journal of Experimental and Theoretical Physics Letters 78, no. 1 (July 2003): 8–12. http://dx.doi.org/10.1134/1.1609567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Barbry, M., P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal. "Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics." Nano Letters 15, no. 5 (May 4, 2015): 3410–19. http://dx.doi.org/10.1021/acs.nanolett.5b00759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Altman, Igor S., Peter V. Pikhitsa, Mansoo Choi, Jae In Jeong, Ho-Jun Song, Igor E. Agranovski, and Thor E. Bostrom. "Line spectra from doped nano-oxide: A design for nanooptics." Applied Physics Letters 83, no. 18 (November 3, 2003): 3689–91. http://dx.doi.org/10.1063/1.1624638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Shi, Rui, Norik Janunts, Christian Hellmann, and Frank Wyrowski. "Vectorial physical-optics modeling of Fourier microscopy systems in nanooptics." Journal of the Optical Society of America A 37, no. 7 (June 25, 2020): 1193. http://dx.doi.org/10.1364/josaa.392598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Eremin, Yu A., and A. G. Sveshnikov. "Mathematical models in nanooptics and biophotonics based on the discrete sources method." Computational Mathematics and Mathematical Physics 47, no. 2 (February 2007): 262–79. http://dx.doi.org/10.1134/s0965542507020108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Förstner, J., K. J. Ahn, J. Danckwerts, M. Schaarschmidt, I. Waldmüller, C. Weber, and A. Knorr. "Light propagation- and many-particle-induced non-Lorentzian lineshapes in semiconductor nanooptics." physica status solidi (b) 235, no. 1 (January 2003): 200. http://dx.doi.org/10.1002/pssb.200301550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

F�rstner, J., K. J. Ahn, J. Danckwerts, M. Schaarschmidt, I. Waldm�ller, C. Weber, and A. Knorr. "Light Propagation- and Many-particle-induced Non-Lorentzian Lineshapes in Semiconductor Nanooptics." physica status solidi (b) 234, no. 1 (November 2002): 155–65. http://dx.doi.org/10.1002/1521-3951(200211)234:1<155::aid-pssb155>3.0.co;2-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sarenac, Dusan, Connor Kapahi, Wangchun Chen, Charles W. Clark, David G. Cory, Michael G. Huber, Ivar Taminiau, Kirill Zhernenkov, and Dmitry A. Pushin. "Generation and detection of spin-orbit coupled neutron beams." Proceedings of the National Academy of Sciences 116, no. 41 (September 23, 2019): 20328–32. http://dx.doi.org/10.1073/pnas.1906861116.

Full text
Abstract:
Spin-orbit coupling of light has come to the fore in nanooptics and plasmonics, and is a key ingredient of topological photonics and chiral quantum optics. We demonstrate a basic tool for incorporating analogous effects into neutron optics: the generation and detection of neutron beams with coupled spin and orbital angular momentum. The 3He neutron spin filters are used in conjunction with specifically oriented triangular coils to prepare neutron beams with lattices of spin-orbit correlations, as demonstrated by their spin-dependent intensity profiles. These correlations can be tailored to particular applications, such as neutron studies of topological materials.
APA, Harvard, Vancouver, ISO, and other styles
21

Gurin, V. S., and A. A. Alexeenko. "Optical Features of the Silica Sol–Gel Derived Glasses Doped with Copper Selenide Nanoparticles." International Journal of Nanoscience 18, no. 03n04 (March 26, 2019): 1940021. http://dx.doi.org/10.1142/s0219581x19400210.

Full text
Abstract:
In the field of semiconductor nanooptics, copper chalcogenides have challenged a novel direction associated with nontrivial optical features in the near IR range important for applications. We consider this phenomenon in the silica sol–gel derived glasses doped with copper selenide nanoparticles. They were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy and optical absorption spectroscopy. An origin of the near IR optical features is discussed involving both the plasmon resonance concept extended to the self-doping of chalcogenides with a variable stoichiometry and the effect of Cu2+ impurity-generated intraband levels providing linear and nonlinear optical response of these materials.
APA, Harvard, Vancouver, ISO, and other styles
22

Ambs, Pierre. "Optical Computing: A 60-Year Adventure." Advances in Optical Technologies 2010 (May 11, 2010): 1–15. http://dx.doi.org/10.1155/2010/372652.

