To see the other types of publications on this topic, follow the link: Nanoparticle Surface.

Journal articles on the topic 'Nanoparticle Surface'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nanoparticle Surface.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Semchuk, O. Yu, O. O. Havryliuk, and A. A. Biliuk. "Kinetic theory of surface plasmon resonance in metal nanoparticles." Surface 12(27) (December 30, 2020): 3–19. http://dx.doi.org/10.15407/surface.2020.12.003.

Full text
Abstract:
In recent years, interest in studying the optical properties of metallic nanostructures has grown. This interest is primarily related to the possibility of practical application of such nanostructures in quantum optical computers, micro- and nanosensors. These applications are based on the fundamental optical effect of surface plasmon excitation. The consequence of this phenomenon is surface plasmon resonance (SPR) - an increase in the cross section of energy absorption by a metal nanoparticle as the frequency of incident light (laser radiation) approaches the SPR frequency of the nanoparticle
APA, Harvard, Vancouver, ISO, and other styles
2

Albarki, Mohammed A., and Maureen D. Donovan. "Uptake of Cationic PAMAM-PLGA Nanoparticles by the Nasal Mucosa." Scientia Pharmaceutica 90, no. 4 (2022): 72. http://dx.doi.org/10.3390/scipharm90040072.

Full text
Abstract:
Nanoparticles provide promising advantages in advanced delivery systems for enhanced drug delivery and targeting. The use of a biodegradable polymer such as PLGA (poly lactic-co-glycolic acid) promotes improved nanoparticle safety and, to some extent, provides the ability to modify nanoparticle surface properties. This study compared the effect of altering the surface charge on the translocation of PLGA nanoparticles across excised nasal mucosal tissues. Nanoparticles (average diameter of 60–100 nm) loaded with Nile Red (lipophilic fluorescent dye) were fabricated using a nanoprecipitation met
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Fei Hu, Xiao Zong Song, Yong Zhang, and Dian Rong Luan. "Polishing of Ultra Smooth Surface with Nanoparticle Colloid Jet." Key Engineering Materials 404 (January 2009): 143–48. http://dx.doi.org/10.4028/www.scientific.net/kem.404.143.

Full text
Abstract:
A nanoparticle colloid jet machining system has been developed for polishing ultra smooth surface of brittle materials. Interaction between nanoparticles and work surface in nanoparticle colloid jet machining has been given, and the theoretical dependence of the material removal rate with various important process parameters of the nanoparticle colloid jet machining have been investigated through material removal experiments. Some material removal results of nanoparticle colloid jet machining show that it is possible to obtain removal rates of one nanometer level per minute for glass surfaces
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Hwankyu. "Molecular Modeling of Protein Corona Formation and Its Interactions with Nanoparticles and Cell Membranes for Nanomedicine Applications." Pharmaceutics 13, no. 5 (2021): 637. http://dx.doi.org/10.3390/pharmaceutics13050637.

Full text
Abstract:
The conformations and surface properties of nanoparticles have been modified to improve the efficiency of drug delivery. However, when nanoparticles flow through the bloodstream, they interact with various plasma proteins, leading to the formation of protein layers on the nanoparticle surface, called protein corona. Experiments have shown that protein corona modulates nanoparticle size, shape, and surface properties and, thus, influence the aggregation of nanoparticles and their interactions with cell membranes, which can increases or decreases the delivery efficiency. To complement these expe
APA, Harvard, Vancouver, ISO, and other styles
5

Sit, Izaac, Haibin Wu, and Vicki H. Grassian. "Environmental Aspects of Oxide Nanoparticles: Probing Oxide Nanoparticle Surface Processes Under Different Environmental Conditions." Annual Review of Analytical Chemistry 14, no. 1 (2021): 489–514. http://dx.doi.org/10.1146/annurev-anchem-091420-092928.

Full text
Abstract:
Surface chemistry affects the physiochemical properties of nanoparticles in a variety of ways. Therefore, there is great interest in understanding how nanoparticle surfaces evolve under different environmental conditions of pH and temperature. Here, we discuss the use of vibrational spectroscopy as a tool that allows for in situ observations of oxide nanoparticle surfaces and their evolution due to different surface processes. We highlight oxide nanoparticle surface chemistry, either engineered anthropogenic or naturally occurring geochemical nanoparticles, in complex media, with a focus on th
APA, Harvard, Vancouver, ISO, and other styles
6

Mukha, Iu P., N. V. Vityuk, A. M. Eremenko, and M. A. Skoryk. "Stabilization of metal nanoparticles in highly concentrated colloids." Surface 12(27) (December 30, 2020): 337–45. http://dx.doi.org/10.15407/surface.2020.12.337.

Full text
Abstract:
Gold and silver nanoparticles (NPs) have a great potential in nanomedicine. For their use in biological studies there is a need to increase significantly the metal content (active substance) in the dose volume for the injection. Therefore, an urgent task is to find the experimental ways to prevent NPs aggregation in highly concentrated colloidal systems. In this work colloids of Ag NPs, Au NPs and AgAu NPs were prepared in the presence of amino acid as metal ion reducer and particle stabilizer. The polymer pluronic F68 was proposed to increase the stability of NPs and the experimental conditio
APA, Harvard, Vancouver, ISO, and other styles
7

Zobel, Mirijam. "Observing structural reorientations at solvent–nanoparticle interfaces by X-ray diffraction – putting water in the spotlight." Acta Crystallographica Section A Foundations and Advances 72, no. 6 (2016): 621–31. http://dx.doi.org/10.1107/s2053273316013516.

