Dissertations / Theses on the topic 'Nanoparticule d'argent'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Nanoparticule d'argent.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Marchioni, Marianne. "Ecoconception de nouveaux agents biocides à base de nanoparticules d'argent à enrobage bio-inspiré." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAV046/document.
Full textSilver nanoparticles are increasingly used in everyday consumer goods as well as in medical devices for their biocidal activity, which is due to the release of Ag(I) ions over time. The hindsight on these nano-objects and, in particular, on their safety is still not sufficient and studies on their transformation and their impact in vivo is currently an intense research field. Indeed, the fate in the body of macro- and micro-materials studied classically is not the same as for nanomaterials. The case of the silver nanoparticles illustrates this problem: the soluble silver injected intravenously is eliminated faster than the same amount of silver injected in nanoparticular form. Moreover, the concentration of silver found in the bloodstream and organs is ten times higher when silver nanoparticles are injected rather than ingested. The development of silver nanoparticle-containing implanted devices, that get in direct contact with the body, must thus take into account the related risks. A Safer-by-design approach could be a way to solve this issue.One of the main components of Safer-by-design development is the functionalization of nano-objects. The affinity of the thiolates for Ag(I) ions is very high, which would make thiolated ligands a good tool for silver nanoparticle functionalization. However, it is known that the thiolated molecules lead to different behaviors, ranging from the dissolution of silver nanoparticles into Ag(I) ions to the simple passivation of the surface of the nanoparticles, which leads to the loss of their biocidal activity.The Ecodesign of New Biocidal Agents based on Silver Nanoparticles and Bio-inspired Coating is therefore at the interface of several research areas and its main objective was to lay the conceptual foundations for the development of a Safer-by-design biocidal agent based on the interaction between silver nanoparticles and thiolated molecules.The development of this project required to study the reactivity of various biological or bio-inspired thiolated molecules with silver nanoparticles. First of all, we have highlighted the importance of the architectural pre-organization of biomolecules in the dissolution kinetics, as well as the role of the number of free thiols in the molecule. In the case of molecules inducing the dissolution of the nanoparticles, its kinetics increases with the number of free thiols present on the molecule and with the pre-organization of the metal binding site. In a second time, the main project of this thesis was the development of a proof of concept of a new biocidal agent composed of silver nanoparticles bridged together via a thiolated ligand, which is the chemical mimic of one binding site of a metallothionein. These nanoparticle assemblies were active against bacteria (E. coli) and less toxic than silver nanoparticles on eukaryote cells (HepG2), despite a similar cellular entry. Finally, a screening was performed with polyethylene glycols having two to eight thiols and varying polymer lengths in an attempt to rationalize the differences in the behavior of silver nanoparticles in the presence of the thiolated molecules. This ongoing work leads to various behaviors that will enable to explore novel ways for the development of biocidal based on nanoparticles assemblies mediated by thiol – Ag(I) bonds.Therefore, this overall PhD work allows performing both very fundamental researches concerning the reactivity of thiols with surface silver atoms of the nanoparticles and the development of products with application potential, silver nanoparticle assemblies that are Safer-by-design biocide
Couzon, Nelly. "Synthèse et propriétés photoélectrochimiques de nanoparticules d’argent intégrées dans des films d’oxydes mésoporeux." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1171/document.
Full textThe study and understanding of existing interactions between semiconductor and metal nanoparticles under irradiation is essential for improving their performance. In this study, three semiconductor-metal oxide composites were synthesized: TiO2-Ag, Fe2O3-Ag and WO3-Ag. The synthesis of the mesoporous films of TiO2, Fe2O3 and WO3 was carried out by gel sol method using block copolymers, with the method of self-assembly induced by evaporation (EISA). The silver nanoparticles are formed in a second time by chemical reduction of silver salts in the porosity of the films. The photo-electrochemical study of these composites made it possible to highlight various phenomena: the electroreduction potential of Ag+ ions in a mesoporous TiO2 matrix can be modulated by the effect of light. This phenomenon seems to result from a passivation effect of the NP Ag by TiO2, which depends on the insolation conditions. Charging effects of the porous electrode in Ag+ species have also been observed, under the simultaneous action of chrono-amperometry and irradiation
Dulong, Clément. "Nanoparticules protégées d'Or et d'Argent : de la compréhension des interactions métal-ligand à l'échelle quantique vers la modélisation atomistique." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS067.
Full textM-thiol(ate) interface composing the surface of gold or silver nanocrystals has been investigated using quantum chemistry tools (DFT,QTAIM,ELF,NBO) at two different scales: through a M20 pyramidal model cluster (borders and defects of nanoparticles) and through both (111) and (100) periodic surfaces, interacting with a methyl thiol or a radical methyl thiolate ligand. After we had set up for the first time a protocol to handle reliable quantitative topological analyses for periodic systems computed using plane waves calculations, we have shown that: MeSH is systematically physisorbed on “Top” position thanks to a dative bond formed between the sulphur and metallic atoms, involving a complex charge transfer phenomena; the MeS is mainly chemisorbed on “Bridge” sites implying a competition between the gain of one electron to form MeS- and the formation of two dative bonds, both giving a S->M charge transfers; Au-S bonds are systematically stronger than Ag-S bonds which is induced by relativistic effects for gold. An Ag-thiolate reactive force field has been obtained by using a supervised learning method, which well reproduces both adsorption sites and energies. It made possible the comparison with existing ReaxFF potentials for Au-thiolate, and to carry out reliable simulations of nanoparticles
Ung, Diane. "Nanoparticules métalliques anisotropes synthétisées par vie chimique : fils, plaquettes et particules hybrides de cobalt-nickel, caractérisations physico-chimiques et propriétés magnétiques : fils d'argent auto-organisés." Paris 7, 2005. https://tel.archives-ouvertes.fr/tel-00202393.
Full textSoumbo, Marvine. "Adsorption des protéines sur les surfaces de couches minces de silice seules ou additivées de nanoparticules d'argent : impact sur les forces d'adhésion de Candida albicans." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30258.