Full text
Abstract:
Optical computing is a very interesting 60-year old field of research. This paper gives a brief historical review of the life of optical computing from the early days until today. Optical computing generated a lot of enthusiasm in the sixties with major breakthroughs opening a large number of perspectives. The period between 1980 and 2000 could be called the golden age with numerous new technologies and innovating optical processors designed and constructed for real applications. Today the field of optical computing is not ready to die, it has evolved and its results benefit to new research topics such as nanooptics, biophotonics, or communication systems.
APA, Harvard, Vancouver, ISO, and other styles
23

Xu, Xiao-Hong Nancy, Jun Chen, Robert B. Jeffers, and Sophia Kyriacou. "Direct Measurement of Sizes and Dynamics of Single Living Membrane Transporters Using Nanooptics." Nano Letters 2, no. 3 (March 2002): 175–82. http://dx.doi.org/10.1021/nl015682i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Semenov, S. N., T. V. Statsenko, and Yu A. Tolmachev. "Pulse analysis method as applied to one of the problems of micro- and nanooptics." Bulletin of the Lebedev Physics Institute 36, no. 12 (December 2009): 350–52. http://dx.doi.org/10.3103/s1068335609120021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lin, Li, Mario Zapata, Min Xiong, Zhonghui Liu, Shanshan Wang, Hong Xu, Andrei G. Borisov, et al. "Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core–Shell Junction to Subnanometer." Nano Letters 15, no. 10 (September 21, 2015): 6419–28. http://dx.doi.org/10.1021/acs.nanolett.5b02931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chekalin, S. V. "The unique femtosecond spectrometric complex as an instrument for ultrafast spectroscopy, femtochemistry, and nanooptics." Uspekhi Fizicheskih Nauk 176, no. 6 (2006): 657. http://dx.doi.org/10.3367/ufnr.0176.200606h.0657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Carmele, Alexander, and Stephan Reitzenstein. "Non-Markovian features in semiconductor quantum optics: quantifying the role of phonons in experiment and theory." Nanophotonics 8, no. 5 (April 23, 2019): 655–83. http://dx.doi.org/10.1515/nanoph-2018-0222.

Full text
Abstract:
AbstractWe discuss phonon-induced non-Markovian and Markovian features in QD-based quantum nanooptics. We cover lineshapes in linear absorption experiments, phonon-induced incoherence in the Heitler regime, and memory correlations in two-photon coherences. To qualitatively and quantitatively understand the underlying physics, we present several theoretical models that capture the non-Markovian properties of the electron–phonon interaction accurately in different regimes. Examples are the Heisenberg equation of motion approach, the polaron master equation, and Liouville propagator techniques in the independent boson limit and beyond via the path integral method. Phenomenological modeling overestimates typically the dephasing due to the finite memory kernel of phonons and we give instructive examples of phonon-mediated coherence such as phonon-dressed anticrossings in Mollow physics, robust quantum state preparation, cavity feeding, and the stabilization of the collapse and revival phenomenon in the strong coupling limit of cavity quantum electrodynamics.
APA, Harvard, Vancouver, ISO, and other styles
28

Liu, Hai, Lixin Yu, Weifan Chen, and Yingyi Li. "The Progress of Nanocrystals Doped with Rare Earth Ions." Journal of Nanomaterials 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/235879.