Full text
Abstract:
Nanoparticles are attractive in a wide range of research genres due to their size-dependent properties, which can be in contrast to those of micrometre-sized colloids or bulk materials. This may be attributed, in part, to their large surface-to-volume ratio and quantum confinement effects. There is a growing awareness that stress and strain at the particle surface contribute to their behaviour and this has been included in the structural models of nanoparticles for some time. One significant oversight in this field, however, has been the fact that the particle surface affects its surroundings
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Ji-Su, Byung-Kook Kim, and Yeong-Cheol Kim. "Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations." Journal of Nanoscience and Nanotechnology 15, no. 10 (2015): 8205–10. http://dx.doi.org/10.1166/jnn.2015.11287.

Full text
Abstract:
We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, Chunxiao, Hugh Daigle, and Steven L. Bryant. "Paramagnetic nanoparticles as nuclear magnetic resonance contrast agents in sandstone: Importance of nanofluid-rock interactions." Interpretation 4, no. 2 (2016): SF55—SF65. http://dx.doi.org/10.1190/int-2015-0137.1.

Full text
Abstract:
Nuclear magnetic resonance has been applied in well logging to investigate pore size distribution with high resolution and accuracy based on the relaxation time distribution. However, due to the heterogeneity of natural rock, pore surface relaxivity, which links relaxation time and pore size, varies within the pore system. To analyze and alter pore surface relaxivity, we saturated Boise sandstone cores with positively charged zirconia nanoparticle dispersions in which nanoparticles can be adsorbed onto the sandstone pore wall, while negatively charged zirconia nanoparticles dispersions were us
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Chang, Albert Wan, Xianchang Gong, N. V. S. Dinesh K. Bhupathiraju, James D. Batteas, and Charles Michael Drain. "Reorganization of porphyrin nanoparticle morphology driven by surface energetics." Journal of Porphyrins and Phthalocyanines 20, no. 01n04 (2016): 438–43. http://dx.doi.org/10.1142/s1088424616500292.

Full text
Abstract:
Organic nanoparticles (ONp) of an Fe(III) porphyrin appended with four [Formula: see text]-polyethyleneglyco-pyridinium moieties prepared in acetonitrile were deposited onto hydrophilic or hydrophobic Si surfaces. Self-organized by intermolecular interactions, ONp reorganize in response to environmental changes. Mechanisms for the control of nanoparticle morphologies and surface patterning by varying surface energies are discussed.
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, Shenqing, Xiliang Yan, Gaoxing Su, and Bing Yan. "Cytotoxicity Induction by the Oxidative Reactivity of Nanoparticles Revealed by a Combinatorial GNP Library with Diverse Redox Properties." Molecules 26, no. 12 (2021): 3630. http://dx.doi.org/10.3390/molecules26123630.

Full text
Abstract:
It is crucial to establish relationship between nanoparticle structures (or properties) and nanotoxicity. Previous investigations have shown that a nanoparticle’s size, shape, surface and core materials all impact its toxicity. However, the relationship between the redox property of nanoparticles and their toxicity has not been established when all other nanoparticle properties are identical. Here, by synthesizing an 80-membered combinatorial gold nanoparticle (GNP) library with diverse redox properties, we systematically explored this causal relationship. The compelling results revealed that
APA, Harvard, Vancouver, ISO, and other styles
12

Gong, Shuting, Tianyi Wang, Jiaping Lin, and Liquan Wang. "Patterning of Polymer-Functionalized Nanoparticles with Varied Surface Mobilities of Polymers." Materials 16, no. 3 (2023): 1254. http://dx.doi.org/10.3390/ma16031254.

Full text
Abstract:
The polymers can be either dynamically tethered to or permanently grafted to the nanoparticle to produce polymer-functionalized nanoparticles. The surface mobility of polymer ligands with one end anchored to the nanoparticle can affect the surface pattern, but the effect remains unclear. Here, we addressed the influence of lateral polymer mobility on surface patterns by performing self-consistent field theory calculations on a modeled polymer-functionalized nanoparticle consisting of immobile and mobile brushes. The results show that except for the radius of nanoparticles and grafting density,
APA, Harvard, Vancouver, ISO, and other styles
13

Kano, Shinya, and Harutaka Mekaru. "Proton transport over nanoparticle surface in insulating nanoparticle film-based humidity sensor." Japanese Journal of Applied Physics 61, SE (2022): SE1011. http://dx.doi.org/10.35848/1347-4065/ac4b0e.

Full text
Abstract:
Abstract We study proton transport on the surface of insulating nanoparticles for humidity sensors. We use this approach to reveal proton transfer mechanisms in humidity-sensitive materials. Hydrophilic and hydrophobic ligand-terminated silica nanoparticle films are adopted for evaluating the temperature dependence of the ion conductivity. According to the activation energy of the conductivity, we explain that Grotthuss (H+ transfer) and vehicular (H3O+ transfer) mechanisms are mainly dominant on hydrophilic (−OH terminated) and hydrophobic (acrylate terminated) surfaces of the nanoparticles,
APA, Harvard, Vancouver, ISO, and other styles
14

Zhai, Shengjie, and Hui Zhao. "Enhancement of Sensitivity of the Solution-Phase Localized Surface Plasmon by a Nanostructured Substrate." MRS Advances 1, no. 28 (2016): 2059–64. http://dx.doi.org/10.1557/adv.2016.367.