Full textMicrobial adhesion on solid surfaces is the source of multiple negative impacts in many areas. This step is considered prior to biofilm formation. It might be influenced by the presence of a conditioning layer generated after protein adsorption on the surface. Thus, strategies to act during the initial phase of microbial adhesion represent an appropriate approach to prevent bio-contamination of solid surfaces. However, they require understanding of the underlying mechanisms at the molecular level. In this context, nanocomposite materials based on silver nanoparticles (AgNPs) and silica (SiO2) appear as relevant tools. This thesis focuses on the use of nanocomposite thin layers containing a plan of AgNPs exposed on their surfaces or buried in a SiO2plasma matrix at a controlled distance of a few nanometers from the surface in order to explore, on the one hand, the adhesion of model proteins (Bovine Serum Albumin, DsRed and Fibronectin) and their conformational changes and secondly, the kinetics of detachment of the yeast Candida albicans under the different conditions. AgNPs are well known for their antimicrobial activities but also for their optical properties allowing detection of molecular signatures at their proximities. Following the application of surface-enhanced Raman spectroscopy using AgNP-based nanocomposite layers, the detection of three conformations of DsRed (red fluorescent protein) adsorbed and dehydrated on plasmonic substrates was achieved. The obtained results show that the conformational changes of proteins with a strong internal coherence are reversible. In parallel, we have evaluated the dynamics of the organization and behavior of BSA, Fn and DsRed in contact with thin silica layers or silica layers containing AgNPs. Contact angle measurements of droplets of different protein concentrations showed increasing hydrophilic interaction with thermal SiO2th. For the nanocomposite layers, the surface hydrophobicity is modified. The thickness and optical properties of the adsorbed protein layers were evaluated by spectroscopic ellipsometry. Depending on the protein concentration in solution the results show the evolution of a non-continuous and non-dense protein monolayer to a more compact and complex monolayer at high concentrations. [...]
Mtimet, Issam. "Elaboration de surfaces biocides contenant des nanoparticules d'argent." Phd thesis, INSA de Rouen, 2011. http://tel.archives-ouvertes.fr/tel-00661304.
Full textGestraud, Cecilia. "Synthèse, fonctionnalisation et assemblage de nanodisques d'argent." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0112.
Full textSilver nanoparticles, used extensively in catalysis, optics and electronics, are now emerging in new applications such as imaging, photonics or chemical and biochemical detection. Among these applications, some require particular morphologies such as rods or disks (conductive films, enhanced Raman spectroscopy) while others mainly involve a large specific surface area such as in heterogeneous catalysis. Anisotropic metal nanoparticles are traditionally produced in two stages, separating the formation of seeds and their growth, in order to better control their morphology. However, the two-stage synthesis makes the transfer on industrial scale difficult because of the long incubation time and the washing steps required. In this context, we decided to focus on the synthesis of anisotropic nanoparticles, in particular silver nanodisks, as well as their assembly in solution and on surfaces. In our work, we adopted an approach that allows to carry out the two stages of the formation of silver nanodisks in the same reaction medium. The principle is based on the use of two reducers, one weak and one strong, with different kinetic reduction rates, allowing the control of anisotropy. This method is simple and fast but requires good control of the experimental parameters. The time between the addition of the two reducers determines the morphology of the formed objects. There is actually an optimal range for this time, which depends particularly on the temperature of the synthesis. In order to vary the optical properties of these nanodisks, different strategies can be considered. We chose to form assemblies both in solution and on surfaces by different deposition techniques. The adsorption of bifunctional organic molecules can provoke the formation of assemblies in solution: one function has an affinity with silver and the other interacts with the free functions of the other nanoparticles through hydrogen or electrostatic bonds for example. Assemblies can also be made on surfaces. We have been working on original deposition method, which allow an oriented assembly of nanodisks through electrostatic forces.We have demonstrated that these assemblies are good candidates for developing micro-structured SERS substrates
Er, Mine. "Synthèse de nanoparticules d'argent a l'aide d'un procédé plasma-liquide." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCD001.
Full textThe main objectives of this thesis are to develop a plasma liquid immersion (PLI) method for the synthesis of silver nanoparticles. Synthesis of silver nanoparticles is first investigated with respect to chemical parameters (concentration of precursor and of stabilizing agent, and initial pH of the precursor solution) in the aim of optimizing PLI process and silver nanoparticles in order to synthesize spherical, small-sized, and uniformly-distributed silver nanoparticles. This investigation is performed using a MARX pulse generator. Secondly, synthesis of silver nanoparticles is investigated with respect to physical parameters (pulse duration, applied voltage, and applied voltage over the interelectrode distance for a constant ratio). For this investigation, a solid-state BEHLKE switch is used in the generation of plasma pulses. The study showed that the synthesis and morphology of silver nanoparticles are process dependent. Differences in the generation of plasma discharges are observed, when using two types of pulse generators, and are further explained. Optimized silver nanoparticles, synthesized using the MARX pulse generator, are spherical and uniformly distributed with an average hydrodynamic diameter of 10nm. These silver nanoparticles were produced by injecting only 40mJ energy into pulsed plasma discharges of the PLI process with 2W in power consumption. Synthesis of silver nanoparticles at similar synthesis conditions using the BEHLKE pulse generator resulted in the production of larger-sized polyhedral-shaped silver nanoparticles
Halté, Valérie. "Dynamique femtoseconde des populations electroniques dans des nanoparticules d'argent." Université Louis Pasteur (Strasbourg) (1971-2008), 1998. http://www.theses.fr/1998STR13203.
Full textEising, Renato. "Préparation de nanoparticules d'argent stabilisées par du dextran ou des amphiphiles oligosaccharidiques pour des applications en catalyse et biocapteurs." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00949189.
Full textDesbiens, Jessie. "Synthèse et caractérisation de nanoparticules de polymère dopées d'un complexe luminescent et de nanoparticules d'argent." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/29213/29213.pdf.
Full textDesbiens, Jessie, and Jessie Desbiens. "Synthèse et caractérisation de nanoparticules de polymère dopées d'un complexe luminescent et de nanoparticules d'argent." Doctoral thesis, Université Laval, 2012. http://hdl.handle.net/20.500.11794/23691.
Full textLa synthèse et la caractérisation de nanoparticules de polymère dopées d’un complexe luminescent et de nanoparticules d’argent ont été réalisées. La polymérisation en mini-émulsion a permis d’obtenir des nanoparticules de polystyrène dopées d’un complexe luminescent. La concentration de complexe d’europium maximale pouvant être atteinte, sans qu’il y ait déstabilisation de l’émulsion, est de 2% (m/m). Il est également possible de préparer des nanoparticules de polymère contenant le complexe luminescent, ainsi que des nanoparticules métalliques. Pour ce faire, le complexe et les nanoparticules métalliques doivent être dispersés dans le monomère de départ. Il est donc nécessaire de modifier la surface des nanoparticules métalliques afin qu’il y ait une bonne affinité entre les nanoparticules métalliques et le polymère. Il est intéressant de confiner les nanoparticules métalliques dans la même particule de polymère que le luminophore afin d’observer leur impact sur la luminescence. Le rehaussement ou l’exaltation de la luminescence au voisinage de nanoparticules métalliques est un phénomène bien connu. Lorsqu’une nanoparticule métallique est excitée par une onde électromagnétique qui correspond à la fréquence de résonnance du nuage électronique de la particule, une augmentation du champ électrique est engendrée à proximité de la particule et a pour effet de rehausser la luminescence des luminophores à proximité. Les propriétés optiques des nanoparticules hybrides obtenues (polystyrène/complexe luminescent/argent) montrent, qu’effectivement, en présence d’argent, une augmentation de l’intensité lumineuse peut être observée.