Full text
Abstract:
In the past decades, TiO2nanocrystals (NCs) have been widely studied in the fields of photoelectric devices, optical communication, and environment for their stability in aqueous solution, being nontoxic, cheapness, and so on. Among the three crystalline phases of TiO2, anatase TiO2NCs are the best crystallized phase of solar energy conversion. However, the disadvantages of high band gap energy (3.2 ev) and the long lifetime of photogenerated electrons and holes limit its photocatalytic activity severely. Therefore, TiO2NCs doped with metal ions is available way to inhibit the transformation from anatase to rutile. Besides, these metal ions will concentrate on the surface of TiO2NCs. All above can enhance the photoactivity of TiO2NCs. In this paper, we mainly outlined the different characterization brought about in the aspect of nanooptics and photocatalytics due to metal ions added in. Also, the paper mainly concentrated on the progress of TiO2NCs doped with rare earth (RE) ions.
APA, Harvard, Vancouver, ISO, and other styles
29

Syubaev, Sergey, Stanislav Gurbatov, Evgeny Modin, Denver P. Linklater, Saulius Juodkazis, Evgeny L. Gurevich, and Aleksandr Kuchmizhak. "Laser Printing of Plasmonic Nanosponges." Nanomaterials 10, no. 12 (December 4, 2020): 2427. http://dx.doi.org/10.3390/nano10122427.

Full text
Abstract:
Three-dimensional porous nanostructures made of noble metals represent novel class of nanomaterials promising for nonlinear nanooptics and sensors. Such nanostructures are typically fabricated using either reproducible yet time-consuming and costly multi-step lithography protocols or less reproducible chemical synthesis that involve liquid processing with toxic compounds. Here, we combined scalable nanosecond-laser ablation with advanced engineering of the chemical composition of thin substrate-supported Au films to produce nanobumps containing multiple nanopores inside. Most of the nanopores hidden beneath the nanobump surface can be further uncapped using gentle etching of the nanobumps by an Ar-ion beam to form functional 3D plasmonic nanosponges. The nanopores 10–150 nm in diameter were found to appear via laser-induced explosive evaporation/boiling and coalescence of the randomly arranged nucleation sites formed by nitrogen-rich areas of the Au films. Density of the nanopores can be controlled by the amount of the nitrogen in the Au films regulated in the process of their magnetron sputtering assisted with nitrogen-containing discharge gas.
APA, Harvard, Vancouver, ISO, and other styles
30

Kim, D. S., Y. C. Yoon, S. C. Hohng, V. Malyarchuk, Ch Lienau, J. W. Park, J. H. Kim, and Q. H. Park. "Surface Plasmon Nanooptics in Plasmonic Band Gap Structures: Interference of Polarization Controlled Surface Waves in the Near Field." Journal of the Optical Society of Korea 6, no. 3 (September 1, 2002): 83–86. http://dx.doi.org/10.3807/josk.2002.6.3.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Aussenegg, Franz, and Harald Ditlbacher. "Plasmonen als Lichttransporter: Nanooptik." Physik in unserer Zeit 37, no. 5 (September 2006): 220–26. http://dx.doi.org/10.1002/piuz.200601102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Aeschlimann, M., M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, et al. "Spatiotemporal control of nanooptical excitations." Proceedings of the National Academy of Sciences 107, no. 12 (March 8, 2010): 5329–33. http://dx.doi.org/10.1073/pnas.0913556107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, J. J., Lei Chen, S. Tai, Xuegong Deng, P. F. Sciortino, Jiandong Deng, and Feng Liu. "Wafer-based nanostructure manufacturing for integrated nanooptic devices." Journal of Lightwave Technology 23, no. 2 (February 2005): 474–85. http://dx.doi.org/10.1109/jlt.2004.842298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Гончарский, А. А., and С. Р. Дурлевич. "An inverse problem of synthesis of nanooptical security elements for visual and automated authenticity verification." Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no. 1 (January 13, 2020): 56–63. http://dx.doi.org/10.26089/nummet.v21r105.