Full text
Abstract:
AbstractWe describe a simple and inexpensive method to enhance the sensitivity or improve the detection limit of solution-phase localized surface plasmon (LSPR) sensors of metallic nanoparticles. The substrate surface contains metallic nanostructures which are replicated from DVD disks via the standard soft lithography. By mixing BSA molecules with nanoparticle solution, we demonstrate that the wavelength shift due to the absorption of BSA molecules on nanoparticle surfaces is amplified by more than an order of magnitude in comparison to that over a smooth flat surface.
APA, Harvard, Vancouver, ISO, and other styles
15

Hong, Jingjing, Xingping Zhou, Rui Zhuang, et al. "Nanoparticle trapping by counter-surface plasmon polariton lens." Chinese Optics Letters 20, no. 2 (2022): 023601. http://dx.doi.org/10.3788/col202220.023601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Advincula, Rigoberto C. "Surface Initiated Polymerization from Nanoparticle Surfaces." Journal of Dispersion Science and Technology 24, no. 3-4 (2003): 343–61. http://dx.doi.org/10.1081/dis-120021794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tsirikis, Peter, Kirsty Wilson, Sue Xiang, et al. "Immunogenicity and biodistribution of nanoparticles in vivo." Journal of Immunology 196, no. 1_Supplement (2016): 75.28. http://dx.doi.org/10.4049/jimmunol.196.supp.75.28.

Full text
Abstract:
Abstract Nanoparticles have been widely used in vaccine design as both adjuvants and antigen delivery vehicles. In a seminal study, 40–50 nm nanoparticles with conjugated antigen were shown to induce high antibody titers and IFN-γ production in mice but with no added inflammatory stimuli. Subsequent research has shown that similar levels of immunogenicity can be achieved via the co-injection of naked 40–50 nm nanoparticles adjuvants and larger 500 nm nanoparticles with conjugated antigen. Furthermore, recent works indicate that particle shape can also influence the immune response. As such, we
APA, Harvard, Vancouver, ISO, and other styles
18

Yuan, Juan, Qing Quan Guo, Xiang Zhu He, and Yan Ping Liu. "Researching on the Adsorption of Protein on Gold Nanoparticles." Advanced Materials Research 194-196 (February 2011): 462–66. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.462.

Full text
Abstract:
Because of their unique properties, gold nanoparticles(NPs) show a wide range of applications such as surface-enhanced raman characteristics, biological sensing, biomedical and other fields. Different initial concentrations of Bull Serum Albumin(BSA) and egg white lysozyme respectively react with different size of gold nanoparticles. The condition of adsorption is determined by spectrometry method, then the area of protein with different molecular mass on the surface of a gold nanoparticle is calculated. The results show that the larger particle size of a gold nanoparticle is, the more protein
APA, Harvard, Vancouver, ISO, and other styles
19

Dhar, Sunandan, Vishesh Sood, Garima Lohiya, Harini Deivendran, and Dhirendra S. Katti. "Role of Physicochemical Properties of Protein in Modulating the Nanoparticle-Bio Interface." Journal of Biomedical Nanotechnology 16, no. 8 (2020): 1276–95. http://dx.doi.org/10.1166/jbn.2020.2958.

Full text
Abstract:
Nanoparticles, on exposure to the biological milieu, tend to interact with macromolecules to form a biomolecular corona. The biomolecular corona confers a unique biological identity to nanoparticles, and its protein composition plays a deterministic role in the biological fate of nanoparticles. The physiological behavior of proteins stems from their physicochemical properties, including surface charge, hydrophobicity, and structural stability. However, there is insufficient understanding about the role of physicochemical properties of proteins in biomolecular corona formation. We hypothesized
APA, Harvard, Vancouver, ISO, and other styles
20

Shannahan, Jonathan. "The biocorona: a challenge for the biomedical application of nanoparticles." Nanotechnology Reviews 6, no. 4 (2017): 345–53. http://dx.doi.org/10.1515/ntrev-2016-0098.

Full text
Abstract:
AbstractFormation of the biocorona on the surface of nanoparticles is a significant obstacle for the development of safe and effective nanotechnologies, especially for nanoparticles with biomedical applications. Following introduction into a biological environment, nanoparticles are rapidly coated with biomolecules resulting in formation of the nanoparticle-biocorona. The addition of these biomolecules alters the nanoparticle’s physicochemical characteristics, functionality, biodistribution, and toxicity. To synthesize effective nanotherapeutics and to more fully understand possible toxicity f
APA, Harvard, Vancouver, ISO, and other styles
21

Rubio, F., Sofia Pérez-Villar, Miguel Angel Garrido, Juan Rubio, and J. L. Oteo. "Application of Gradient and Confocal Raman Spectroscopy to Analyze Silver Nanoparticle Diffusion in Medieval Glasses." Journal of Nano Research 8 (September 2009): 89–97. http://dx.doi.org/10.4028/www.scientific.net/jnanor.8.89.

Full text
Abstract:
In this work it has been carried out the diffusion of silver ions in medieval glasses by a heat treatment process. Silver ions are transformed into both silver nanoparticles and nanoclusters after redox reactions with reducing glass ions. Changes in glass colour due to the formation of these silver nanoparticles have been analysed by means of visible spectroscopy. At the same time, changes in glass structure have been analysed by means of Raman scattering. By using confocal Raman spectroscopy the in deep glass structural changes occurring after silver ion diffusion and silver nanoparticle form
APA, Harvard, Vancouver, ISO, and other styles
22

Song, Xiaozong, Shundong Ge, Xiaorong Wang, and Shengkai Liu. "Experimental Investigation on the Effects of Photocatalysis in Ultraviolet-Induced Nanoparticle Colloid Jet Machining." Materials 14, no. 5 (2021): 1070. http://dx.doi.org/10.3390/ma14051070.

Full text
Abstract:
In this paper, ultraviolet (UV)-induced nanoparticle colloid jet machining is proposed to achieve ultrasmooth surface polishing by using the interaction between nanoparticles and the workpiece surface under the action of the ultraviolet field and the hydrodynamic pressure field. In the process of UV-induced nanoparticle colloid jet machining, the effects of photocatalysis on the interaction between nanoparticles and the workpiece surface need to be further studied in order to better understand the polishing process. This paper presents the interaction between TiO2 nanoparticles and a Si workpi
APA, Harvard, Vancouver, ISO, and other styles
23

Huang, Shan, and Jun-Jie Zhu. "Linkage Pathways of DNA–Nanoparticle Conjugates and Biological Applications." Chemosensors 11, no. 8 (2023): 444. http://dx.doi.org/10.3390/chemosensors11080444.

Full text
Abstract:
DNA–nanoparticle conjugates have extraordinary optical and catalytic properties that have attracted great interest in biosensing and biomedical applications. Combining these special qualities has made it possible to create extremely sensitive and selective biomolecule detection methods, as well as effective nanopharmaceutical carriers and therapy medications. In particular, inorganic nanoparticles, such as metal nanoparticles, metal–organic framework nanoparticles, or upconversion nanoparticles with relatively inert surfaces can easily bind to DNA through covalent bonds, ligand bonds, electros
APA, Harvard, Vancouver, ISO, and other styles
24

Okawa, Tomio, Koki Nakano, and Yutaro Umehara. "Variations of nanoparticle layer properties during nucleate pool boiling." Journal of Physics: Conference Series 2116, no. 1 (2021): 012002. http://dx.doi.org/10.1088/1742-6596/2116/1/012002.

Full text
Abstract:
Abstract The nanoparticle layer detachment during nucleate pool boiling and its influences on heat transfer surface properties were explored experimentally. The material of the heat transfer surface was copper and the nanoparticle layer was formed on the heat transfer surface by nucleate boiling in the water-based TiO2 nanofluid. It was found that the detachment of the nanoparticle layer during nucleate boiling in pure water is significant. In the present experiment, more than half of nanoparticles deposited on the heated surface were detached before the CHF condition was reached. The thicknes
APA, Harvard, Vancouver, ISO, and other styles
25

Levratovsky, Y., and E. Gross. "High spatial resolution mapping of chemically-active self-assembled N-heterocyclic carbenes on Pt nanoparticles." Faraday Discussions 188 (2016): 345–53. http://dx.doi.org/10.1039/c5fd00194c.

Full text
Abstract:
The properties of many functional materials critically depend on the spatial distribution of surface active sites. In the case of solid catalysts, the geometric and electronic properties of different surface sites will directly impact their catalytic properties. However, the detection of catalytic sites at the single nanoparticle level cannot be easily achieved and most spectroscopic measurements are performed with ensemble-based measurements in which the reactivity is averaged over millions of nanoparticles. It is hereby demonstrated that chemically-functionalized N-heterocyclic carbene molec
APA, Harvard, Vancouver, ISO, and other styles
26

Pedraza, A. J., J. D. Fowlkes, D. A. Blom, and H. M. Meyer. "Laser-induced nanoparticle ordering." Journal of Materials Research 17, no. 11 (2002): 2815–22. http://dx.doi.org/10.1557/jmr.2002.0409.

Full text
Abstract:
Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of
APA, Harvard, Vancouver, ISO, and other styles
27

Idriss, Hajo, M. Habib M. Habib, A. I. Alakhras, and H. M. El Khair. "Nano-sized Metal Oxides and Their use as a Surface Disinfectant Against COVID-19: (Review and Perspective)." Oriental Journal Of Chemistry 38, no. 6 (2022): 1328–37. http://dx.doi.org/10.13005/ojc/380601.

Full text
Abstract:
Contamination of surfaces has long been identified as a significant factor in viral transmission. Therefore, sustained efforts are required to address this issue. This work aims to build a scientific database on nano-sized metal oxides as intelligent materials for surface disinfection against corona viruses, synthesize and characterize nano-sized MgO, and discuss the possibility of using it in virus eradication. The MgO nanoparticle was prepared through the heating method. Meanwhile, XRD diffractometer, Scan electron microscope, and nitrogen adsorption were used to characterize the MgO nanopar
APA, Harvard, Vancouver, ISO, and other styles
28

Cagliani, Roberta, Francesca Gatto, and Giuseppe Bardi. "Protein Adsorption: A Feasible Method for Nanoparticle Functionalization?" Materials 12, no. 12 (2019): 1991. http://dx.doi.org/10.3390/ma12121991.

Full text
Abstract:
Nanomaterials are now well-established components of many sectors of science and technology. Their sizes, structures, and chemical properties allow for the exploration of a vast range of potential applications and novel approaches in basic research. Biomedical applications, such as drug or gene delivery, often require the release of nanoparticles into the bloodstream, which is populated by blood cells and a plethora of small peptides, proteins, sugars, lipids, and complexes of all these molecules. Generally, in biological fluids, a nanoparticle’s surface is covered by different biomolecules, w
APA, Harvard, Vancouver, ISO, and other styles
29

Hajdu, Péter, István Lampé, Richárd Rácz, et al. "Optimized Size and Distribution of Silver Nanoparticles on the Surface of Titanium Implant Regarding Cell Viability." Applied Sciences 10, no. 20 (2020): 7063. http://dx.doi.org/10.3390/app10207063.

Full text
Abstract:
Though the antibacterial effect is advantageous, silver and silver nanoparticles can negatively affect the viability of human tissues. This study aims to check the viability of cells on surfaces with different particle size and to find the biologically optimal configuration. We investigated the effect of modified thickness of vaporized silver and applied heat and time on the physical characteristics of silver nanoparticle covered titanium surfaces. Samples were examined by scanning electron microscopy, mass spectrometry, and drop shape analyzer. To investigate how different physical surface ch
APA, Harvard, Vancouver, ISO, and other styles
30

Song, Xiao Zong, and Fei Hu Zhang. "Research on the Characterization of Ultra-Smooth K9 Glass Surface Polished by Nanoparticle Colloid Jet Machining." Key Engineering Materials 609-610 (April 2014): 552–56. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.552.

Full text
Abstract:
In this work, optical K9 glass surface has been flattened by nanoparticle colloid jet machining, which is an ultra-smooth surface processing technique utilizing surface chemical effect between work surface atoms and nanoparticles in alkaline colloid to remove the uppermost surface atoms. The surface removal process of nanoparticle colloid jet machining has been investigated through K9 glass polish experiments. And the characterizations of ultra-smooth K9 glass surface polished by nanoparticle colloid jet machining have also been studied in this paper. Surface profiler and atomic force microsco
APA, Harvard, Vancouver, ISO, and other styles
31

Olinger, Alexander D., Eric J. Spangler, P. B. Sunil Kumar, and Mohamed Laradji. "Membrane-mediated aggregation of anisotropically curved nanoparticles." Faraday Discussions 186 (2016): 265–75. http://dx.doi.org/10.1039/c5fd00144g.

Full text
Abstract:
Using systematic numerical simulations, we study the self-assembly of elongated curved nanoparticles on lipid vesicles. Our simulations are based on molecular dynamics of a coarse-grained implicit-solvent model of self-assembled lipid membranes with a Langevin thermostat. Here we consider only the case wherein the nanoparticle–nanoparticle interaction is repulsive, only the concave surface of the nanoparticle interacts attractively with the lipid head groups and only the outer surface of the vesicle is exposed to the nanoparticles. Upon their adhesion on the vesicle, the curved nanoparticles g
APA, Harvard, Vancouver, ISO, and other styles
32

Niu, Bin, and Gengxin Zhang. "Effects of Different Nanoparticles on Microbes." Microorganisms 11, no. 3 (2023): 542. http://dx.doi.org/10.3390/microorganisms11030542.

Full text
Abstract:
Nanoparticles widely exist in nature and may be formed through inorganic or organic pathways, exhibiting unique physical and chemical properties different from those of bulk materials. However, little is known about the potential consequences of nanomaterials on microbes in natural environments. Herein, we investigated the interactions between microbes and nanoparticles by performing experiments on the inhibition effects of gold, ludox and laponite nanoparticles on Escherichia coli in liquid Luria–Bertani (LB) medium at different nanoparticle concentrations. These nanoparticles were shown to b
APA, Harvard, Vancouver, ISO, and other styles
33

Bousiakou, Leda G., Hrvoje Gebavi, Lara Mikac, Stefanos Karapetis, and Mile Ivanda. "Surface Enhanced Raman Spectroscopy for Molecular Identification- a Review on Surface Plasmon Resonance (SPR) and Localised Surface Plasmon Resonance (LSPR) in Optical Nanobiosensing." Croatica chemica acta 92, no. 4 (2019): 479–94. http://dx.doi.org/10.5562/cca3558.

Full text
Abstract:
Surface plasmon resonance (SPR) allows for real-time, label-free optical detection of many chemical and biological substances. Having emerged in the last two decades, it is a widely used technique due to its non-invasive nature, allowing for the ultra-sensitive detection of a number of analytes. This review article discusses the principles, providing examples and illustrating the utility of SPR within the frame of plasmonic nanobiosensing, while making comparisons with its successor, namely localized surface plasmon resonance (LSPR). In particular LSPR utilizes both metal nanoparticle arrays a
APA, Harvard, Vancouver, ISO, and other styles
34

Song, Xiaozong, and Gui Gao. "Removal Mechanism Investigation of Ultraviolet Induced Nanoparticle Colloid Jet Machining." Molecules 26, no. 1 (2020): 68. http://dx.doi.org/10.3390/molecules26010068.

Full text
Abstract:
Ultraviolet induced nanoparticle colloid jet machining is a new ultra-precision machining technology utilizing the reaction between nanoparticles and the surface of the workpiece to achieve sub-nanometer ultra-smooth surface manufacturing without damage. First-principles calculations based on the density functional theory (DFT) were carried out to study the atomic material removal mechanism of nanoparticle colloid jet machining and a series of impacting and polishing experiments were conducted to verify the mechanism. New chemical bonds of Ti-O-Si were generated through the chemical adsorption
APA, Harvard, Vancouver, ISO, and other styles
35

Ozmaian, Aye, Rob D. Coalson, and Masoumeh Ozmaian. "Adsorption of Polymer-Grafted Nanoparticles on Curved Surfaces." Chemistry 3, no. 1 (2021): 382–90. http://dx.doi.org/10.3390/chemistry3010028.

Full text
Abstract:
Nanometer-curved surfaces are abundant in biological systems as well as in nano-sized technologies. Properly functionalized polymer-grafted nanoparticles (PGNs) adhere to surfaces with different geometries and curvatures. This work explores some of the energetic and mechanical characteristics of the adhesion of PGNs to surfaces with positive, negative and zero curvatures using Coarse-Grained Molecular Dynamics (CGMD) simulations. Our calculated free energies of binding of the PGN to the curved and flat surfaces as a function of separation distance show that curvature of the surface critically
APA, Harvard, Vancouver, ISO, and other styles
36

Sutthavas, Pichaporn, Matthias Schumacher, Kai Zheng, Pamela Habibović, Aldo Roberto Boccaccini, and Sabine van Rijt. "Zn-Loaded and Calcium Phosphate-Coated Degradable Silica Nanoparticles Can Effectively Promote Osteogenesis in Human Mesenchymal Stem Cells." Nanomaterials 12, no. 17 (2022): 2918. http://dx.doi.org/10.3390/nano12172918.

Full text
Abstract:
Nanoparticles such as mesoporous bioactive glasses (MBGs) and mesoporous silica nanoparticles (MSN) are promising for use in bone regeneration applications due to their inherent bioactivity. Doping silica nanoparticles with bioinorganic ions could further enhance their biological performance. For example, zinc (Zn) is often used as an additive because it plays an important role in bone formation and development. Local delivery and dose control are important aspects of its therapeutic application. In this work, we investigated how Zn incorporation in MSN and MBG nanoparticles impacts their abil
APA, Harvard, Vancouver, ISO, and other styles
37

Shaikh, M. Nasiruzzaman. "Thiolated Gd(III) Chelate Coated Gold Nanoparticles: Synthesis, Characterization, X-Ray CT and MRI Relaxivity Studies." Materials Science Forum 754 (April 2013): 121–30. http://dx.doi.org/10.4028/www.scientific.net/msf.754.121.

Full text
Abstract:
Gadolinium complex of 2-aminothiophenol conjugated DTPA (DTPA=diethylenetriamine N,N,N',N",N" pentacetic acid) bis (amide) has been synthesized and characterized by various analytical techniques such as elemental analysis (EA), NMR, FAB-MS, IR, UV etc. This thiolated GdL (where L is a conjugate of DTPA and 2-aminothiophenol) has been anchored on the gold nanoparticles surfaces through thiols functionalites. These gold nanoparticles (AuNPs) have been synthesized by the reduction of gold tetrachloride (HAuCl4) using sodium citrate as reducing agent. The surface functionalization has been perform
APA, Harvard, Vancouver, ISO, and other styles
38

Lastra, Ruben O., Tatjana Paunesku, Barite Gutama, et al. "Protein Binding Effects of Dopamine Coated Titanium Dioxide Shell Nanoparticles." Precision Nanomedicine 2, no. 4 (2019): 393–438. http://dx.doi.org/10.33218/prnano2(4).190802.1.

Full text
Abstract:
Non-targeted nanoparticles are capable of entering cells, passing through different subcellular compartments and accumulating on their surface a protein corona that changes over time. In this study, we used metal oxide nanoparticles with iron-oxide core covered with titanium dioxide shell (Fe3O4@TiO2), with a single layer of covalently bound dopamine covering the nanoparticle surface. Mixing nanoparticles with cellular protein isolates showed that these nanoparticles can form complexes with numerous cellular proteins. The addition of non-toxic quantities of nano-particles to HeLa cell culture
APA, Harvard, Vancouver, ISO, and other styles
39

Song, Xiao Zong, Yong Zhang, and Fei Hu Zhang. "Ultra-Precision Shaping and Ultra-Smooth Polishing Investigation of High-Purity Quartz Glass in Nanoparticle Colloid Jet Machining." Advanced Materials Research 426 (January 2012): 396–99. http://dx.doi.org/10.4028/www.scientific.net/amr.426.396.

Full text
Abstract:
In this paper, ultra-precision shaping and ultra-smooth polishing investigations have been done upon a high-purity quartz glass substrate with an aspheric surface in nanoparticle colloid jet machining, which is an ultra smooth surface processing technique utilizing surface chemical reaction between work surface atoms and nanoparticles to remove the uppermost surface atoms. The shaping and polishing characters of high-purity quartz glass in nanoparticle colloid jet machining has been researched. The surface profile of the high-purity quartz glass workpiece before and after shaping has been meas
APA, Harvard, Vancouver, ISO, and other styles
40

Alhajj, Nasser, Idanawati Naharudin, Paolo Colombo, Eride Quarta, and Tin Wui Wong. "Probing Critical Physical Properties of Lactose-Polyethylene Glycol Microparticles in Pulmonary Delivery of Chitosan Nanoparticles." Pharmaceutics 13, no. 10 (2021): 1581. http://dx.doi.org/10.3390/pharmaceutics13101581.