Patry, Maxime. "Synthèse et caractérisation d'un miroir liquide à base de nanoparticules d'argent." Master's thesis, Université Laval, 2012. http://hdl.handle.net/20.500.11794/23338.
Full textDe, Vos Caroline. "Synthèse de nanoparticules d'or et d'argent par microplasma à pression atmosphérique." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/257288.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Mtimet, Issam. "Elaboration de surfaces biocides contenant des nanoparticules d’argent." Thesis, Rouen, INSA, 2011. http://www.theses.fr/2011ISAM0019/document.
Full textTwo environment and human-friendly processes were developed to synthesize polyurethane-silver (PU-Ag) nanocomposites having biocide surfaces able preventing the microbial colonization.The first one, called ex-situ process, consists in incorporating a silver nanoparticles aqueous dispersion during the synthesis process of polyurethane, which is itself carried out in aqueous dispersion. In this case, the chemical reduction of silver ions under microwaves and in the presence of polyethyleneglycol was particularly developed with the aim to chemically incorporate the PEG in the PUchains. For the second process, silver ions dispersed inside a PU matrix were photochemically reduced in situ.The obtained materials exhibit a homogeneous dispersion of silver nanoparticles with small diameter (from 5 to 50 nm) without marked modification of the intrisic physomchemical properties of the PU. Lastly, the antibacterial properties of the surfaces aginst Pseudomonas aeruginosa and Enterococcus faecalis were confirmed
Rioux, Maxime. "Développement de nanoparticules luminescentes à base d'or et d'argent pour l'imagerie cellulaire." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28444/28444.pdf.
Full textCarlberg, Miriam. "Modélisation, réalisations et caractérisations optiques de couches hétérogènes à nanoparticules." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0297/document.
Full textNoble metal nanoparticles (NPs) have a broad range of applications thanks to their extraordinary optical, chemical and electrical properties. The optical properties are driven by their ability to support localized surface plasmon resonances, which induce enhanced absorption and scattering at their resonance wavelengths in the visible spectrum. These size and shape dependent optical properties are taken advantage of in the search for a thin film layer perfect absorber in the visible wavelength band. The application for such thin film layers with engineered optical properties ranges from photodetectors, over thermal solar cells to stealth applications.Recent progress in colloidal NP synthesis makes the chemical wet synthesis of silver nanospheres, nanocubes and nanoprisms of various sizes easily feasible. The different NPs are then randomly deposited in a transparent and non-absorbing host matrix for optical characterizations. Computer simulations validate the experimental results and allow a visualization of the phenomena occurring at the nanoparticle scale.This PhD thesis reports the chemical synthesis of the different nanoparticles and their optical characterizations. Spectroscopic ellipsometry measurements are performed on single shape NPs, blends and multilayer stacks. A simple diffusion model, composed of a single Cauchy law and one or several Gauss laws, is chosen to determine the complex optical indices. The comparison of the extinction coefficients of the different layers shows that the optical properties of each NP are simply added in the blend and multilayer samples. Computer simulations relate this to the low density of nanoparticles
Mao, Fei. "Réalisation des nanostructures désirées en or et en argent par effet thermique local induit optiquement : Application au stockage de données et à l’imprimante couleur." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASN011.
Full textThis work focuses on the investigation of plasmonic Gold (Au) and Silver (Ag) nanoparticles (NPs) by using optically induced local thermal dewetting technique and their applications. Firstly, Au and Ag NPs are fabricated by a thermal annealing method using a hot oven. This technique allows obtaining Au and Ag NPs, which are randomly distributed in a large area. The NPs sizes and properties are controlled by annealing conditions, such as annealing temperature and duration. Plasmonic properties of Au and Ag NPs are experimentally characterized and compared with the simulation ones performed by the FDTD method. These large-area Au and Ag NPs are demonstrated to be useful for applications in fluorescence enhancement and random laser. Secondly, we demonstrate a robust way to realize desired plasmonic nanostructures by using a direct laser writing method. This technique bases on optically induced local thermal effect allowing the realization of NPs at a small area, i.e. focusing area. By moving thus the laser spot, any desired plasmonic structure can be realized. The NPs sizes and distributions can be controlled by exposure doses (laser power and exposure time) and moving trajectory of the focusing spot resulting in different reflection or transmission colors. By focusing a continuous-wave laser at 532 nm on Au films having 50 nm thickness, we demonstrated for the first time the direct fabrication of plasmonic nanoholes array. These fabricated structures are demonstrated to be very potential for many applications such as data storage, color nanoprinter, fluorescence enhancement, and plasmonics based random laser
Carufel, Nancy. "Optimisation de la réflectivité des miroirs liquides de nanoparticules d'argent par le contrôle de la formation des nanoparticules." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24876/24876.pdf.
Full textCorde, Joëlle. "Photo-croissance de nanoparticules d'argent dans des couches SiO2/TiO2 : contrôle des propriétés optiques et électriques." Palaiseau, Ecole polytechnique, 2012. http://www.theses.fr/2012EPXX0022.
Full textMonpezat, Arnaud. "Développement d’un procédé compact pour le traitement des gaz rares." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1171.
Full textIn the context of the Comprehensive Nuclear Test Ban Treaty, the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) is developing systems to detect nuclear tests based on the xenon radioactive isotopes measurement, such as the Système de Prélèvement d’Air en Ligne avec l’Analyse des radioXénons. Adsorption is a suitable process for this type of application but requires the use of high performance adsorbent materials to trap and separate the rare gases of interest present in the air in trace amounts.In the first instance, this PhD thesis has set a methodological framework to compare the adsorbent materials available to separate xenon at low partial pressures and to select the Ag@ZSM-5 zeolite. Numerous techniques ranging from transmission electron microscopy to ab initio calculation have been employed to study the aging of this material under process conditions, related to the thermal elution steps and environmental conditions. The knowledge of the material has been deepened by studying the influence of zeolite support on the formation and stability of metal particles, as well as the interaction between nanoparticles and xenon. Finally, the Ag@ZSM-5 zeolite was applied in an automated pilot. This compact process for the separation of noble gases based only on adsorption steps shows encouraging performances and allow considering the use of this material in various applications, ranging from decontamination of air polluted by radon to the industrial production of xenon
Puyo, Maxime. "De la molécule au dispositif : utilisation de complexes métalorganiques pour la décoration de couches minces carbonées par des nanoparticules d'argent et application à l'analyse électrochimique." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30270.