Full text
Abstract:
Статья посвящена решению обратных задач синтеза нанооптических защитных элементов. Синтез нанооптического элемента включает в себя как решение обратной задачи расчета его фазовой функции, так и прецизионное формирование микрорельефа. При освещении микрорельефа в любой точке нанооптического элемента когерентным излучением в фокальной плоскости, параллельной плоскости оптического элемента, формируется изображение, используемое для автоматизированного контроля. Область оптического элемента разбивается на элементарные области. Изображение в элементарных областях формируется с помощью бинарных киноформов, фазовая функция которых рассчитывается с помощью решения нелинейного интегрального уравнения Фредгольма первого рода. Глубина микрорельефа в каждой элементарной области постоянна и определяет цвет элементарной области при освещении оптического элемента белым светом. Разработанные элементы могут быть использованы для защиты документов, акцизных марок, брендов и др. This paper is concerned with solving inverse problems of the synthesis of nanooptical security elements. The synthesis of a nanooptical element involves calculating its phase function via solving an inverse problem and fabricating the microrelief with high precision. The microrelief of the nanooptical element illuminated at any point with coherent radiation produces an image in the focal plane parallel to the plane of the optical element. This image is used for the automated authenticity verification. The area of the optical element is divided into elementary regions. In each elementary region, the image is formed using binary kinoforms whose phase function is calculated via solving a nonlinear Fredholm integral equation of the first kind. The depth of the microrelief is constant in each elementary region and determines the color of that region when the optical element is illuminated with white light. The developed elements can be used to protect documents, excise stamps, and brands.
APA, Harvard, Vancouver, ISO, and other styles
35

Lyubarskii, S. V., and N. Kh Lyubarskii. "Technological bases for the production of nanooptical surfaces." Journal of Optical Technology 72, no. 10 (October 1, 2005): 792. http://dx.doi.org/10.1364/jot.72.000792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Feng Qin, 冯沁, 徐挺 Xu Ting, 潘丽 Pan Li, 胡承刚 Hu Chenggang, 王长涛 Wang Changtao, 赵泽宇 Zhao Zeyu, 邱传凯 Qiu Chuankai, 杨欢 Yang Huan, and 罗先刚 Luo Xiangang. "Subwavelength Structure Materials and Its Application in Nanooptical Devices." Laser & Optoelectronics Progress 46, no. 10 (2009): 41–45. http://dx.doi.org/10.3788/lop20094610.0041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Гончарский, А. А., and С. Ю. Серёжников. "On a problem of the synthesis of binary nano-optical elements." Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no. 4 (December 20, 2016): 415–24. http://dx.doi.org/10.26089/nummet.v17r438.

Full text
Abstract:
В рамках широко распространенной технологии Augmented Reality обсуждается возможность контроля подлинности защитных оптических меток на основе бинарных нанооптических элементов. С помощью смартфона фотографируют изображение защитной метки. Полученное изображение интерпретируется как дифракционный оптический элемент. В приближении Френеля рассчитывают изображение, формируемое дифракционным оптическим элементом, которое используют для идентификации подлинности защитной метки. Защитная метка представляет собой фазовый оптический элемент, глубина микрорельефа которого не превышает 0.5 мкм. Нанооптические элементы изготавливаются с помощью электроннолучевой литографии. Разработанные нанооптические элементы устойчивы к частичному повреждению микрорельефа и могут быть использованы для идентификации банкнот, документов и др. This paper deals with optical security label identification technology as a part of augmented reality technology. Security labels are based on binary nanooptical elements and are photographed using a smartphone. Photographed images are interpreted as diffractive optical elements. Optical images formed by these diffractive elements are computed using the Fresnel approximation. These images are used to identify the security labels. A security label consists of a phase optical element whose microrelief height is of no more than 0.5 $\mu$m. Nanooptical elements are manufactured using electron-beam lithography. The optical security labels are resistant against microrelief damages and can withstand partial loss of an image. The optical elements developed can be used to protect and identify banknotes, documents, etc.
APA, Harvard, Vancouver, ISO, and other styles
38

Yazar, Şirin, Cem Gürkan Sür, Birol Solak, Ömer Eroğlu, Aşkın Altınoklu, Sadri Güler, Uğur Meriç Gür, Barışcan Karaosmanoğlu, and Özgür Ergül. "Efficient and Accurate Electromagnetic Analysis of Three-Dimensional Nano-Optical Structures." Materials Science Forum 915 (March 2018): 202–6. http://dx.doi.org/10.4028/www.scientific.net/msf.915.202.

