Journal articles on the topic 'Nanoparticle Superlattices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanoparticle Superlattices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ross, Michael B., Jessie C. Ku, Martin G. Blaber, Chad A. Mirkin, and George C. Schatz. "Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices." Proceedings of the National Academy of Sciences 112, no. 33 (2015): 10292–97. http://dx.doi.org/10.1073/pnas.1513058112.
Full textLiu, Jiaming, Rongjuan Liu, Zhijie Yang, and Jingjing Wei. "Folding of two-dimensional nanoparticle superlattices enabled by emulsion-confined supramolecular co-assembly." Chemical Communications 58, no. 23 (2022): 3819–22. http://dx.doi.org/10.1039/d2cc00330a.
Full textPrasad, B. L. V., C. M. Sorensen, and Kenneth J. Klabunde. "Gold nanoparticle superlattices." Chemical Society Reviews 37, no. 9 (2008): 1871. http://dx.doi.org/10.1039/b712175j.
Full textRadha, Boya, Andrew J. Senesi, Matthew N. O’Brien, et al. "Reconstitutable Nanoparticle Superlattices." Nano Letters 14, no. 4 (2014): 2162–67. http://dx.doi.org/10.1021/nl500473t.
Full textPark, Daniel J., Jessie C. Ku, Lin Sun, et al. "Directional emission from dye-functionalized plasmonic DNA superlattice microcavities." Proceedings of the National Academy of Sciences 114, no. 3 (2017): 457–61. http://dx.doi.org/10.1073/pnas.1619802114.
Full textКособукин, В. А. "Спектроскопия плазмон-экситонов в наноструктурах полупроводник-металл". Физика твердого тела 60, № 8 (2018): 1606. http://dx.doi.org/10.21883/ftt.2018.08.46256.18gr.
Full textPodsiadlo, Paul, Galyna V. Krylova, Arnaud Demortière, and Elena V. Shevchenko. "Multicomponent periodic nanoparticle superlattices." Journal of Nanoparticle Research 13, no. 1 (2010): 15–32. http://dx.doi.org/10.1007/s11051-010-0174-1.
Full textNishida, Naoki, Edakkattuparambil S. Shibu, Hiroshi Yao, Tsugao Oonishi, Keisaku Kimura, and Thalappil Pradeep. "Fluorescent Gold Nanoparticle Superlattices." Advanced Materials 20, no. 24 (2008): 4719–23. http://dx.doi.org/10.1002/adma.200800632.
Full textShevchenko, E. V., J. Kortright, D. V. Talapin, S. Aloni, and A. P. Alivisatos. "Quasi-ternary Nanoparticle Superlattices Through Nanoparticle Design." Advanced Materials 19, no. 23 (2007): 4183–88. http://dx.doi.org/10.1002/adma.200701470.
Full textOuyang, Tianhao, Arash Akbari-Sharbaf, Jaewoo Park, Reg Bauld, Michael G. Cottam, and Giovanni Fanchini. "Self-assembled metallic nanoparticle superlattices on large-area graphene thin films: growth and evanescent waveguiding properties." RSC Advances 5, no. 120 (2015): 98814–21. http://dx.doi.org/10.1039/c5ra22052a.
Full textMehdizadeh Taheri, Sara, Steffen Fischer, and Stephan Förster. "Routes to Nanoparticle-Polymer Superlattices." Polymers 3, no. 2 (2011): 662–73. http://dx.doi.org/10.3390/polym3020662.
Full textKostiainen, Mauri A. "Protein cage directed nanoparticle superlattices." Acta Crystallographica Section A Foundations and Advances 77, a2 (2021): C339. http://dx.doi.org/10.1107/s0108767321093466.
Full textMacfarlane, R. J., M. R. Jones, B. Lee, E. Auyeung, and C. A. Mirkin. "Topotactic Interconversion of Nanoparticle Superlattices." Science 341, no. 6151 (2013): 1222–25. http://dx.doi.org/10.1126/science.1241402.
Full textLiu, W., M. Tagawa, H. L. Xin, et al. "Diamond family of nanoparticle superlattices." Science 351, no. 6273 (2016): 582–86. http://dx.doi.org/10.1126/science.aad2080.
Full textZhang, Honghu, Wenjie Wang, Surya Mallapragada, Alex Travesset, and David Vaknin. "Macroscopic and tunable nanoparticle superlattices." Nanoscale 9, no. 1 (2017): 164–71. http://dx.doi.org/10.1039/c6nr07136h.
Full textFaisal, Rina Muhammad. "Langmuir‐Blodgett Assembly to order Nanoparticles and Colloidal Objects." British Journal of Multidisciplinary and Advanced Studies 3, no. 2 (2022): 1–5. http://dx.doi.org/10.37745/bjmas.2022.0034.
Full textMao, Runfang, Evan Pretti, and Jeetain Mittal. "Temperature-Controlled Reconfigurable Nanoparticle Binary Superlattices." ACS Nano 15, no. 5 (2021): 8466–73. http://dx.doi.org/10.1021/acsnano.0c10874.