Full text4-nitrophenol is commonly used as a model pollutant since its chemical structure is similar to several water pollutants. 4-nitrophenol is electroactive, thus it is used to benchmark sensing devices of which the best take advantage of various nano-objects properties. Among these nano-objects, silver nanoparticles are scarcely used despite their known catalytic properties for the chemical reduction of 4-nitrophenol. We tried to create a silver-nanoparticles-based composite electrode using an original metalorganic approach. This approach has required the development and the study of two starting materials: metalorganic complexes, used as silver nanoparticles precursors, and an easily-tuned carbon electrode. The study of these materials gave us an insight into their properties and the mechanism leading to the final composite electrode. Thanks to this insight and the understanding of the main experimental factors, various silver-nanoparticles-based electrodes have been obtained, presenting different structures of silver nanoparticles. The as-obtained electrodes have been tested for the electrochemical analysis of 4-nitrophenol, bringing to light correlations between the silver nanoparticles structuration and the electrochemical behavior of the 4-nitrophenol. This study has highlighted several leads to improve detection performances. Above all, it has proved that our metalorganic approach was promising for the preparation of miniaturized sensing devices
Bérard, Rémi. "Formation et croissance par voie plasma d'analogues en laboratoire de poussières d'étoiles : exploration du rôle du rapport C/O et des métaux." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30178.
Full textDust formation is a fundamental topic in both cold plasma physics and astrophysics. This PhD thesis, carried out at the interface between these two fields, aims to better understand the formation of stardust. The problem is treated experimentally in cold plasmas and discussed in the context of the environment of evolved stars. We observe the formation of successive generations of dust due to pulsed injection of hexamethyldisiloxane (HMDSO: Si2O(CH3)3) in a capacitively-coupled radiofrequency asymmetric plasma sustained in argon. The used molecular precursor contains potential stardust forming elements, like carbon, oxygen, silicon and hydrogen. Our approach involves different steps: study of the dust formation in the plasma, dust collection, characterization of the dust properties and correlation of the plasma parameters with the dust characteristics. We have thus succeeded to identify optimum conditions for the formation of organosilicon dust with typical size of 50 nm. A major factor impacting dust formation in evolved stars is the variation of the C/O ratio, which is though to determine two large families of stardust, silicates (C/O < 1) and carbonaceous dust (C/O > 1). To explore this effect, we have enriched the Ar/HMDSO mixture with oxygen aiming at a variation of the C/O ratio in the plasma. Above a certain quantity of oxygen, dust is not formed anymore in the plasma. The abundance of oxygen limits dust formation through inhibition of the dust seeds in the gas phase. Instead, deposition of a silica-like matrix is favored. The role of metals is studied through sputtering of a silver target during organosilicon dust formation. We have demonstrated the formation of dust with composite structure in this case. Dust contains crystalline silver nanoparticles that attach to the amorphous organosilicon dust during their growth phase. Moreover, the presence of silver leads to a large variety of molecules composed of species containing Ag and/or Si and hydrocarbon species. Those molecules reveal a complex chemistry around three competitive processes at molecular scale: dust formation involving molecules such as SiCH3 or SiOCH3, metallic grains with clusters of Agn and aromatic molecules of large size such as C16H10 and C24H12, whose formation path involves radicals and possibly an organometallic chemistry as revealed by AgC5H6 and AgC13H8. The above results demonstrate the undoubted necessity to tackle stardust formation by taking into account the chemical complexity of these media
Maillard, Mathieu. "Synthèse, organisation et anisotropie optique de nanocristaux d'argent." Paris 6, 2002. http://www.theses.fr/2002PA066436.
Full textKiryukhina, Kateryna. "Pâtes à braser à base d'oxalate d'argent pour applications électroniques fortement dissipatives : de l'intérêt des particules nanométriques issues de la décomposition de l'oxalate d'argent." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/3081/.
Full textIn the field of new generation power electronic devices, transistor manufacturing technologies made a spectacular breakthrough, with properties that enable to increase the output power by ten, in comparison to currently used solutions. This rise is accompanied by a heat release and currently used die-attach materials, with limited thermal properties, don't enable taking full advantage of these new components. Within this context, this thesis presents the development of a new high thermal conductivity interconnection material, processed under 300°C and a low pressure. This method finds its originality in the several aspects, such as the use of a chemical precursor, silver oxalate, and the transitional creation of silver nanoparticles inside the solder itself, enabling to avoiding their direct handling
Faucher, Luc. "Utilisation des thiols comme ligand stabilisant pour la préparation de films réfléchissants de nanoparticules d'argent." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25236/25236.pdf.
Full textWatanabe, Cláudia. "Fate, behavior and ecotoxicology of silver nanoparticles : interactions with natural organic matter in aquatic systems." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7009.
Full textWhen introduced in environment, manufactured nanoparticles (NPs) can interact with biotic and abiotic molecules yielding a transformed NP usually coated with these molecules (natural coating). These different forms of the NPs should be considered as new materials because them distinct properties from the released NPs forms. In fact, these in situ transformations of the NPs have relevant impacts on their toxicological effects, having new or additional risks still not studied. This project aims to determine, understand and predict the impact of natural molecules in the transformations and bioeffects of Ag NPs, widely used as antibacterial agents. Despite the growing interest and use of these NPs, the gathered knowledge on their environmental consequences is still scarce, since the large majority of the studies do not consider the effect of the presence of natural coatings around the particles. In fact, most of the studies do not even determine the effects of the presence of manufactured coatings. Generally, NPs manufacturers add ionic or polymeric coatings to improve their mobility and stabilization in terms of size. Although the possible effects of these manufacturedcoatings in the NPs behavior there is not systematically studied about their impact. This project aims to overcome the current uncertainty about the environmental safety of manufactured coated NPs, and explore the impact of natural molecules on their environmental risk. The project objectives are: i) characterize the manufactured coated Ag NPs in absence and presence of natural molecules including Humic Substances (HS) and Extracellular Polymeric Substances (EPS), ii) determinate the biocompatible and bioadverse effects of the transformed NPs on the algae Raphidocelis subcapitata and the microcrustacean Daphnia similis and iii) evaluate the transfer of the transformed NPs in the food chain alga-microcrustacean. Thus, this project purposes to introduce a standardized and improved evaluation of the ecotoxicology in order to increase the competitiveness and safety of nanostructured products
Quando introduzidas no ambiente, nanopartícula (NP) podem interagir com moléculas bióticas e abióticas produzindo uma NP transformada geralmente revestida com essas moléculas (revestimento natural). Essas diferentes formas de NPs devem ser consideradas como novos materiais, pois possuem propriedades distintas dos formulários liberados dos NPs. De fato, essas transformações in situ das NPs apresentam impactos relevantes em seus efeitos toxicológicos, tendo riscos novos ou adicionais ainda não estudados. Este projeto tem como objetivo determinar, entender e prever o impacto de moléculas naturais nas transformações e efeitos biológicos dos NPs de Ag, amplamente utilizados como agentes antibacterianos. Apesar do crescente interesse e uso desses NPs, o conhecimento acumulado sobre suas conseqüências ambientais ainda é escasso, uma vez que a grande maioria dos estudos não considera o efeito da presença de revestimentos naturais ao redor das partículas. De fato, a maioria dos estudos nem sequer determina os efeitos da presença de revestimentos fabricados. Geralmente, os fabricantes de NPs adicionam revestimentos iônicos ou poliméricos para melhorar sua mobilidade e estabilização em termos de tamanho. Embora os possíveis efeitos desses revestimentos fabricados no comportamento dos NPs não sejam sistematicamente estudados sobre seu impacto. Este projeto visa superar a atual incerteza sobre a segurança ambiental de NPs revestidos fabricados e explorar o impacto de moléculas naturais em seus riscos ambientais. Os objetivos do projeto são: i) caracterizar os NPs de Ag revestidos fabricados na ausência e presença de moléculas naturais, incluindo Substâncias Húmicas (HS) e Substâncias Poliméricas Extracelulares (EPS), ii) determinar os efeitos biocompatíveis e bioadversos dos NPs transformados nas algas Raphidocelis subcapitata e o microcrustáceo Daphnia similis e iii) avaliar a transferência dos NPs transformados na cadeia alimentar de microcrustáceos algas. Assim, este projeto tem como objetivo introduzir uma avaliação padronizada e aprimorada da ecotoxicologia, a fim de aumentar a competitividade e a segurança dos produtos nanoestruturados
Resano-Garcia, Amandine. "Élaboration par ablation laser en milieu liquide de nanoparticules métalliques : caractérisation et modélisation des réponses plasmoniques des nanoparticules d’or et d’argent." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0320/document.
Full textMetal nanoparticles (NPs) exhibit unique optical properties (OP) coming from the collective oscillations of their electrons. This effect is translated by the emergence of a band of plasmon, the characteristics which can be modulated by the size, the shape and the nature of the NPs as well as by the environment of the host. There are many methods for the preparation of NPs, and one of them is the pulsed-laser ablation in liquid (PLAL). This technique offers some advantages such as simplicity, versatility and surface NP without contamination (reducing agent residues and/or stabilizers). Its main drawbacks are the lacks of productivity and control of the NP size and shape. This work is devoted to elaboration of Ag NPs by PLAL and theoretical investigation of their OP. We give here the results about the optimization of elaboration parameters leading to obtaining reproducible and controlled distributions of Ag NPs. The OP of these NPs are measured and compared to specific physical models based on the effective medium theory (EMT). Classical EMT such as Maxwell Garnett approximation allows describing the OP of monodisperse NPs. However, conventional preparation routes unavoidably conduct to NPs showing a shape and a size distribution which induces drastic changes in the OP. A SDEMT model which considers the shape dispersion is proposed for the calculation of the effective dielectric function and absorption coefficient of colloidal solution of metal NPs in water. Contrary to the conventional theory, this model gives a better description of the measured absorption and ellispometry spectra of sample containing Ag and Au NPs
Pugliara, Alessandro. "Elaboration of nanocomposites based on Ag nanoparticles embedded in dielectrics for controlled bactericide properties." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30324/document.
Full textSilver nanoparticles (AgNPs) because of their strong biocide activity are widely used in health-care sector, food industry and various consumer products. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the biocide properties on algal photosynthesis of small (<20 nm) AgNPs embedded in silica layers. Two physical approaches were used to elaborate these nanocomposites: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanocomposites were studied by transmission electron microscopy, reflectance spectroscopy and ellipsometry. This last technique, coupled to modelling based on the quasi-static approximation of the classical Maxwell-Garnett formalism, allowed detection of small variations over the size and density of the embedded AgNPs. The silver release from the nanostructures after immersion in buffered water was measured by inductively coupled plasma mass spectrometry. The short-term toxicity of Ag to the photosynthesis of green algae, Chlamydomonas reinhardtii, was assessed by fluorometry. Embedding AgNPs reduces their interactions with the buffered water, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for the given host silica matrix. This provides a procedure to tailor the biocide effect of nanocomposites containing AgNPs. By coupling the controlled antimicrobial properties of the embedded AgNPs and their quality as plasmonic antenna, these coatings can be used to detect and prevent the first stages of biofilm formation. Hence, the last part of this work is dedicated to a study of the structural stability and adsorption properties of Discosoma recombinant red (DsRed) fluorescent proteins deposited on these dielectric surfaces with perspectives of development of SERS devices
Biver, Emeric. "Etude et mise en oeuvre des procédés lasers pour le développement de la microélectronique 3D-System in Package." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4025/document.
Full text3D-System in package (3D-SiP) is a branch of microelectronics that aims at integrating several heterogeneous components into the same package, thus forming a compact device able to communicate and process data. The goal of this thesis is to study two laser processes to build 3D-SiP microsystems on flexible substrates. In a first part, we study the laser ablation of cavities in polymer in which microchips can be inserted. We use poly(methyl methacrylate) (PMMA) doped and grafted with pyrene, a chromophore which absorbs in the UV range. We show that grafting the pyrene on the polymer side-chains increases the homogeneity but that the quality of ablation is sufficient when the pyrene is simply dispersed in the matrix. We also modify the PMMA with N3 to make it cross-linkable and we observe the formation of laser-induced periodic surface structures upon laser irradiation. We discuss the mechanism most likely to explain their formation. On a second part, we use the LIFT (laser-induced forward transfer) technique, which uses a laser pulse to print a material deposited on a transparent donnor substrate. Using a silver nanoparticles ink, we deposit droplets that coalesce and form lines. We study the ejection and printing at high speed (0,5 MHz) and we visualize for the first time the ejection of several succesive jets. We show that it is possible to print electrical connections at 4.3 m/s and we discuss the criteria to control the process
Andrieux-Ledier, Amandine. "Elaboration de nanoparticules d'argent par réduction de sels métallo-organiques : contrôle de taille, stabilité, organisation et propriétés physiques." Paris 6, 2012. http://www.theses.fr/2012PA066564.
Full textThis thesis was devoted first to the synthesis of size controlled silver nanoparticles. The nanoparticles are obtained by reducing a metallo-organic silver salt RAg(PPh3)n (R=Cl, Br or NO3 and n=1 or 3) with tert-butylamineborane in presence of alcanethiols. The flexible choice of functional group and number of PPh3 in these salts as well as of the reaction temperature allows us to obtain alkanethiol coated silver nanoparticles with diameter ranging from 2. 5 to 7. 1 nm, with a low size distribution. We get evidence that particle growth occurs via the ligand replacement of PPh3 by alkanethiol. Whereas under dry air, silver nanoparticles are stable, under ambient air, we observe their etching. This process is thus due to the oxidation of silver by the redox couple O2/H2O. By annealing organized silver nanoparticles at a mild temperature (50° C) during 4 days, we observe the formation of well crystallized silver triangles. Due to their uniformity in size and shape, silver nanoparticles have a strong tendency to form 3D supracrystals after deposition on a solid substrate. Their morphologies and crystalline structures are shown to depend on the nature of the solvent, alkanethiol chain length and nanoparticle size. Using low-frequency Raman scattering, we demonstrate that crystallinity of silver nanoparticles modifies their vibrations. We show that the self-organized silver nanoparticles can be used as Surface Enhanced Raman Scattering (SERS) substrate and provide a high SERS signal of alkanethiol ligands. Finally, we show that it is possible to successfully generalize this metallo-organic approach to the synthesis of copper nanoparticles with different sizes and shapes
Grillet, Nadia. "Réponse optique de nano-objets uniques d'argent : couplage plasmonique et photo-oxydation." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00728160.
Full textNadal, Elie. "Etude expérimentale et théorique des propriétés optiques de nanocomposites plasmoniques fabriqués par irradiation laser et sous flux solaire concentré." Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0029/document.
Full textThis dissertation deals with the study of plasmonic nanocomposites and, more precisely, polymer thin films loaded with gold and silver nanoparticles. In this work, we developed two original fabrication techniques based on in situ synthesis of nanoparticles in polymer films under irradiation. In the first approach, our aim is to control the organization of the nanoparticles within the polymer films by using a spatially controlled irradiation by laser interferometry. We show that the plasmonic nanoparticle gratings thus formed present unusual diffractive properties that strongly depend on the plasmonic features of the system. We call this phenomena plasmon enhanced diffraction. In a second method, we study in situ synthesis of nanoparticles in polymer thin films under concentrated solar irradiation. This study is focused on the effect of concentrated solar irradiation on the growth mechanism and the morphology of the nanostructures. We have shown that it is possible to control the size of the gold nanoparticles synthesized in situ by varying the solar flux. Along with experiments, we developed a semi-analytical approach that combines modeling of the materials as effective media with the RCWA method (Rigorous Coupled Wave Analysis), which allows us to compute the optical properties of the nanocomposites
Lantiat-Baillargue, David Girardeau Thierry Babonneau David Camelio Sophie. "Morphologie et auto-organisation de nanoparticules d'argent dispersées dans les matrices diélectriques influence sur les propriétés optiques /." Poitiers : I-Médias, 2008. http://theses.edel.univ-poitiers.fr/index.php?id=689.
Full textLantiat-Baillargue, David. "Morphologie et auto-organisation de nanoparticules d'argent dispersées dans les matrices diélectriques : influence sur les propriétés optiques." Poitiers, 2008. http://theses.edel.univ-poitiers.fr/theses/2008/Lantiat-Baillargue-David/2008-Lantiat-Baillargue-David-These.pdf.
Full textThe aim of this work is to adjust the spectral position of the surface plasmon resonance of noble-metal nanoparticles embedded in a dielectric matrix by tailoring their morphology and their spatial organization. We show that when the growth is performed on plane substrates, it is possible to modify the aspect ratio of the particles H/D, and thus their optical response by changing the nature of the matrix. Quantitative structural analyzes carried out by using high angle annular dark field scanning transmission electronic microscopy (HAADF-STEM) imaging reveal that H/D is a decreasing function of the diameter D, independently of the deposited metal amount. In order to understand these effects of the matrix on the structural and optical properties of the particles, various studies (influence of the metal and deposited amount, presence of a buffer layer, influence of the elaboration conditions, covering rate of the particles,. . . ) are presented and numerical simulations of the optical spectra are proposed by integrating the structural parameters from the HAADF analysis in a model of Yamaguchi. A second step consists in using nanostructured sapphire surfaces in order to induce a surface organization of the particles, and thus to involve an anisotropy of their optical properties. We show that according to the geometry used during the deposition (normal incidence, grazing incidence, orientation and angle of incidence of atomic flux), it is possible to select the type of facets on which the growth takes place (shadowing effect), and consequently to elaborate self-organized systems of metal nanoislands constituted of stripes or linear chains of particles, whose optical properties display a light-polarization dependence
Battie, Yann. "Mécanismes de croissance in situ et propriétés optiques de nanoparticules d'argent spatialement organisées dans des films diélectriques mésostructures." Saint-Etienne, 2009. http://www.theses.fr/2009STET4023.
Full textAndrieux, Ledier Amandine. "Elaboration de nanoparticules d'argent par réduction de sels métallo-organiques : contrôle de taille, stabilité, organisation et propriétés physiques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00827520.
Full textDiop, Daouda Keïta. "Synthèse par pulvérisation magnétron et caractérisation de couches minces photochromes." Thesis, Poitiers, 2016. http://www.theses.fr/2016POIT2293/document.
Full textThese thesis works are within the framework of the ANR Photoflex (2013-2016), which aims to develop a contactless laser printing technology, in order to create updatable or permanent patterns of unique character on any types of supports, especially flexible supports. We report on a reactive magnetron sputtering-based deposition method to synthesize, at room temperature, photochromic nanocomposite thin films consisting of Ag nanoparticles sandwiched between nanoporous TiO2 layers. These films are deposited on flexible substrates such as a transparent plastic (PET) and a diffusing paper. We show that when the TiO2 is elaborated in the metallic sputtering mode, the nanocomposite film is colored due to the formation of metal Ag nanoparticles inducing a localized surface plasmon resonance in the visible range. In contrast, in the compound sputtering mode, the nanocomposite film is colorless because the Ag nanoparticles are oxidized during their capping by the TiO2. We have demonstrated that the colorless samples can be colored under UV laser irradiation (244 nm) due to the reduction of oxidized silver, followed by the growth of metallic Ag nanoparticles by coalescence or Ostwald ripening. Moreover, visible laser irradiation at low irradiances (few W.cm-2) of the colored films gives rise to changes in the particle morphology that modifies the absorbance of the films and results in sample color changes. We have investigated the influence of the deposition conditions (capping layer thickness of nanoparticles, TiO2 buffer layer thickness, Ag amount, holding time after Ag deposition, plasma annealing of Ag nanoparticles, multilayer) in order to optimize the photochromic effects in amplitude and in speed. All the mechanisms are repeatable during UV/Visible irradiation cyclic processes. For strong visible laser irradiances (several tens of kW.cm-2), we observed on nanocomposite films deposited on glass, color changes dependent on the polarization direction of the probe beam, related to the thermal growth and to the self-organization of Ag according to a periodic grating of nanoparticle chains. Contrary to low irradiances, the photo-induced colors are permanent and have a dichroic character. This study opens up interesting possibilities in terms of applications, including authentication and traceability of manufactured products, data storage, the new generation of datamatrix, etc
Awada, Chawki. "Nature cohérente et incohérente de la réponse de Second Harmonique dans les nanostructures métalliques d'or et d'argent." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00563278.
Full textMichaud, Thomas. "Développement de nouvelles pâtes à base de nanoparticules métalliques pour du frittage basse température." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI050.
Full textMetallic nanoparticles have the particularity to sinter at lower temperatures compared to microparticles. Silver (Ag) nanoparticles based sintering pastes are commercially available for assembling power electronics chips to their substrates. The assembly is performed between 200 and 300°C, generally under pressure (Hot Pressing) and the resulting metallic joint has excellent thermal and electrical conductivity properties. The theoretical melting temperature of the resulting densified joint corresponds to the melting temperature of bulk silver (962°C), making the silver nanoparticles an alternative for "high temperature" power electronics compared to traditional solder. Nevertheless, the cost of Ag, which is a precious metal, remains a barrier to the use of these sintering pastes. The cost can be reduced by replacing the silver nanoparticles with copper (Cu) nanoparticles. Copper has conductive properties very close to silver. The major hurdle to the integration of copper nanoparticles in sintering pastes is the proneness of copper to oxidation. The oxidation of Cu nanoparticles prevents sintering and greatly reduces the mechanical properties and conductivity of the final metallic joint. Moreover, copper is less reactive during sintering and requires higher temperatures to densify. We chose to protect copper nanoparticles by encapsulation. In a first step copper nanoparticles were synthetized at laboratory scale and semi-industrial scale. In a second step the copper nanoparticles were encapsulated either with a polymer or very thin layer of Ag. The oxidation properties of the core-shell nanoparticles were studied. In a third step the Cu@Ag nanoparticles were formulated in a paste in order to obtain metallic joints. The sintering and density properties of the metallic joints were evaluated and positively compared to the joints obtained with a commercial Ag based paste. The Cu@Ag core-shell system prevents oxidation but also improves the sintering process
Ung, Diane. "Nanoparticules métalliques anisotropes synthétisées par voie chimique : fils, plaquettes et particules hybrides de cobalt-nickel, propriétés structurales et magnétiques ; fils d'argent auto-organisés." Phd thesis, Université Paris-Diderot - Paris VII, 2005. http://tel.archives-ouvertes.fr/tel-00202393.
Full textPour le système cobalt-nickel, l'analyse des différents paramètres de la réduction en milieu polyol indique que la concentration de soude et la composition cobalt-nickel sont des facteurs clefs pour contrôler la morphologie des particules. Différentes formes ont été synthétisées : des fils nanométriques de 8 nm de diamètre, des plaquettes mais aussi des particules de formes plus originales telles que des haltères. Les variations de morphologie sont marquées par des modifications structurales et des différences de compositions chimiques locales. Les fils se développent suivant l'axe c de la structure hexagonale et les extrémités des particules sont souvent enrichies en nickel. Les études magnétiques de ces particules montrent que les variations des propriétés magnétiques sont intimement liées à leur forme. L'analyse du système avant réduction révèle que l'origine de ces formes résulte d'une différence de réactivité du cobalt et du nickel dans le milieu.
En ce qui concerne la formation induite par un template, des fils métalliques de 6 nm et de longueurs microniques alignés en 2D ont pu être synthétisés un milieu biphasique polyol/toluène. Ils proviennent certainement d'une organisation et d'une coalescence orientée de particules d'argent le long des fibres de thiolate d'argent.
Kawtharani, Farah. "Préparation de nanoparticules d’argent stabilisées dans des nanocristaux de zéolithe Beta : caractérisation de la photodynamique plasmonique ultrarapide et de la réactivité vis-à-vis du monoxyde de carbone." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10011.
Full textBEA-type zeolites stabilized in colloidal suspensions were functionalized with silver nanoparticles confined in their microporous volume. Silver was introduced into the zeolitic framework by ion-exchange. Silver nanoparticles were then formed via chemical reduction using triethylamine as a reducing agent. The study was performed on two samples: 1Ag-BEA and 2Ag-BEA, having different Si : Al ratio of 12 and 8.5, respectively. A protocol for the preparation of stabilized silver nanoparticles in BEA zeolite was established. The prepared silver-containing BEA suspensions were characterized by ICP, X-ray diffraction, thermogravimetry, scanning electron microscopy and transmission electron microscopy (HRTEM). The UV-vis absorption spectra of the colloidal suspensions and the HRTEM pictures reveal the formation of ultra-small silver nanoparticles confined in the zeolite nanocrystals. The ultra-fast plasmonic response of the colloidal suspensions was investigated by using femtosecond transient absorption spectroscopy. The transient absorption spectra were recorded after excitation of the sample by 100 fs laser pulses at 400 nm inducing the formation of hot electrons in the conduction band. Assignment of the absorption spectra to the steps of hot electron relaxation was identified. The dynamics of electron-phonon coupling was analyzed in the frame of two-temperature model TTM. Results show that, a part of the energy initially injected inside the conduction band doesn’t relax to the phonons of silver nanoparticles. In addition, the reactivity of Ag-BEA to carbon monoxide was characterized by in-situ FTIR spectroscopy. These measurements were used to confirm the dispersion of silver nanoparticles in the matrix of BEA. The photoactivity and reactivity of Ag-BEA samples make them attractive for plasmonic chemistry applications
Diallo, Amadou thierno. "Etude de l’effet plasmonique des nanoparticules métalliques aléatoires sur les performances des diodes électroluminescences organiques." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCD079.