Full text
Abstract:
We present computational analysis of optical nanostructures, including but not limited to frequency-selective surfaces, metamaterials, nanoantennas, nanowires, and photonic crystals. A rigorous implementation based on surface integral equations and the multilevel fast multipole algorithm is developed for the analysis of such three-dimensional complex structures, without resorting to infinity, self-similarity, periodicity or homogeneity assumptions. The developed simulation environment provides accurate analysis of nanooptical structures to expand our knowledge on these important components of the state-of-the-art technology.
APA, Harvard, Vancouver, ISO, and other styles
39

Yuan, Zong Heng, Dong Dong Zhu, and Peng Wang. "The Study of Nano Optical Antenna Based on Surface Plasmon Resonance." Applied Mechanics and Materials 110-116 (October 2011): 3825–30. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.3825.

Full text
Abstract:
The strong local property of surface plasmon polaritons can break through the diffraction limit, and reduce the propagation of corner scattering on nanoscale. The nanoantenna structure based on the plasmon resonant effect can collect the light energy effectively, and the local field enhancement effects of the structure have extensive application prospect. The field distribution and field enhancement effects of optical antenna under nanoscale are calculated with finite-difference time-domain (FDTD) method. Several different structures of nanooptical antenna are studied, and their enhancement properties are compared in this paper.
APA, Harvard, Vancouver, ISO, and other styles
40

Kazanskiy, N. L., P. G. Serafimovich, and S. N. Khonina. "Harnessing the guided-mode resonance to design nanooptical transmission spectral filters." Optical Memory and Neural Networks 19, no. 4 (December 2010): 318–24. http://dx.doi.org/10.3103/s1060992x10040090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Okamoto, Hiromi. "Nanooptical Studies on Physical and Chemical Characteristics of Noble Metal Nanostructures." Bulletin of the Chemical Society of Japan 86, no. 4 (April 15, 2013): 397–413. http://dx.doi.org/10.1246/bcsj.20120268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

TAKAHARA, J., and F. KUSUNOKI. "Guiding and Nanofocusing of Two-Dimensional Optical Beam for Nanooptical Integrated Circuits." IEICE Transactions on Electronics E90-C, no. 1 (January 1, 2007): 87–94. http://dx.doi.org/10.1093/ietele/e90-c.1.87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Wang Lin, Hsi Harng Yang, Mu Hung Chen, and Tung Hsu Hou. "Optimization of Process Parameters for a Uniform Ultrasonic Spraying through the Taguchi Experimental Design." Advanced Materials Research 852 (January 2014): 81–85. http://dx.doi.org/10.4028/www.scientific.net/amr.852.81.

Full text
Abstract:
This study aimed to optimize the process parameters for the ultrasonic spraying of a nanooptical film coating on a large-area glass substrate, using the Taguchi experimental design. The key process parameters affecting spraying performance include the speed of the spray nozzle, flow rate of spray solution, airflow strength, spray height, and spray distance. The Taguchi quality characteristic used was the uniformity of light transmittance. With a glass substrate area of 52 cm2, the optimal process parameters for uniform spraying of silica solution were obtained via the Taguchi design method. The experiments confirmed that the optimal process parameters could effectively improve the uniformity of visible light transmittance; the S/N ratio of optical transmittance uniformity rose by approximately 2.79, transmittance reached 92.02%, and the transmittance uniformity was controllable to within 0.12%.
APA, Harvard, Vancouver, ISO, and other styles
44