Full text
Abstract:
Pulmonary delivery of chitosan nanoparticles is met with nanoparticle agglomeration and exhalation. Admixing lactose-based microparticles (surface area-weighted diameter~5 μm) with nanoparticles mutually reduces particle agglomeration through surface adsorption phenomenon. Lactose-polyethylene glycol (PEG) microparticles with different sizes, morphologies and crystallinities were prepared by a spray drying method using varying PEG molecular weights and ethanol contents. The chitosan nanoparticles were similarly prepared. In vitro inhalation performance and peripheral lung deposition of chitosa
APA, Harvard, Vancouver, ISO, and other styles
41

Ju, Dong Ying, Pei Bian, Ge Letu Qing, Da Ling Lu, and Hong He. "Magnetite Nanoparticles Surface Coating SiO2 and Magnetic Properties Evaluation." Key Engineering Materials 368-372 (February 2008): 1366–69. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.1366.

Full text
Abstract:
Magnetite nanoparticles were obtained by liquid phase precipitation method in which the pH value of [FeCl2⋅4H2O], [FeCl3⋅6H2O] and [NaOH] solution were controlled. Then the magnetite nanoparticle were scattered in water solution and put in [Na2SiO3] and [HCl], the resultant of reaction SiO2 can be coated on magnetite nanoparticles surface. The morphology and magnetite properties of the coated nanoparticles were evaluated by XRD, TEM, FTIR and VSM. The SiO2 thin film with nanometer size was coated on surface of nanoparticle, so that the magnetic value is decreased with the coating thickness inc
APA, Harvard, Vancouver, ISO, and other styles
42

Stanglmair, Christoph, Frank Neubrech, and Claudia Pacholski. "Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates." Zeitschrift für Physikalische Chemie 232, no. 9-11 (2018): 1527–39. http://dx.doi.org/10.1515/zpch-2018-1132.

Full text
Abstract:
Abstract Bottom-up strategies for fabricating SEIRA substrates are presented. For this purpose, wet-chemically prepared gold nanoparticles are coated with a polystyrene shell and subsequently self-assembled into different nanostructures such as quasi-hexagonally ordered gold nanoparticle monolayers, double layers, and honeycomb structures. Furthermore elongated gold nanostructures are obtained by sintering of gold nanoparticle double layers. The optical properties of these different gold nanostructures are directly connected to their morphology and geometrical arrangement – leading to surface
APA, Harvard, Vancouver, ISO, and other styles
43

Wang, Chungang, Ying Chen, Zhanfang Ma, Tingting Wang, and Zhongmin Su. "Generalized Fabrication of Surfactant-Stabilized Anisotropic Metal Nanoparticles to Amino-Functionalized Surfaces: Application to Surface-Enhanced Raman Spectroscopy." Journal of Nanoscience and Nanotechnology 8, no. 11 (2008): 5887–95. http://dx.doi.org/10.1166/jnn.2008.222.

Full text
Abstract:
A universal and facile approach for the self-assembly of surfactant-coated anisotropic metal nanoparticles on the amino-functionalized planar and spherical surfaces based on electrostatic attraction has been explored. Large-scale and different surface coverage of monolayer film and metallodielectric core–shell nanostructures of anisotropic metal nanoparticles, including Au nanorods, AucoreAgshell nanorods and Ag nanoprisms, have been fabricated. The optical response in the visible and the near infrared (NIR) of resulting nanostructures can be easily controlled by varying the concentration of t
APA, Harvard, Vancouver, ISO, and other styles
44

Siegel, Jakub, Tatiana Savenkova, Jana Pryjmaková, Petr Slepička, Miroslav Šlouf, and Václav Švorčík. "Surface Texturing of Polyethylene Terephthalate Induced by Excimer Laser in Silver Nanoparticle Colloids." Materials 14, no. 12 (2021): 3263. http://dx.doi.org/10.3390/ma14123263.

Full text
Abstract:
We report on a novel technique of surface texturing of polyethylene terephthalate (PET) foil in the presence of silver nanoparticles (AgNPs). This approach provides a variable surface morphology of PET evenly decorated with AgNPs. Surface texturing occurred in silver nanoparticle colloids of different concentrations under the action of pulse excimer laser. Surface morphology of PET immobilized with AgNPs was observed by AFM and FEGSEM. Atomic concentration of silver was determined by XPS. A presented concentration-controlled procedure of surface texturing of PET in the presence of silver collo
APA, Harvard, Vancouver, ISO, and other styles
45

Fuchise-Fukuoka, Moe, Masatoshi Oishi, Shisei Goto, and Akira Isogai. "Preparation of CaCO3 nanoparticle/pulp fiber composites using ultrafine bubbles." Nordic Pulp & Paper Research Journal 35, no. 2 (2020): 279–87. http://dx.doi.org/10.1515/npprj-2019-0078.

Full text
Abstract:
AbstractIn this study, CaCO3 nanoparticle/pulp fiber composites were prepared by formation of ultrafine bubbles of CO2 gas in aqueous Ca(OH)2 solution containing beaten or unbeaten pulp fibers. Scanning electron microscopy images of the fiber/CaCO3 composites showed that primary CaCO3 nanoparticles with average diameters of 50–80 nm densely formed on the pulp fiber surfaces. The average sizes and morphologies of the precipitated CaCO3 nanoparticles can be controlled by controlling the CO2 flow rate into the pulp slurry. From dynamic drainage analysis of the CaCO3/pulp slurries with high shear
APA, Harvard, Vancouver, ISO, and other styles
46

Zhao, Xin, Jialiang Li, Shaopeng Cheng, Shouming Li, Xiao Bai, and Jie Xi. "Study on the Role of Paclitaxel Nano-Drug Delivery System in Inhibiting Intimal Hyperplasia and Improving Vascular Remodeling in Abdominal Aortic Injury Model." Journal of Nanoscience and Nanotechnology 21, no. 2 (2021): 1385–89. http://dx.doi.org/10.1166/jnn.2021.18653.

Full text
Abstract:
The surface-modified paclitaxel nanoparticles were prepared to observe its inhibitory effect on the intimal and mediator proliferation and the improvement of vascular remodeling after rabbit abdominal aortic injury. First, paclitaxel nanoparticles were prepared by ultrasonic emulsification solvent evaporation method. The surface of paclitaxel nanoparticles was modified by physical adsorption, the nanoparticles were characterized and the encapsulation efficiency was evaluated. Secondly, the endometrial thickness was measured by hematoxylin and eosin staining, and a spheroid with a smooth surfac
APA, Harvard, Vancouver, ISO, and other styles
47

Jafari Daghlian Sofla, Saeed, Lesley Anne James, and Yahui Zhang. "Toward a mechanistic understanding of wettability alteration in reservoir rocks using silica nanoparticles." E3S Web of Conferences 89 (2019): 03004. http://dx.doi.org/10.1051/e3sconf/20198903004.

Full text
Abstract:
Traditional concepts of simple liquid spreading may not apply to nanoparticle-fluids. Most investigations pertaining to the wettability alteration of solid surfaces due to the presence of nanoparticles in the fluid are oversimplified, i.e. nanoparticles dispersed in DI-water and smooth, homogeneous, and clean surfaces have been used. From a practical enhanced oil recovery (EOR) point of view, the nanoparticles must be dispersed in either seawater or high salinity formation water containing diverse types and concentrations of ions. These ions interact with the electrostatic properties of the na
APA, Harvard, Vancouver, ISO, and other styles
48

Montes, Melissa, Christopher G. Pierce, Jose L. Lopez-Ribot, Amar S. Bhalla, and Ru Yan Guo. "Properties of Silver and Copper Nanoparticle Containing Aqueous Suspensions and Evaluation of their In Vitro Activity against Candida albicans and Staphylococcus aureus Biofilms." Journal of Nano Research 37 (December 2015): 109–21. http://dx.doi.org/10.4028/www.scientific.net/jnanor.37.109.

Full text
Abstract:
Most microorganisms grow on surfaces as biofilms rather than as individual planktonic cells, and cells within biofilms show high levels of resistance against antimicrobial drugs. Thereby biofilm formation complicates treatment and contributes to high morbidity and mortality rates associated with infections. This study explores the physical, optical, and nano-structural properties of silver and copper nanoparticles dispersed in aqueous suspensions (nanoparticulate colloidal water) and examines their in vitro activity against microbial biofilms. Silver and copper nanoparticulate colloidal water
APA, Harvard, Vancouver, ISO, and other styles
49

Cui, Wen Ying, Hyun Jin Yoo, Yun Guang Li, Changyoon Baek, and Junhong Min. "Electrospun Nanofibers Embedded with Copper Oxide Nanoparticles to Improve Antiviral Function." Journal of Nanoscience and Nanotechnology 21, no. 8 (2021): 4174–78. http://dx.doi.org/10.1166/jnn.2021.19379.

Full text
Abstract:
Many studies on anti-bacterial/antiviral surfaces have been conducted to prevent epidemic spread worldwide. Several nanoparticles such as those composed of silver and copper are known to have antiviral properties. In this study, we developed copper oxide (CuO) nanoparticle-incorporated nanofibers to inactivate or remove viruses. The CuO nanoparticle-incorporated nanofiber was fabricated with a hydrophobic polymer—polyvinylpyrrolidone (PVP)—using electrospinning, and CuO nanoparticles were exposed from the PVP polymer surface by etching the nanofiber with oxygen plasma. The fabrication conditio
APA, Harvard, Vancouver, ISO, and other styles
50

Tsirikis, Peter, Kirsty Wilson, Ying Kong, Sue Xiang, Cordelia Selomulya, and Magdalena Plebanski. "Differential antibody induction to surface textured silica nanoparticle adjuvants (VAC3P.1055)." Journal of Immunology 194, no. 1_Supplement (2015): 71.2. http://dx.doi.org/10.4049/jimmunol.194.supp.71.2.

Full text
Abstract:
Abstract Nanoparticles have been shown to be a potent adjuvant in vaccine design. Previous studies demonstrated that carboxylated 40-50 nm polystyrene nanoparticles (PSNPs) with covalently bound antigen offer a new class of vaccine with only two elements (antigen and particle) but with no added inflammatory stimuli. Herein, we report on a deconstructed two-part vaccine whereby the adjuvant and protein carrier are co-administered to elicit potent antibody responses in vivo. Recent works indicate that particle shape can also influence the immune response. As such, we investigate the influence of
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!