Full textThis thesis focuses on the utilization of localized surface plasmon resonances (LSPR) of metallic nanoparticles (NPs) to improve the performance of Organic Light Emitting Diodes (OLEDs). In particular, we focused on randomly dispersed NPs by thermal evaporation during the OLED fabrication process. In the first part of the experimental work, we focused on the fabrication and study of random NPs of silver. The effects of their position with respect to the emissive layer (EML) were studied. The results show improvements in electrical and optical performance of OLEDs incorporating these NPs for EML-NPs distances greater than 15 nm. Subsequently, we were interested in the study of the plasmonic field range action by developing an original method based on the use of a DCM red-emitting layer embedded in Alq3 green EML. By varying the position of this thin layer of DCM, it was possible to probe at the nanoscale the extent of the effects of Au NPs in particular on the variation of the luminous efficiency of the OLED. Finally, we studied the influence of Al plasmonic nanoparticles (NPs) on the performance of a blue OLED subjected to the emission of exciplexes. The results show that in the case of OLED with Al-NPs, the emission of exciplexes is reduced thanks to the LSPR effect and the luminous efficiency of the plasmonic device indicates a 53% improvement over that of the OLED without NPs
Forato, Florian. "Applications de la chimie des acides phosphoniques dans le domaine de la catalyse et des biotechnologies." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4047/document.
Full textThis thesis, lying between material chemistry, organic chemistry and biology, deals with the use of organic / inorganic hybrid materials for applications in the fields of catalysis and biotechnology. First, the influence of heterogenization of rhodium/2,2'- bipyridine complexes with respect to competitive alkene/ketone hydrogenation has been studied. In a second step, the objective is to use the surface plasmon resonance phenomenon in order to increase the catalytic properties of an organometallic complex. New nanocomposites were made from silver nanoparticles and were irradiated by a monochromatic light source (488 nm) during the catalytic tests. Finally, this thesis relates the development of zirconium phosphonate support for the production of a protein microarray
Orozco, montes Maileth. "Implémentation d'un générateur de nanoparticules en phase gazeuse fondé sur la pulvérisation cathodique magnétron pour la synthèse de films minces nanocomposities céramique/nanoparticules métalliques." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0082/document.
Full textThis thesis is dedicated to the study of free nanoparticles (NPs) source based on magnetron sputtering. Setting up an optical emission spectrometer and a quartz microbalance allowed to observe the influence of the process parameters (gas composition and flow rate, cathodic current, magnetic configuration) on the plasma species and the NPs deposition rate. This lead to a better understanding of the process and the establishment of a process operating windows. Transmission Electron Microscopy (TEM) analysis revealed crystallized silver NPs whose size increased (from 2.5 ± 0.5 nm to 5.2 ± 0.5 nm in diameter) when the aggregation length increased. The free NPs source coupled to a conventional magnetron sputtering chamber allowed the deposition of nanocomposites thin films consisting of metallic NPs (Cu ou Ag) embedded in dielectric transparent amorphous matrix (aluminum nitride or oxide). A red shift of the Surface Plasmon Resonance (SPR) was observed with the increase of the matrix permittivity value. A broadening of the SPR with the decrease of the NPs size was also evidenced. Finally, the electrical properties of the nanocomposites have been studied by means of a Metal/Insulator/Metal capacitor pointing out a modulation of the permittivity with the silver NPs content (5% and 10% vol.)
Toudert, Johann. "Croissance, nanostructure et réponse optique de films minces d'agrégats d'argent dans des matrices diélectriques." Phd thesis, Université de Poitiers, 2005. http://tel.archives-ouvertes.fr/tel-00502443.
Full textSiskova, Karolina. "Elaboration de nouvelles nanostructures d'Argent, obtenues par abblation laser, pour caractériser des macro- et biomolécules par spectroscopie Raman exaltée par effet de surface." Paris 6, 2006. http://www.theses.fr/2006PA066509.
Full textWojcieszak, Robert Bettahar Mohammed El-Miloud. "Catalyseurs de nickel Supportés Préparés par la Méthode de l'Hydrazine Aqueuse. Propriétés Hydrogénantes et Stockage d'Hydrogène Effet du Support. Effet de l'Ajout d'Argent /." [S.l.] : [s.n.], 2006. http://www.scd.uhp-nancy.fr/docnum/SCD_T_2006_0023_WOJCIESZAK.pdf.
Full textWojcieszak, Robert. "Catalyseurs de nickel Supportés Préparés par la Méthode de l'Hydrazine Aqueuse. Propriétés Hydrogénantes et Stockage d'Hydrogène : Effet du Support. Effet de l'Ajout d'Argent." Nancy 1, 2006. http://docnum.univ-lorraine.fr/public/SCD_T_2006_0023_WOJCIESZAK.pdf.
Full textWe have studied Ni or NiAg nanoparticles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports (g-Al2O3, amorphous or crystallized SiO2, Nb2O5, CeO2 and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N2, FTIR and FTIR-Pyridine, TEM, STEM, EDS, H2-TPR, H2-adsorption, H2-TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO2 or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0. 53%/30 bars), probably through the hydrogen spillover effect
Ebabe, Elle Etienne Raymond. "Le double aspect des nanoparticules manufacturées sur les métabolismes oxydatifs et inflammatoires : effets délétères et effets protecteurs." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT008/document.
Full textThe purpose of this study is to explore the effects of nanoparticles (silver and silica) manufactured on oxidative and inflammatory metabolism. In the first part of this work, we explored the in vivo toxicity from ingestion of silver nanoparticles, for 11 weeks, in an animal model - Sprague Dawley rat. This enabled us to demonstrate the toxic properties of silver nanoparticles including superoxide anion production by hepatic and cardiac NADPH oxidases, dyslipidemia, hepatic cytolysis, an increase in proinflammatory cytokines and a downward trend the activity of antioxidant enzymes. This led us to address the in vitro study on intestinal cell models (Caco-2) and cutaneous (HaCaT). During this study, silica nanoparticles, functionalized or not with anti-oxidants, were incubated for 24 hours in the presence of the cells. We show that the modification of the surface of the nanoparticles significantly reduces their toxicity limiting the production of free radical species and cell death. Furthermore, the coupling with an anti-oxidant increases the stimulation of Nrf2 factor that involves the protection of the body against disorders associated with radical species. In summary, this work highlights the potential of vectorization of antioxidants with nanoparticles for therapeutic purposes