Lim, Dong-Soo, Hyun-Suk Oh, and Young-Joo Kim. "Nanooptical Characteristics of Double-Sided Grating Structure with Nanoslit Aperture for Heat Assisted Magnetic Recording." Japanese Journal of Applied Physics 48, no. 3 (March 23, 2009): 03A060. http://dx.doi.org/10.1143/jjap.48.03a060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rácz, P., V. Ayadi, and P. Dombi. "On the role of rescattering and image charge in ultrafast nanooptical field probing with electrons." Journal of Optics 20, no. 1 (December 8, 2017): 015501. http://dx.doi.org/10.1088/2040-8986/aa9a29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang, Kai, Xue Bai Pitner, Rui Yang, William D. Nix, James D. Plummer, and Jonathan A. Fan. "Single-crystal metal growth on amorphous insulating substrates." Proceedings of the National Academy of Sciences 115, no. 4 (January 8, 2018): 685–89. http://dx.doi.org/10.1073/pnas.1717882115.

Full text
Abstract:
Metal structures on insulators are essential components in advanced electronic and nanooptical systems. Their electronic and optical properties are closely tied to their crystal quality, due to the strong dependence of carrier transport and band structure on defects and grain boundaries. Here we report a method for creating patterned single-crystal metal microstructures on amorphous insulating substrates, using liquid phase epitaxy. In this process, the patterned metal microstructures are encapsulated in an insulating crucible, together with a small seed of a differing material. The system is heated to temperatures above the metal melting point, followed by cooling and metal crystallization. During the heating process, the metal and seed form a high-melting-point solid solution, which directs liquid epitaxial metal growth. High yield of single-crystal metal with different sizes is confirmed with electron backscatter diffraction images, after removing the insulating crucible. Unexpectedly, the metal microstructures crystallize with the 〈111〉 direction normal to the plane of the film. This platform technology will enable the large-scale integration of high-performance plasmonic and electronic nanosystems.
APA, Harvard, Vancouver, ISO, and other styles
47

Han, Guoqiang, Shuguang Cao, and Bo Lin. "UV Photocatalytic Activity for Water Decomposition of SrxBa1−xNb2O6 Nanocrystals with Different Components and Morphologies." Journal of Chemistry 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/2163608.

Full text
Abstract:
Strontium barium niobate SrxBa1-xNb2O6 (SBN) nanocrystals with different components (x=0.2, 0.4, 0.6, and 0.8) were synthesized by Molten Salt Synthesis (MSS) method at various reaction temperatures (T = 950°C, 1000°C, 1050°C, and 1100°C). The SBN nanocrystals yielded through flux reactions possess different morphologies and sizes with a length of about ~100 nm~7 μm and a diameter of about ~200~500 nm. The Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) techniques were used to study the compositions, structures, and morphologies of the nanocrystals. The absorption edges of the SBN nanocrystals are at a wavelength region of approximate 390 nm, which corresponds to band-gap energy of ~3.18 eV. The SBN nanocrystals with different sizes display different photocatalytic activity under ultraviolet light in decomposition of water. The SBN60 nanocrystals exhibit stable photocatalytic rates (~100~130 μmol of H2·g−1·h−1) for hydrogen production. The SBN nanocrystals can be a potential material in the application of photocatalysis and micro/nanooptical devices.
APA, Harvard, Vancouver, ISO, and other styles
48

Zueva, Lidia, Tatiana Golubeva, Elena Korneeva, Vladimir Makarov, Igor Khmelinskii, and Mikhail Inyushin. "Foveolar Müller Cells of the Pied Flycatcher: Morphology and Distribution of Intermediate Filaments Regarding Cell Transparency." Microscopy and Microanalysis 22, no. 2 (March 1, 2016): 379–86. http://dx.doi.org/10.1017/s1431927616000507.