Full textSantos, Peter J., Paul A. Gabrys, Leonardo Z. Zornberg, Margaret S. Lee, and Robert J. Macfarlane. "Macroscopic materials assembled from nanoparticle superlattices." Nature 591, no. 7851 (2021): 586–91. http://dx.doi.org/10.1038/s41586-021-03355-z.
Full textQi, Limin. "Nonclassical crystallization pathways of nanoparticle superlattices." Chinese Science Bulletin 65, no. 5 (2020): 329–30. http://dx.doi.org/10.1360/tb-2019-0789.
Full textCarvajal, Joan J. "Quasicrystalline Order Revealed in Nanoparticle Superlattices." MRS Bulletin 34, no. 12 (2009): 892. http://dx.doi.org/10.1557/mrs2009.203.
Full textShevchenko, Elena V., Dmitri V. Talapin, Nicholas A. Kotov, Stephen O'Brien, and Christopher B. Murray. "Structural diversity in binary nanoparticle superlattices." Nature 439, no. 7072 (2006): 55–59. http://dx.doi.org/10.1038/nature04414.
Full textTalapin, Dmitri V., Elena V. Shevchenko, Christopher B. Murray, Alexey V. Titov, and Petr Král. "Dipole−Dipole Interactions in Nanoparticle Superlattices." Nano Letters 7, no. 5 (2007): 1213–19. http://dx.doi.org/10.1021/nl070058c.
Full textRigby, Pauline. "New building blocks for nanoparticle superlattices." Materials Today 11, no. 1-2 (2008): 13. http://dx.doi.org/10.1016/s1369-7021(07)70343-7.
Full textSealy, Cordelia. "Nanoparticle superlattices shape-up under pressure." Materials Today 11, no. 11 (2008): 15. http://dx.doi.org/10.1016/s1369-7021(08)70233-5.
Full textMazid, Romiza R., Kae Jye Si, and Wenlong Cheng. "DNA based strategy to nanoparticle superlattices." Methods 67, no. 2 (2014): 215–26. http://dx.doi.org/10.1016/j.ymeth.2014.01.017.
Full textKahn, Jason S., Brian Minevich, and Oleg Gang. "Three-dimensional DNA-programmable nanoparticle superlattices." Current Opinion in Biotechnology 63 (June 2020): 142–50. http://dx.doi.org/10.1016/j.copbio.2019.12.025.
Full textOlichwer, Natalia, Andreas Meyer, Mazlum Yesilmen, and Tobias Vossmeyer. "Gold nanoparticle superlattices: correlating chemiresistive responses with analyte sorption and swelling." Journal of Materials Chemistry C 4, no. 35 (2016): 8214–25. http://dx.doi.org/10.1039/c6tc02412b.
Full textJulin, Sofia, Antti Korpi, Nonappa Nonappa, et al. "DNA origami directed 3D nanoparticle superlattice via electrostatic assembly." Nanoscale 11, no. 10 (2019): 4546–51. http://dx.doi.org/10.1039/c8nr09844a.
Full textLin, Qing-Yuan, Jarad A. Mason, Zhongyang Li, et al. "Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly." Science 359, no. 6376 (2018): 669–72. http://dx.doi.org/10.1126/science.aaq0591.
Full textOlichwer, Natalia, Tönjes Koschine, Andreas Meyer, Werner Egger, Klaus Rätzke, and Tobias Vossmeyer. "Gold nanoparticle superlattices: structure and cavities studied by GISAXS and PALS." RSC Advances 6, no. 114 (2016): 113163–72. http://dx.doi.org/10.1039/c6ra24241c.
Full textSun, Lin, Haixin Lin, Kevin L. Kohlstedt, George C. Schatz, and Chad A. Mirkin. "Design principles for photonic crystals based on plasmonic nanoparticle superlattices." Proceedings of the National Academy of Sciences 115, no. 28 (2018): 7242–47. http://dx.doi.org/10.1073/pnas.1800106115.
Full textZhang, Fenghua, Jingjing Wei, and Zhijie Yang. "Nanoparticle superlattices enabled by soft epitaxial strategy." SCIENTIA SINICA Chimica 51, no. 6 (2021): 751–60. http://dx.doi.org/10.1360/ssc-2021-0014.
Full textCheng, Ho Fung, Max E. Distler, Byeongdu Lee, Wenjie Zhou, Steven Weigand, and Chad A. Mirkin. "Nanoparticle Superlattices through Template-Encoded DNA Dendrimers." Journal of the American Chemical Society 143, no. 41 (2021): 17170–79. http://dx.doi.org/10.1021/jacs.1c07858.
Full textLewis, Diana J., Leonardo Z. Zornberg, David J. D. Carter, and Robert J. Macfarlane. "Single-crystal Winterbottom constructions of nanoparticle superlattices." Nature Materials 19, no. 7 (2020): 719–24. http://dx.doi.org/10.1038/s41563-020-0643-6.
Full textLi, Jun, Yiliguma Yiliguma, Yifei Wang, and Gengfeng Zheng. "Carbon-coated nanoparticle superlattices for energy applications." Nanoscale 8, no. 30 (2016): 14359–68. http://dx.doi.org/10.1039/c6nr03243e.
Full textLabastide, Joelle A., Mina Baghgar, Irene Dujovne, et al. "Polymer Nanoparticle Superlattices for Organic Photovoltaic Applications." Journal of Physical Chemistry Letters 2, no. 24 (2011): 3085–91. http://dx.doi.org/10.1021/jz2012275.
Full textLi, Wenbin, Hongyou Fan, and Ju Li. "Deviatoric Stress-Driven Fusion of Nanoparticle Superlattices." Nano Letters 14, no. 9 (2014): 4951–58. http://dx.doi.org/10.1021/nl5011977.
Full textwu, J., G. Liu, E. Auyeung, et al. "Electron tomography of DNA-linked nanoparticle superlattices." Microscopy and Microanalysis 18, S2 (2012): 1646–47. http://dx.doi.org/10.1017/s1431927612010082.
Full textTravesset, A. "Topological structure prediction in binary nanoparticle superlattices." Soft Matter 13, no. 1 (2017): 147–57. http://dx.doi.org/10.1039/c6sm00713a.
Full textKurelchuk, U. N., P. V. Borisyuk, and O. S. Vasilyev. "Electron properties of 13-atom nanoparticle superlattices." Materials Letters 262 (March 2020): 127100. http://dx.doi.org/10.1016/j.matlet.2019.127100.
Full textZornberg, Leonardo Z., Paul A. Gabrys, and Robert J. Macfarlane. "Optical Processing of DNA-Programmed Nanoparticle Superlattices." Nano Letters 19, no. 11 (2019): 8074–81. http://dx.doi.org/10.1021/acs.nanolett.9b03258.
Full textTravesset, Alex. "Binary nanoparticle superlattices of soft-particle systems." Proceedings of the National Academy of Sciences 112, no. 31 (2015): 9563–67. http://dx.doi.org/10.1073/pnas.1504677112.
Full textSenesi, Andrew J., Daniel J. Eichelsdoerfer, Robert J. Macfarlane, et al. "Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices." Angewandte Chemie 125, no. 26 (2013): 6756–60. http://dx.doi.org/10.1002/ange.201301936.
Full textSi, Kae Jye, Yi Chen, Qianqian Shi, and Wenlong Cheng. "Nanoparticle Superlattices: The Roles of Soft Ligands." Advanced Science 5, no. 1 (2017): 1700179. http://dx.doi.org/10.1002/advs.201700179.
Full textSantiago, P., H. E. Troiani, C. Gutierrez-Wing, J. Ascencio, and M. J. Yacaman. "Structure and Properties of Au Nanoparticle Superlattices." physica status solidi (b) 230, no. 2 (2002): 363–70. http://dx.doi.org/10.1002/1521-3951(200204)230:2<363::aid-pssb363>3.0.co;2-q.
Full textSenesi, Andrew J., Daniel J. Eichelsdoerfer, Robert J. Macfarlane, et al. "Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices." Angewandte Chemie International Edition 52, no. 26 (2013): 6624–28. http://dx.doi.org/10.1002/anie.201301936.
Full textPatra, Tarak K., Henry Chan, Paul Podsiadlo, Elena V. Shevchenko, Subramanian K. R. S. Sankaranarayanan, and Badri Narayanan. "Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices." Nanoscale 11, no. 22 (2019): 10655–66. http://dx.doi.org/10.1039/c8nr09699f.
Full textMayence, Arnaud, Dong Wang, German Salazar-Alvarez, Peter Oleynikov, and Lennart Bergström. "Probing planar defects in nanoparticle superlattices by 3D small-angle electron diffraction tomography and real space imaging." Nanoscale 6, no. 22 (2014): 13803–8. http://dx.doi.org/10.1039/c4nr04156a.
Full textLi, Meng, Yuanzhi Chen, Na Ji, Deqian Zeng, and Dong-Liang Peng. "Preparation of monodisperse Ni nanoparticles and their assembly into 3D nanoparticle superlattices." Materials Chemistry and Physics 147, no. 3 (2014): 604–10. http://dx.doi.org/10.1016/j.matchemphys.2014.05.036.
Full textJi, Na, Yuanzhi Chen, Pingyun Gong, Keyan Cao, and Dong-Liang Peng. "Investigation on the self-assembly of gold nanoparticles into bidisperse nanoparticle superlattices." Colloids and Surfaces A: Physicochemical and Engineering Aspects 480 (September 2015): 11–18. http://dx.doi.org/10.1016/j.colsurfa.2015.03.058.
Full text