Dissertations / Theses on the topic 'Nanoparticle transfer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Nanoparticle transfer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hogg, Charles R. III. "Pattern Transfer from Nanoparticle Arrays." Research Showcase @ CMU, 2010. http://repository.cmu.edu/dissertations/14.
Full textTorki, Amir. "Mechanical Transfer of Optically Trapped Nanoparticle." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200901.
Full textI detta master examensarbete ett mekaniskt system för överflyttning av en kiselnanopartikelär utformad och implementerad. Detta system bygger på en mobil optisk fälla sommöjliggör 3D manipulering av en nanopartikel i högt vakuumtillstånd. Kiselnanopartikelmed 177nm diameter fångas vid omgivningsryck och vid våglängden 1565nm i förstakammaren såkallad laddningskammaren. Sedan reduceras trycket i laddningskammarenmed vakuumpump till 10−5−10−6mbar. Den andra kammaren hålls alltid i högvakuum.I syfte att isolera dessa tvåkammare ifrån varandra finns det en vakuumventil emellankammarna. När ventilen öppnas trycket inne i båda kamrarna hålls i jämvikt ochden fångade nanopartikel överförs till den andra kammaren på en avståndet runt 20-25cm, på mindre än 20-30 sekunder med makroskopisk skala upplösning. Under dennalånga överföringsintervall, har vi möjlighet att utföra mikroskopisk överföring pågrundav närvaron av tre nanopositioners inriktade med tre axlar. Inget återkopplingssystem används för att stabilisera partikelrörelse för lägre tryck.
Pradhan, Sulolit. "Solid state charge transfer in nanoparticle solids /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2008. http://uclibs.org/PID/11984.
Full textLuongo, Kevin. "Nanoparticle-Based Spintronic Computer Logic Switch." FIU Digital Commons, 2019. https://digitalcommons.fiu.edu/etd/3962.
Full textBooker, Annette Casandra. "Optical Characterization and Evaluation of Dye-Nanoparticle Interactions." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/36370.
Full textMaster of Science
Jenei, István Zoltán. "Nanoparticle assisted tribofilm formation and material transfer studied with SEM and TEM." Doctoral thesis, Stockholms universitet, Fysikum, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-114745.
Full textPark, Sunho 1976. "Control of oligonucleotide conformation on nanoparticle surfaces for nanoscale heat transfer study." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/27120.
Full textIncludes bibliographical references (leaves 77-82).
Metal nanoparticles can be used as antennae covalently linked to biomolecules. External alternating magnetic field can turn on and off the biological activity of the molecules due to induction heating from the particles that changes the temperature around the molecules. Here an experimental scheme towards direct temperature probing is proposed to predict the behavior of the antenna. Oligonucleotides modified with photosensitive molecules are conjugated with gold nanoparticles and report the temperature at their positions within some nanometers' distance from the particles. However, oligos have a known tendency to stick to gold surfaces. To locate the probes at desired position, 6-mercapto-1-hexanol (MCH) is used to reduce oligonucleotides' adsorption to the surface of gold. The experimental result shows that oligos on particle's surface can be stretched radially without any reduction of coverage ratio. Optimal MCH concentration and reaction time highly depend on the concentration of MCH and the conjugates as well as reaction time and the size of the molecules.
by Sunho Park.
S.M.
Fermi, Andrea. "Polysulfurated aromatic compounds : Préparation and photophysical properties." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4124.
Full textThe aim of this thesis was the synthesis and photophysical characterization of some new polysulfurated aromatic compounds: this class of molecules can offer intriguing properties, potentially useful for the construction of new materials for optoelectronic devices. Two main families of compounds have been synthesized: the first is represented by a series of small molecular asterisks, with peripheral aromatic units, showing luminescence in solid phase or in highly rigid conditions. All compounds with peripheral substituents display an AIE behavior (Aggregation Induced Emission) with radiative deactivation of the triplet states. Taking inspiration from these smaller asterisks, a larger molecule with the same geometry has been designed, decorated with terpyridyl moieties as the outermost units: this compound shows great affinity for the coordination of several transition metal ions, changing luminescence properties after the interaction with zinc ions. With the same intentions, a tetrasulfurated pyrene-core molecule with terpyridyl external units has been synthesized and isolated: this ligand exhibits good coordination capabilities towards transition metal ions, giving rise to luminescent nanoaggregates upon addition of zinc(II), characterized by DLS and AFM microscopy. In addition a NIR emission is recorded after coordination of neodymium(III), showing evidence of an intramolecular energy transfer process
Holladay, Robert Tyler. "Incorporating Magnetic Nanoparticle Aggregation Effects into Heat Generation and Temperature Profiles for Magnetic Hyperthermia Cancer Treatments." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/64507.
Full textMaster of Science
Syed, Lateef Uddin. "Nanoelectrode and nanoparticle based biosensors for environmental and health monitoring." Diss., Kansas State University, 2012. http://hdl.handle.net/2097/13701.
Full textDepartment of Chemistry
Jun Li
Reduction in electrode size down to nanometers dramatically enhances the detection sensitivity and temporal resolution. Here we explore nanoelectrode arrays (NEAs) and nanoparticles in building high performance biosensors. Vertically aligned carbon nanofibers (VACNFs) of diameter ~100 nm were grown on a Si substrate using plasma enhanced chemical vapor deposition. SiO[subscript]2 embedded CNF NEAs were then fabricated using techniques like chemical vapor deposition, mechanical polishing, and reactive ion etching, with CNF tips exposed at the final step. The effect of the interior structure of CNFs on electron transfer rate (ETR) was investigated by covalently attaching ferrocene molecules to the exposed end of CNFs. Anomalous differences in the ETR were observed between DC voltammetry (DCV) and AC voltammetry (ACV). The findings from this study are currently being extended to develop an electrochemical biosensor for the detection of cancerous protease (legumain). Preliminary results with standard macro glassy carbon electrodes show a significant decrease in ACV signal, which is encouraging. In another study, NEA was employed to capture and detect pathogenic bacteria using AC dielectrophoresis (DEP) and electrochemical impedance spectroscopy (EIS). A nano-DEP device was fabricated using photolithography processes to define a micro patterned exposed active region on NEA and a microfluidic channel on macro-indium tin oxide electrode. Enhanced electric field gradient at the exposed CNF tips was achieved due to the nanometer size of the electrodes, because of which each individual exposed tip can act as a potential DEP trap to capture the pathogen. Significant decrease in the absolute impedance at the NEA was also observed by EIS experiments. In a final study, we modified gold nanoparticles (GNPs) with luminol to develop chemiluminescence (CL) based blood biosensor. Modified GNPs were characterized by UV-Vis, IR spectroscopy and TEM. We have applied this CL method for the detection of highly diluted blood samples, in both intact and lysed forms, which releases Fe[superscipt]3[superscript]+ containing hemoglobin to catalyze the luminol CL. Particularly, the lysed blood sample can be detected even after 10[superscript]8 dilution (corresponding to ~0.18 cells/well). This method can be readily developed as a portable biosensing technique for rapid and ultrasensitive point-of-care applications.
Mayilo, Sergiy. "Exploiting Energy Transfer in Hybrid Metal and Semiconductor Nanoparticle Systems for Biosensing and Energy Harvesting." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-102229.
Full textPerson, Vernecia. "Structure Properties of Heterophase Hairy-Nanoparticles: Organic vs. Inorganic." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2015. http://digitalcommons.auctr.edu/cauetds/59.
Full textBaker, Antony James. "Bioaccumulation, biological effects and trophic transfer of metal (oxide) nanoparticles in marine invertebrates." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/33183.
Full textEdwards, Bronwyn K. "Effect of combined nanoparticle and polymeric dispersions on critical heat flux, nucleate boiling heat transfer coefficient, and coating adhesion." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/53288.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 123-126).
An experimental study was performed to determine thermal performance and adhesion effects of a combined nanoparticle and polymeric dispersion coating. The critical heat flux (CHF) values and nucleate boiling heat transfer coefficients (HTC) of nickel wires pre-coated using 1.0% alumina, 0.1% alumina, 500ppm polyallylamine hydrochloride (PAH), and 0.1% alumina combined with 500ppm PAH dispersions were determined using the pool-boiling method. The adhesion of 0.1% alumina and combined 0.1% alumina and 500ppm PAH coatings was evaluated using the tape and modified bend test methods. Results of the pool boiling experiments showed that the wire heaters pre-coated with combined 0.1% alumina and 500ppm PAH dispersion increase the CHF in water by -40% compared to bare wire heaters, compared to an enhancement of -37% with a 0.1% alumina coating. The combined 0.1% alumina and 500ppm PAH dispersion degrades the wire HTC by less than 1%, compared to a degradation of over 26% with a 0.1% alumina coating. Results from the tape test indicate qualitatively that the combined 0.1% alumina and 500ppm PAH dispersion coating adheres better than the 0.1% alumina nanoparticle coating. Results from the modified bend test showed that the combined 0.1% alumina and 500ppm PAH dispersion coating did not fail at the failure strain of the 0.1% alumina nanoparticle coating (8.108x 10-4). The addition of PAH to alumina nanofluid for creating a nanoparticle coating through boiling deposition was found to improve both coating thermal performance and adhesion over the pure alumina nanofluid.
by Bronwyn K. Edwards.
S.M.and S.B.
Kirez, Oguz. "A Numerical Forced Convection Heat Transfer Analysis Of Nanofluids Considering Performance Criteria." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615167/index.pdf.
Full textJoshi, Chakra Prasad. "Understanding Fundamentals of Plasmonic Nanoparticle Self-assembly at Liquid-air Interface." University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1387306468.
Full textGreen, Andrew J. "Heat Transfer from Optically Excited Gold Nanostructures into Water, Sugar, and Salt Solutions." Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1376498592.
Full textVazquez, Diane Marie. "Experimental studies of the heat transfer characteristics of silica nanoparticle water-based dispersion in pool boiling using nichrome flat ribbons and wires." Master's thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4575.
Full textID: 028916806; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.M.E.)--University of Central Florida, 2010.; Includes bibliographical references (p. 79-83).
M.S.M.E.
Masters
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering
Chen, Po Chih. "Design and synthesis of small molecules and nanoparticle conjugates for cell type-selective delivery." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28111.
Full textCommittee Chair: Oyelere, Adegboyega; Committee Member: Bunz, Uwe; Committee Member: Collard, David; Committee Member: Lobachev, Kirill; Committee Member: Tolbert, Laren.
Ziemann, Dirk. "Theory of Excitation Energy Transfer in Nanohybrid Systems." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/22142.
Full textIn the following, transfer phenomena in nanohybrid systems are investigated theoretically. Such hybrid systems are promising candidates for novel optoelectronic devices and have attracted considerable interest. Despite a vast amount of experimental studies, only a small number of theoretical investigations exist so far. Furthermore, most of the theoretical work shows substantial limitations by either neglecting the atomistic details of the structure or drastically reducing the system size far below the typical device extension. The present thesis shows how existing theories can be improved. This thesis also expands previous theoretical investigations by developing models for four new and highly relevant nanohybrid systems. The first system is a spherical nanostructure consisting of an Au core and a CdS shell. By contrast, the second system resembles a finite nanointerface built up by a ZnO nanocrystal and a para-sexiphenyl aggregate. For the last two systems, a CdSe nanocrystal couples either to a pheophorbide-a molecule or to a tubular dye aggregate. In all of these systems, excitation energy transfer is an essential transfer mechanism and is, therefore, in the focus of this work. The considered hybrid systems consist of tens of thousands of atoms and, consequently, require an individual modeling of the constituents and their mutual coupling. For each material class, suitable methods are applied. The modeling of semiconductor nanocrystals is done by the tight-binding method, combined with a configuration interaction scheme. For the simulation of the molecular systems, the density functional theory is applied. T. Plehn performed the corresponding calculations. For the metal nanoparticle, a model based on quantized plasmon modes is utilized. As a consequence of these theories, excitation energy transfer calculations in hybrid systems are possible with unprecedented system size and complexity.
Albero, Sancho Josep. "Photo-induced charge transfer reactions in quantum dot based solar cells." Doctoral thesis, Universitat Rovira i Virgili, 2012. http://hdl.handle.net/10803/81717.
Full textThe fundamental processes of the charge transfer reactions between titania dioxide mesoporous films and quantum dots, in blend films of the semiconductor polymer P3HT and CdSe quantum dots and in complete devices fabricated with the polymer PDPCTBT and CdSe quantum dots in working conditions have been studied in this doctoral thesis. The obtained results allow the fabrication of photovoltaic devices with a deeper and wider knowledge of the recombination processes that limit the device efficiency. Therefore, it is demonstrated the possibility of fabrication of quantum dot based solar cells with efficiencies similar or higher than the organic photovoltaic devices.
Pavageau, Corentin. "Molécules et Nanosystèmes Multi-émissifs et Photocommutables." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN026/document.
Full textThe synthesis of photoswitchable emissive molecular system still represents a challenge, in order to develop fluorescence-based devices for nanotechnologies. In the last decade, excitation energy transfer processes (EET) have been advantageously employed to design photoswitchable fluorescent molecular systems between a photochromic dye and an appropriate fluorescent molecule. More recently, photochromic dyes of particular interest, showing no emission in the open-form (P-OF) but a strong emission signal in the closed-form (P-CF), have been developed. Such molecules allow a multi-emission switch when combined with a fluorescent moiety. In this project, we will design and synthesize fluorescent photochromic diarylethene covalently linked to different fluorophores, such as benzothiadiazole (BTD) and BODIPY derivatives. By choosing a fluorophore moiety with blue/green emission (F) and a photochromic moiety with orange/red emission in closed-form (P-CF), EET can occur between F and P-CF leading to photoswitchable multi-emission properties. Photophysical characteristics of dyads will be studied by spectroscopy with the aim of presenting their light-controllable optical properties and the intramolecular EET processes between fluorescent and photochromic moieties
Chirra, Dinakar Hariharasudhan. "NANOSCALE FUNCTIONALIZATION AND CHARACTERIZATION OF SURFACES WITH HYDROGEL PATTERNS AND BIOMOLECULES." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/60.
Full textCésard, Vincent. "Étude des Mécanismes de Transfert des Nanoparticules au travers d'une Barrière de Confinement Dynamique." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0190/document.
Full textThe thesis works have enabled us to quantify the containment efficiency of two devices (a microbiological safety cabinet and classical fume hood) during the simultaneous production of nanoaerosols and a tracer gas (SF6). Two different measurement techniques were used: the first based on the measurement of particle size distribution of the escaping aerosol (SMPS-C), the other based on the detection of fluorescence of samples (sodium fluorescein used as marker of nanoparticles). The results have established a strong correlation between the behavior of a nanoaerosols and the tracer gas when they are emitted simultaneously in a ventilated enclosure. More, we observed that tracer gas back diffusion was almost twice greater than for nanoparticles back diffusion in all the tested configurations. The deposit and the agglomeration present in the case of transport of a cloud of nanoparticles can explain these differences in the overall level of containment. However, this observation does not guarantee sufficient protection since there is no specific reference value for nanoparticle exposure. It is useful to observe the guidelines that have been defined in many INRS publications or through IRSN studies. In addition to these experimental studies, the test-rig developed at INRS has been numerically simulated to validate an eulerian transport and deposition model implemented in a CFD code for modeling the behavior of a nanoaerosol. Numerical and experimental results are concordant; orders of magnitude for the achieved containment levels are comparable
Trofymchuk, Kateryna. "Controlled switching of fluorescent organic nanoparticles through energy transfer for bioimaging applications." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ121/document.
Full textPerformance of biosensing and bioimaging techniques can be improved by fluorescent nanoparticles (NPs) capable of efficient Förster resonance energy transfer (FRET). The aim of my PhD project is to develop bright and photostable dye-loaded polymer NPs capable to undergo efficient FRET beyond the Förster radius. We showed that bulky groups are essential for minimizing self-quenching and bleaching of encapsulated dyes. Moreover, polymer matrix plays a crucial role in controlling the inter-fluorophore communication by excitation energy transfer. Then, by exploiting communication of dyes, we designed NPs exhibiting efficient photoswitching as well as giant light-harvesting. Finally, very small NPs with efficient FRET to their surface were developed and applied for ultra-sensitive molecule detection of proteins. The obtained results provide new insights in the development of bright nanoparticles with efficient energy transfer as well as nano-probes for single-molecule detection
Reinhardt, Nora Maria Elisabeth. "Modification chimique de surface de nanoparticules de silice pour le marquage d'ADN dans des lipoplexes." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14820/document.
Full textSilica nanoparticles are ideal platforms for the conception of bioimaging tools serving for the elucidation of the mechanisms of gene transfection via lipoplex structures. The purpose of the present study is the development of a chemical surface modification for the generation of quaternary ammonium groups on silica nanoparticles permitting the obtainment of highly positively charged silica colloids which strongly attract DNA by electrostatic interactions. Two modification strategies to generate quaternary ammonium groups on silica are presented a) a direct silanization using quaternary ammonium groups containing silane derivatives and b) a modification of silica nanoparticles via a first modification with an amine group containing silane derivative and a subsequent quaternization of the amine groups via an alkylation with iodomethane. Different physicochemical methods were employed (cosedimentation assays, quartz crystal microbalance with dissipation monitoring measurements, TEM and Cryo-TEM imaging) to analyze interactions between quaternized surfaces, DNA and lipids. A preliminary study was carried out which shows the capacity of the synthesized nanoparticles to label DNA in lipoplexes
Kroschwald, Felix. "Prozessintegrierter Transfer von Nanopartikeln auf Polycarbonatoberflächen beim Spritzgießen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-202485.
Full textMongin, Denis. "Spectroscopie ultrarapide de nanoparticules métalliques et hybrides." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10129/document.
Full textThe usse of a pump-probe experimental setup allowed the study of different specific physical properties of different types of nano-objects. First, the selective study of an hybrid nanoparticles comosed of a CdS nanostick and a particle directly groxwn on the semiconductor part proved the existence of a transfer between the two part of the hybrid nanoparticle and showed that this phenomenon occurs in less than 15 femtosecondes. The study of optical propertie of gold nanoparticles with an extra charge due to the transfer showed that adding few electrons to a small gold nanoparticles leads to a red shift of the plasmon resonance. Secondly, measurment of the period of fundamental vibration modes of a bilayer nano-object (spheric or elongated) composed of a metallic core and a dielectric or metallic shell lead to information on the relative thickness of the layers and the contact quality between them. LAstly, the study of the characteristic time of electron-phonon interactions in metallic nanoparticles has proven that there are two different methods of measuring this characteristic time, and its investigation for small nanoparticles (less than 250 atoms) leads to the observation of a transition form a "bulk" to a molecular behaviour
Vivien, Anthony. "Complexes de cobalt(I) : synthèse raisonnée de nanocristaux mono- ou bimétalliques et applications catalytiques." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS235.
Full textNanocatalysis universe is a field which is yet to be explored, especially because of the difficult access to simple and well-controlled nanoparticles and their uses in heterogeneous catalyzed reactions. In this work, we show that it is possible to obtain hcp cobalt nanoparticles starting from the easily accessible CoCl(PPh3)3 and by simply heating it in oleylamine. The mechanism of this reaction based on the disproportionation of the cobalt(I) was proved by experimental and theoretical studies. We also demonstrate that it is possible to control the size and the shape of those nanoparticles by changing some parameters like the reaction time or the nature of the organometallic precursor. Moreover, by using the same protocol with other metals (especially nickel) we were able to obtain nanoparticles and then to form CoxNi1-x bimetallic alloys. Our nanoparticles were used for hydrogenation and hydrogen transfer reactions in presence of NH3BH3 (mainly on alkynes) giving good conversions and selectivities. We then compare those results with homogeneous catalysis, using different cobalt complexes. We made an in-depth study of this homogeneous catalysis which shows once again the efficiency of cobalt (as nanoparticles or organometallic complexes) on hydrogenations and hydrogen transfers. Those results offer new opportunities concerning the use of non-noble metals for the storage and the use of dihydrogen, allowing easier access towards energy applications
Prédélus, Dieuseul. "Rôle des hétérogénéités texturale et structurale du sol sur le transfert et la rétention des nanoparticules dans la zone non saturée : Expérimentation et modélisation." Thesis, Vaulx-en-Velin, Ecole nationale des travaux publics, 2014. http://www.theses.fr/2014ENTP0006/document.
Full textIncreasing production of nanoparticles from nanotechnology development and incorporation into consumer products will inevitably lead to their introduction into the environment. These particles can be a vector of pollutants due to the facilitated transport of organic and inorganic contaminants potentially adsorbed on their surfaces or represent a risk to the environment and human health themselves. The unsaturated zone plays an important function of natural water filtration recharge. The transport and retention mechanisms of nanoparticles through this zone are complex due to the structural and textural soil heterogeneities. These heterogeneities are causing preferential flows and are responsible a large number of physical and chemical interaction related to the nanoparticles properties. The aim of the thesis is to better understand effects of soil heterogeneities on the transport of nanoparticles in a heterogeneous unsaturated media to better prevent the fate of nanoparticles in the vadose zone. In this context, three granular materials (sand and sand - gravel mixtures) were introduced in column (10 cm diameter x 30 cm high) and the lysimeter LUGH of Lehna (100 x 160 x 100 cm3) to simulate the transport of nanoparticles in the soil. The goal is to determine the role of heterogeneous textural (different sizes) and structural (barrier capillary) heterogeneities of the soil, taking into account the effects of the ionic strength of the solution and the flow rate on the transfer of the nanoparticles in unsaturated conditions. Silica nanoparticles labeled with fluorescent organic molecules have been developed as particulate v in this study, the bromide ion has been used to characterize the flow of water. The transfer model of non-equilibrium hydrodynamic fractionation of water and two mobile and immobile phases, MIM, including a retention and release term of the nanoparticles, properly described breakthrough curves of nanoparticles on column experiments. This study allowed to characterize the effects related of different grain sizes of soil and capillary barrier on the nanoparticle retention. Experiments with different ionic strengths show for the ionic strength between 1 and 50 mM, the retention increased as predicted by the DLVO theory. However, from an ionic strengh greater than 100 mM an inversion retention occurs. When the flow rate decreases, retention increases, air - water interface increases and trapps probably the nanoparticles. Lysimeter LUGH allowed to identify the role of the capillary barrier on the retention of nanoparticles. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. Results show retention increased in the sand-bimodal interface. The retention profile indicates that nanoparticles are predominantly retained at the soil surface, then the retention decreases with depth, for the column experiments. The nanotracer is a powerful tool for studying the role of heterogeneous in the transfer of particles in an unsaturated soil
Laszewski, Henryk. "Transfert thermique photo-induit par des nanoparticules d’or appliqué à la thérapie génique." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN003/document.
Full textGene therapy is probably one of the most ambitious approaches in human history that aims to eliminate diseases, often those completely resistant to other treatments. However, this approach requires further development in order to obtain better control over the process of drug delivery and reduce costs. For this purpose, this project has focused on delivery of oligonucleotides using gold nanorods (GNRs). Such nanoparticles, (40 mm in length and 10 nm in diameter) can be internalized by cells and their extraordinary physical properties allow the delivery of drugs to the cytoplasm of cells in a controlled manner. Indeed, their strong absorption in the near-infrared part of the electromagnetic spectrum allows conversion of the energy of light into heat around the nanorods without affecting the cells. The advantage of absorption in the infrared is that at this wavelength the light can penetrate human tissues (3 cm). Control of the temperature around the nanoparticles allows the release of oligonucleotides by simple denaturation of the duplex at a given time.Obtaining nanoparticles that can be considered as a "cargo ship" implies fulfilling the following conditions: stability of the colloidal form in a complex medium, preservation of the physical and chemical properties once administered and the ability to immobilize and release the drug in a controlled manner.The first step of my project was to establish a nanorods synthesis protocol in order to obtain a monodisperse colloidal solution whose longitudinal absorption band is in the near infrared. The next step was to optimize the functionalisation protocol of the surface of the GNRs. The challenge here is associated with the aggregation of GNRs when the surfactant (CTAB) needed to maintain the GNRs in solution is replaced by biomolecules (oligonucleotides). However, after a systematic and detailed study, the destabilisation of the surfactant protective layer on the metal surface and the addition of oligonucleotides having a thiol function at one of the two extremities in a suitable ratio allowed an efficient bio-functionalisation of the nanoparticles. As a consequence, the functionalised nanoparticles, after redispersion in solution, possess the necessary physicochemical properties. In addition, the immobilisation of oligonucleotides on the surface of the nanoparticles is specific (via the thiol-Au bond) and allows their transfer into buffered solutions or in complex media without affecting their stability. After hybridisation between the single strand immobilized on the surface of the nanorods and the complementary strand, I demonstrated that the oligonucleotides were stable and that the number of double strands that are formed by hybridization can be controlled. The analysis of the properties of nanomaterials was the next important part of the work, as it is of crucial importance for the controlled delivery of drugs. I decided to apply only optical methods covering nanorods absorption and fluorescence analysis of labeled oligonucleotides and TEM images.In summary, during the project it was possible to establish a new functionalization approach and create a protocol for efficient characterization, focused on oligonucleotides. We expect that these observations will aid further research in the field of gene delivery based on gold nanoparticles
Stuart, Dale. "Heat Transfer Enhancement using Iron Oxide Nanoparticles." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/425.
Full textLerond, Thomas. "Etude des interactions nanoparticules métalliques-émetteurs quantiques." Thesis, Troyes, 2015. http://www.theses.fr/2015TROY0030/document.
Full textIn an industrial world where one of the most important issues is miniaturization the next step is to master nanometric scale. Optical nanosources, which are based on a strong light confinment, should allow to supply the next nanophotonic devices. Since Purcell demonstrate that light emission properties are not inhérent to optical emitters, scientists search to understand and control these properties. Metallic nanoparticles or nanostructures allow to modify these luminescence properties by changing emission and excitation rates or redirect the emitted light.In this study, we focus on this coupling with simple structures made from nanoparticles and quantum emitters in order to discriminate the effect of this coupling at different distances between metal and emitter. We observe three different processes: a strong quenching of the luminescence at the viscinity of the metal, an enhancement at longer distances, and an excitation enhancement. Then we show that it is possible to use this amplified excitation to obtain multiphoton absorption. Finally, we prospect a new way for future works: using aluminium plasmonic properties in UV to search on UV nanosources
Goetz, Joan. "Biocompatible luminescent probes for imaging and inhibition of cancer." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF004.
Full textThis joint PhD program is part of a collaboration between Hong Kong Baptist University (Dr. Gary K-L Wong) and Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse (LIMAA - Dr. Loïc Charbonnière) funded by the Alsace region to synthesize new nanoprobes for sensing, imaging, and inhibiting cancer diseases. The first work was to synthesize new hybrid ultrabright nanoparticles. They have been obtained from a La0.9Tb0.1F3 core and coated by different ligands. Thanks to a mechanism of antenna effect, the brightness of the nanoparticles has been significantly improved. The second work was to synthesize a new ligand to photosensitize water-soluble La0.90Eu0.1F3 nanoparticles in order to improve the emission of europium. A second ligand and new heterometallic nanoparticles have been synthesized with the aim to promote the energy transfer from Tb(III) ions on the surface of the NPs to Eu(III) ions in the core of the nanoparticles and to get a very long excited-state lifetime and an exceptional quantum yield in aqueous solution. The last work was to functionalize water-soluble graphitic-carbon nitride (g-C3N4) nanoparticles by porphyrins. The porphyrins have been synthesized to generate singlet oxygen (1O2), to host a Ga3+ ion inside their cavity and with two different linkers to be coupled to nanoparticles. This system aims to be a pH sensor, and a PDT and PET theranostic agent
Carle, Florian. "Flow motion in sessile droplets : evaporation and nanoparticles assembly." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4726/document.
Full textSessile droplets are widely found in day to day life: it might be a coffee spilt, rain onto a waterproof raincoat or again, water falling onto a cooking plate. However, despite the vast number of studies devoted to droplets for almost half a century, the fundamental phenomenon of the evaporation of sessile droplets is still a field that attracts a high level of interest due to its wide applicability and the development of new visualisation techniques or new types of complex fluids. This experimental study is focused two distinct aspects:- The evaporation of pure fluids has allow to study hydrothermal waves that appear in the droplets of volatile fluids during phase change. The influence of the type of fluid ---different alcohols and alkanes--- and the gravity levels ---Terrestrial, Lunar and Martian--- is investigated to have a better understanding of the flow motion inside droplet. Moreover, the use of different gravity levels allows to experimentally evidence the contribution of the atmospheric convective transport to sessile droplet evaporation. This investigation has allowed to develop an empirical model to take account of natural convection which greatly increases the evaporation rate in the quasi-steady diffusion-controlled evaporation model.- If complex fluids exhibit an evaporation dynamic similar to pure fluid, other mechanisms come into play, such as gelation, particles organisation and cracks formation. Wetting and different functional groups on the particles graphs will be studied in relation to the final pattern of cracks
Heimburger, Doriane. "Synthèse de nanoparticules fluorescentes ultra-brillantes à base de polymères et leur application pour la bio-imagerie." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF065.
Full textFluorescent polymeric nanoparticles appear as important tools for real-time imaging of biological processes at the molecular and cellular level. The objective of my PhD project was to optimize fluorescent polymeric nanoparticles for biological imaging. First, by varying the chemistry of the polymers, we have been able to obtain a very good control of their size. This made it possible to highlight the importance of NPs size for intracellular applications with a maximum size of 23 nm for optimal distribution throughout the cytosol. Secondly, we have shown that simple adsorption of a PEGylated amphiphiles pluronic family allows the stabilization of nanoparticles in biological media. The number of incorporated molecules and their stability has been studied by combining FRET and FCS techniques. The best formulations result in nanoparticle stability in vivo, which allowed their imaging as individual particles in the blood vessels of the mouse brain. Third, energy transfer among different fluorophores encapsulated in NPs has been studied and optimized
Deng, Fengjun. "Single electron transfer of organized assemblies of gold nanoparticles /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2006. http://uclibs.org/PID/11984.
Full textAlkurdi, Ali. "Transport Thermique aux Interfaces : Angle Critique des Phonons, Transfert à Travers un Gap; Transfert Autour d'une Nanoparticule Colloïdale Cœur-Coquille." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1197.
Full textThis thesis is devoted to the study of interfacial thermal transport at the nanoscale where Fourier’s law is not valid. This is because, at this scale, phonon mean free path becomes smaller to the characteristic length of the system, thus the heat transfer is no longer diffusive but rather ballistic. As a consequence, the thermal boundary resistance (TBR) becomes a determinant factor in heat transfer. The goal of this thesis is, firstly, to study phonon transmission and predict the thermal boundary conductance at interface between two solids. To this end, we have developed a new approach, which combines lattice dynamics calculations and inputs from ab initio, and we have applied our LD model to two types of solid structures: the face-centered cubic (FCC) crystal solid and the diamond-like crystal solid.Secondly, we aim to quantify the phononic contribution in heat transfer across a nanometric vacuum gap that separates two solids. We have used this ab initio LD model to predict the contribution of phonons in the heat transfer across a vacuum gap in two systems: the Au/vacuum-gap/Au and the Si/vacuum-gap/Si. Our results indicate that phonons do contribute significantly to heat transfer across a nanometric/subnanometric vacuum gap. Finally, we have investigated heat transfer in a system made of a core-shell nanoparticle (NP) immersed in water and heated by a laser pulse. We have used the four temperatures model, we have solved numerically the heat transfer equations in the system, taking into account the thermal boundary resistance (TBR) and the interfacial electron-phonon coupling
Patel, Sandeep A. "Photophysics of fluorescent silver nanoclusters." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28110.
Full textCommittee Chair: Dickson, Robert; Committee Member: Brown, Ken; Committee Member: Curtis, Jennifer; Committee Member: Payne, Christine; Committee Member: Perry, Joseph.
Long, Wei. "Designing immobilized catalysts for chemical transformations: new platforms to tune the accessibility of active sites." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/49017.
Full textJouanin, Anthony. "Extraction de la lumière par des nanoparticules métalliques enterrées dans des films minces." Phd thesis, Palaiseau, Institut d'optique théorique et appliquée, 2014. http://pastel.archives-ouvertes.fr/pastel-01061272.
Full textLópez-Millán, Alejandra, Paul Zavala-Rivera, Reynaldo Esquivel, Roberto Carrillo, Enrique Alvarez-Ramos, Ramón Moreno-Corral, Roberto Guzmán-Zamudio, and Armando Lucero-Acuña. "Aqueous-Organic Phase Transfer of Gold and Silver Nanoparticles Using Thiol-Modified Oleic Acid." MDPI AG, 2017. http://hdl.handle.net/10150/623868.
Full textDacosta, Fernandes Benoit. "Etude des propriétés électroniques et vibrationnelles de nano-objets métalliques et hybrides par spectroscopie femtoseconde." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0047/document.
Full textElectronic and vibrational dynamics have been studied in metallic and hybrid nano-object using femtosecond timeresolved spectroscopy. The study of electron-lattice energy exchanges in two-dimensional metallic systems showed an acceleration of the energy transfer between electrons and phonons due to confinement. This acceleration is governed by the smallest dimension of the nano-objects (2D-silver nano triangles ) when it becomes smaller than 10 nm. We also studied the vibrational dynamics of metallic nanoparticles, bimetallic and metal-dielectric. We investigated the longitudinal and radial modes of vibration of gold bipyramids which depend on their size, and studied their evolution under silver deposition. A high sensitivity of periods and amplitudes for small deposition were demonstrated. Our work on the evolution of acoustic vibrations of core-shell nano-objects (silver-silica and goldsilica) allowed us to obtain information on the quality of mechanical contact at the metal-dielectric interface. Finally, we studied the electronic interactions in hybrid metal / semiconductor (ZnO-Ag) nano-systems, and especially the charge transfer and energy exchanges between the two components. We showed a strong influence of the environment on the electron dynamics of ZnO and proved the existence of an electron transfer, photoinduced by an infrared pulse, from the metal particle to the semiconductor conduction band
Krishnamoorthy, Mahentha. "Developing cationic nanoparticles for gene delivery." Thesis, Queen Mary, University of London, 2016. http://qmro.qmul.ac.uk/xmlui/handle/123456789/23193.
Full textWang, Ying. "Electrocatalytic nanoeffect at gold nanoparticles." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:daa430c1-ecb1-496f-9744-d3f58ba16dc6.
Full textLe, Bihan Olivier. "Etude par microscopie électronique des mécanismes d'action de vecteurs synthétiques pour le transfert de gènes." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13972/document.
Full textThe vast majority of clinical trials of gene transfer in vivo use viral vectors. Although they are effective, they induce immunogenic, toxic or mutagenic risks. Due to their high modularity and low toxicity, synthetic vectors (non viral), represent a promising alternative despite their lack of effectiveness. The major objective of this work was to understand the mechanism of gene transfer using two prototypic synthetic vectors, in the context of a rational design of new vectors. We studied on cultured cells, the mechanism of action of two cationic lipids; BGTC (bis(guanidinium)-tren-cholesterol) and DOSP (DiOleylamine A-Succinyl-Paromomycine) formulated with plasmid DNA (lipoplexes) which are in vitro efficient vectors. We have been able to visualize by electron microscopy, their intracellular pathways, their structural alterations and their endosomal escape, the latter being a key step in the process of gene transfer. The unambiguous identification of lipoplexes throughout their intracellular trafficking has been made possible thanks to the labelling of DNA by core-shell silica nanoparticles with an electron dense maghemite core (Fe2O3). The labeling strategy has also been applied to study the mechanism of action of a nonionic block copolymer (P188 or Lutrol). Interestingly, these synthetic vectors have an in vivo transfection efficiency in mice lung and muscle tissue while they are totally inefficient in vitro. We have shown that Lutrol induces an increase of DNA internalization into cells and fails to trigger endosomal escape, which would explain the lack of in vitro efficacy. These findings suggest that the in vivo mechanism of action of Lutrol would involve other internalization pathways
Meng, Xiangyin. "Coupling of nanofluid flow, heat transfer and nanoparticles sedimentation using OpenFOAM." Thesis, City, University of London, 2017. http://openaccess.city.ac.uk/17350/.
Full textRebstock, Jaclyn. "Structural And Dosage Dependence Of Electron Transfer From Conjugated Polymer Nanoparticles." W&M ScholarWorks, 2020. https://scholarworks.wm.edu/etd/1593091699.
Full textDelecourt, Gwendoline. "Synthèse de nanoparticules monoplasmidiques pour le transfert de gènes." Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS002.pdf.
Full textSince 20th century, breakthrough in gene therapy paves the way for new therapeutic strategies against genetic disorders, cancers and neurodegenerative diseases. Cells with genetic mutation may have their cellular machinery modulated via the introduction of polynucleotides in their nucleus. Nevertheless, DNA needs to be protected by a vector to cross biological barriers and to reach targeted cell nucleus. Various types of vectors have been developed like PEI-based vectors. However, those efficient polymeric vectors exhibit a toxicity which can be lowered by PEG functionalization. Nevertheless, the well-known PEGylation approach shows limits requiring news hydrophilic polymers. In this context, POxylation was studied as PEG alternatives in the design of new pDNA containing nanovectors. A new synthetic strategy was developed with a selective hydrolysis of block poly(2-R1-2-oxazoline-b-2-R2-2-oxazoline) copolymers. The functionalization of the synthetized PEI-b-POx copolymers with histidine moieties was achieved, along with galactose grafting to induce cellular targeting or histidine grafting to improve endosomal escape. These polymers were used to form polyplexes with DNA via extrusion method and further biological testing via in vitro and in vivo transfection essays were performed. An efficient transfection was obtained with a reduction of the cytotoxicity for PEI-b-POx copolymers compared to PEI
Suleimanov, Iurii. "Nano-objets et nano-composites à transition de spin basés sur des complexes du fer(II) avec des ligands 1,2,4-triazoles." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30017.
Full textThe thesis is devoted to the preparation of new nanoobjects and nanocomposites of spin crossover complexes [Fe(Htrz)2(trz)](BF4) and [Fe(NH2-trz)3](NO3)2 (where Htrz - 1,2,4-triazole, trz - 1,2,4-trazolato, NH2-trz - 4-amino-1,2,4-triazole) and investigation their properties. Nanoobjects of mixed-ligand complexes with different ratio of 4-amino-1,2,4-triazole to 1,2,4-triazole were synthesized in reverse emulsions. It was shown that the increasing of the of 4-amino-1,2,4-triazole quantity leads to the increasing of nanoparticles anisotropy while spin crossover temperatures decrease. Double-step spin transition was observed at 20% mol of 4-amino-1,2,4-triazole, while at concentrations over 50% mol. spin crossover properties of [Fe(Htrz)2(trz)](BF4) completely disappear. Investigations of their morpholgy, size and spin transition characteristics as well as investigations of mechanisms of the fluorescent properties change under the spin switching process are shown. We consider obtaining nanoobjects of mixed-ligand complexes of iron (II) based on 1,2,4-triazole and 4-amino-1,2,4-triazole. The ligands ratio influences the morphology, size and characteristics of the spin transition of nanoobjects obtained. New modification of the complex [Fe(NH2-trz)3](NO3)2 in the form of nanoobjects was obtained using ligand excess. High transition temperature of this form was evidenced by various methods of analysis. This form was found to be isostructural with a resolved structure of [Fe(NH2-trz)3](NO3)2 · 2H2O. Series of nanocomposites with plasmonic and luminescent properties were prepares. For the core-shell composite with gold nanoparticles higher efficiency of the spin state switching due to the photothermal effect was demonstrated in comparison to the control sample. Fluorescent spin crossover composites with quantum dots, organic luminophors and terbium complexes were described. For all these composites the luminescence intensity variation as a function of temperature have been found. The mechanisms responsable of the luminescence intensity variation at two spin state are discussed. These mechanisms include resonant energy transfer, mechanical strain and photon reabsorption. High photostability fort he terbium - spin crossover composite is demonstrated comparing to previously obtained similar spin crossover luminescetnt composites. An example of a practical application of obtained composites for manufacturing fluorescent thermosensitive paper is shown