Full text
Abstract:
AbstractSpecialized intermediate filaments (IFs) have critical importance for the clearness and uncommon transparency of vertebrate lens fiber cells, although the physical mechanisms involved are poorly understood. Recently, an unusual low-scattering light transport was also described in retinal Müller cells. Exploring the function of IFs in Müller cells, we have studied the morphology and distribution pattern of IFs and other cytoskeletal filaments inside the Müller cell main processes in the foveolar part of the avian (pied flycatcher) retina. We found that some IFs surrounded by globular nanoparticles (that we suggest are crystallines) are present in almost every part of the Müller cells that span the retina, including the microvilli. Unlike IFs implicated in the mechanical architecture of the cell, these IFs are not connected to any specific cellular membranes. Instead, they are organized into bundles, passing inside the cell from the endfeet to the photoreceptor, following the geometry of the processes, and repeatedly circumventing numerous obstacles. We believe that the presently reported data effectively confirm that the model of nanooptical channels built of the IFs may provide a viable explanation of Müller cell transparency.
APA, Harvard, Vancouver, ISO, and other styles
49

Sethi, Waleed Tariq, Hamsakutty Vettikalladi, Habib Fathallah, and Mohamed Himdi. "Nantenna for Standard 1550 nm Optical Communication Systems." International Journal of Antennas and Propagation 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/5429510.

Full text
Abstract:
Nanoscale transmission and reception technologies will play a vital role and be part of the next generation communication networks. This applies for all application fields including imaging, health, biosensing, civilian, and military communications. The detection of light frequency using nanooptical antennas may possibly become a good competitor to the semiconductor based photodetector because of the simplicity of integration, cost, and inherent capability to detect the phase and amplitude instead of power only. In this paper, authors propose simulated design of a hexagonal dielectric loaded nantenna (HDLN) and explore its potential benefits at the standard optical C-band (1550 nm). The proposed nantenna consists of “Ag-SiO2-Ag” structure, consisting of “Si” hexagonal dielectric with equal lengths fed by “Ag” nanostrip transmission line. The simulated nantenna achieves an impedance bandwidth of 3.7% (190.9 THz–198.1 THz) and a directivity of 8.6 dBi, at a center frequency of 193.5 THz, covering most of the ITU-T standard optical transmission window (C-band). The hexagonal dielectric nantenna producesHE20δmodes and the wave propagation is found to be end-fire. The efficiency of the nantenna is proven via numerical expressions, thus making the proposed design viable for nanonetwork communications.
APA, Harvard, Vancouver, ISO, and other styles
50

Menaa, Farid, Yazdian Fatemeh, Sandeep K. Vashist, Haroon Iqbal, Olga N. Sharts, and Bouzid Menaa. "Graphene, an Interesting Nanocarbon Allotrope for Biosensing Applications: Advances, Insights, and Prospects." Biomedical Engineering and Computational Biology 12 (January 2021): 117959722098382. http://dx.doi.org/10.1177/1179597220983821.

Full text
Abstract:
Graphene, a relatively new two-dimensional (2D) nanomaterial, possesses unique structure (e.g. lighter, harder, and more flexible than steel) and tunable physicochemical (e.g. electronical, optical) properties with potentially wide eco-friendly and cost-effective usage in biosensing. Furthermore, graphene-related nanomaterials (e.g. graphene oxide, doped graphene, carbon nanotubes) have inculcated tremendous interest among scientists and industrials for the development of innovative biosensing platforms, such as arrays, sequencers and other nanooptical/biophotonic sensing systems (e.g. FET, FRET, CRET, GERS). Indeed, combinatorial functionalization approaches are constantly improving the overall properties of graphene, such as its sensitivity, stability, specificity, selectivity, and response for potential bioanalytical applications. These include real-time multiplex detection, tracking, qualitative, and quantitative characterization of molecules (i.e. analytes [H2O2, urea, nitrite, ATP or NADH]; ions [Hg2+, Pb2+, or Cu2+]; biomolecules (DNA, iRNA, peptides, proteins, vitamins or glucose; disease biomarkers such as genetic alterations in BRCA1, p53) and cells (cancer cells, stem cells, bacteria, or viruses). However, there is still a paucity of comparative reports that critically evaluate the relative toxicity of carbon nanoallotropes in humans. This manuscript comprehensively reviews the biosensing applications of graphene and its derivatives (i.e. GO and rGO). Prospects and challenges are also introduced.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography