Dissertations / Theses on the topic 'Nanoparticules de TiO₂ (dioxyde de titane)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 48 dissertations / theses for your research on the topic 'Nanoparticules de TiO₂ (dioxyde de titane).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Koelsch, Magali. "Nanoparticules de TiO2 : contrôle structural, morphologique, dimensionnel et propriétés électrochimiques." Paris 6, 2004. http://www.theses.fr/2004PA066175.
Full textJomini, Stéphane. "Effets des nanoparticules de dioxyde de titane sur les bactéries : de la cellule à la communauté." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0098/document.
Full textNanoparticles have either natural or anthropogenic origin. By technological change, man produces increasing amounts of nanoparticles likely to end in the environment. To prevent inherent risks to human health or environment from these releases, it is necessary to characterize the best potential effects of nanoparticles and to identify the mechanisms governing their interactions with exposed organisms. In this context, the first objective of this work was to highlight the mechanisms governing interactions between nanoparticles and bacteria and document the influence of these interactions on toxicity and genotoxicity of NPs for bacteria. The second objective was to determine how this toxicity and genotoxicity could impact bacteria at community level. Results showed that electrostatic attractive interaction between bacteria and TiO2-NPs conditioned adsorption of nanoparticles on bacterial surfaces and led to the detection of toxicity modulated by electrolytes in solution. In addition, the biophysical determinants of bacterial interphase, particularly the length of LPS and protein type flush with the outer membrane surface, are key parameters in adverse potential of NPs for microorganisms. Taking into account these interactions, we highlighted the mutagenic potential of TiO2-NPs. Toxic and genotoxic effect was found, leading to study the effects on bacterial communities. It has been demonstrated that TiO2-NPs altered the composition, structure and prevalence of planktonic and sessile communities of an aquatic natural freshwater. These studies highlight the potential impact of TiO2-NPs on bacteria in a risk assessment context and suggest that nanoparticles may impact microbial communities and could present a risk to the ecosystem functioning
Oumahi, Camella. "Elaboration de catalyseurs hétérogènes en milieu liquide ionique : nanoparticules métalliques (Au et Au-Pd) supportées sur dioxyde de titane." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066503/document.
Full textThis work deals with the elaboration of heterogeneous catalysts in ionic liquids (ILs). These salts, liquid at room temperature, were chosen because they permit to adjust the solvent properties depending on their chemical composition (imidazolium salts or Deep Eutectic Solvent based on choline chloride and urea). These solvents allowed the synthesis and deposition of Au and Au-Pd nanoparticles (NPs) on TiO2. The IL nature controls the NPs stability in solution, the strength of the metal/support interaction and the nanostructuration of bimetallic particles. The catalysts performances, evaluated by selective hydrogenation, showed an increase in activity of the Au monometallic catalysts after addition of Pd, a promotion of the catalysts activity due to the presence of P residues from the ILs and an inhibition of the activity caused by S species. TiO2 supports were also prepared in DES. The use of this IL, in addition to a specific Ti precursor, led to a textural and structural control of the obtained polymorphs (anatase, rutile or anatase-rutile mixture). The influence of the support type was studied in CO oxidation after Au deposition by urea deposition-precipitation. The most active Au/TiO2 catalysts were obtained with anatase-rutile mixtures, the vicinity between anatase and rutile phases leading to an optimum activity and stability.This work deals with the elaboration of heterogeneous catalysts in ionic liquids (ILs). These salts, liquid at room temperature, were chosen because they permit to adjust the solvent properties depending on their chemical composition (imidazolium salts or Deep Eutectic Solvent based on choline chloride and urea). These solvents allowed the synthesis and deposition of Au and Au-Pd nanoparticles (NPs) on TiO2. The IL nature controls the NPs stability in solution, the strength of the metal/support interaction and the nanostructuration of bimetallic particles. The catalysts performances, evaluated by selective hydrogenation, showed an increase in activity of the Au monometallic catalysts after addition of Pd, a promotion of the catalysts activity due to the presence of P residues from the ILs and an inhibition of the activity caused by S species. TiO2 supports were also prepared in DES. The use of this IL, in addition to a specific Ti precursor, led to a textural and structural control of the obtained polymorphs (anatase, rutile or anatase-rutile mixture). The influence of the support type was studied in CO oxidation after Au deposition by urea deposition-precipitation. The most active Au/TiO2 catalysts were obtained with anatase-rutile mixtures, the vicinity between anatase and rutile phases leading to an optimum activity and stability
Diazgomez, Trevino Ana Paola. "Élaboration de matériaux hybrides organiques-inorganiques à base de nanoparticules de TiO₂ : modification et étude de la composante organique." Thesis, Paris 13, 2019. http://www.theses.fr/2019PA131080.
Full textTiO₂-based nanoparticulate organic-iniorganic hybrid materials with the organic component consisting of co-polymers were prepared. A successful association of hydrophobic and hydrophilic organics makes the hybrid solutions stable against atmospheric moisture and preserved single nanoparticle morphology at high inorganics concentrations up to 3 mol/l Ti over a week. The compositional modifications of the hybrids were investigated at the solvent exchange and polymerization stages of preparation. It was shown that the inorganic nanoparticles retain solvent molecules at the surface even at high temperatures above boiling point (up to the organics decomposition temperature). The nanoparticles also catalyze the organics decomposition shifting this process to lower temperatures. The major products of HEMAisopropanol decomposition were assigned to 2-methyl propionic acid and 2-hydroxy ethyl acetate and methyl methacrylate, which last was also observed as the synthesis impurity. The quantities of the released species were proportional to the nanoparticles concentration. The TEM measurements evidenced unprecedently homogenous distribution of the smallest nanoparticles of the size 3.0 nm previously assigned to nucleus, which serves as elementary building block of TiO₂ solids. These findings have to be taken into consideration by investigating electronic properties of the materials and determining their application fields. We evaluated availability of the obtained nanoparticulate organic-inorganic hybrid materials for micromashining via DLW (2PP) processing
Jouenne, Vincent. "Nanocristaux de dioxyde de titane à morphologie contrôlée : synthèse, suspensions colloïdales et dépôt par électrophorèse." Nantes, 2013. http://archive.bu.univ-nantes.fr/pollux/show.action?id=c3b26761-dabc-43ff-ab7b-2fe3f95f0dd4.
Full textTitanium dioxide, owing unique photoactive properties, is a key material for the fabrication of a IIIrd generation photovoltaic cell. In the strategy developed in IMN, its optimal incorporation in this device requires the elaboration of a thin and dense TiO2 layer surmounted by a nanostructured and porous layer. To make these deposits, a low temperature process (< 200°C) has been developed. First of all, this work has concerned the study of a synthetic strategy based on the hydrolysis of the [Ti8O12(H2O)24]Cl8. HCl. 7H2O precursor in alcoholic media with surfactants in solvothermal conditions. Many different TiO2 anatase nanocrystal morphologies (spherical, rod-like, rhombic platelets) with a good cristallinity have been obtained with both, oleic acid and/or oleylamine, as surfactants and controlled with a judicious choice of experimental parameters, such as the molar ratio between these two surfactants. Then, the surface nanocrystals has been characterized and optimized to allow the preparation of stable colloidal solutions in appropriated solvents in order to elaborate deposits by wet or electrophoretic (EPD) routes. Dense TiO2 layers with a 25 to 60 nm thickness have been realized by spin-coating, whereas porous deposits with tunable thickness (from 70 nm to 2. 2 μm) have been performed by EPD on plane substrates. Finally, the formation of TiO2 nanopillars (diameter ~ 150-200 nm, L ~ 1–3 μm), by electrophoresis confined inside the pores of nanoporous templates, has been performed
Bettini, Sarah. "Devenir et effets des particules de dioxyde de titane (TiO2) après exposition orale chez le rat." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30333.
Full textTitanium dioxide (TiO2) is a white pigment commonly used as a food additive (E171 in Europe). Few studies have evaluated the oral toxicity of TiO2, and they are mainly based on nanoparticles models such as P25 Aeroxide (NM-105). Unlike E171 which is composed of nanoscale and submicron particles, P25 is strictly nanosized. Therefore, it is necessary to determine the specific fate and effects of E171 additive in an oral exposure through food. For this purpose, rats were orally exposed with E171 or NM-105, at a dose close to dietary exposure in humans (10mg/kg/day), for a short period of a week for the two TiO2, by daily gavage, and up to a sub-chronic exposure (30 and 60 days) and chronic exposure (100 days) for E171 through drinking water. After a short-term treatment, titanium is found in the liver and gut, and more particularly in Peyer's patches (intestinal lymphoid tissue sentinel of immunity). In this organ, titanium was found in the cytoplasm and in the nucleus of immune cells. However, no genotoxicity of E171 as NM-105 is observed in the gut and in the blood with the comet assay. Also after 100 days of E171 exposure, no genotoxicity estimated by the dosage of oxidative DNA damage appears in the gut. In its steady state, the intestinal immune system organizes the defenses of the host against pathogens, while maintaining tolerance to the intestinal microbiota and the food antigens. In our study, the two TiO2 do not induce an inflammation in the intestinal mucosa after one week of daily treatment, however the network of cells involved in the tolerogenic functions of the intestine is disturbed. Furthermore, the cytokine profile of lymphocytes secretion is modified in mesenteric lymph nodes and in the spleen, reflecting an activation of the pro-inflammatory pathways, in particular the Th17 pathway response known to play a role in the pathogenesis of the autoimmune diseases. However, after a sub-chronic exposure of 60 days, the induction of the oral tolerance is not disrupted by the oral exposure to E171. However, an enhancer effect of the immune response is observed at the systemic level, susceptible to result from "adjuvant" properties of the product. Finally in the colon, after a chronic exposure of 100 days, a microinflammation is observed in the exposed mucosa. Moreover, an initiation and a promotion of the development of preneoplastic lesions are found (corresponding to aberrant crypt foci in the colon), in absence and in presence of a chemically-induced carcinogenesis, respectively. Our results show a systemic passage of the particles of TiO2 as well as the accumulation of titanium in the immune cells of the gut. Furthermore, for the first time, our data suggest that E171 and P25 are immunomodulatory and susceptible to favor a typical inflammatory field for the autoimmune diseases. These data could be considered for the evaluation of the risk, in the susceptibility towards immune pathologies and in colorectal cancer, in human daily exposed to TiO2 from dietary sources
Garrec, Ronan. "Caractérisation photoélectrochimique de nanoparticules de dioxyede de titane déposées sur verre : application aux vitrages auto-nettoyants." Grenoble INPG, 2001. http://www.theses.fr/2001INPG0032.
Full textNowaday, the building market is looking for new materials, especially glasses with self-cleaning properties which do not need much maintenance. Photoreactive surfaces containing titaniµm dioxide nanoparticles seem to be very well suited to this application. In fact, under an UV radiation, these surfaces are able to degrade, by mean of a photocatalytic process, a wide range of organic residues. This work consists in the photoelectrochemical characterisation of thoses photoreactive surfaces made with TiO2 nanoparticles and a binder. By photoelectrochemistry, it was possible to characterized the semi-conductìng properties of thoses nanoparticles and to observe an unusual behavior. The analysis of all the datas issues of photoelectrochemícal and photocatalytical experiments allowed to elucidate a mechanism involving a co-operation between the nanoparticles and the binder. The electron-hole pair is created in the nanoparticle and the binder supports the evacuation of the electron by an adequate band energy level. Acting on the nanoparticles-binder system, it could be possible to obtain the best performing self-cleaning glasses
Dorier, Marie. "Impact du colorant alimentaire E171 et de nanoparticules de dioxyde de titane sur des modèles cellulaires, in vitro, d'épithélium intestinal." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV082/document.
Full textMicro-sized titanium dioxide (TiO2) particles are used for years by industrials for their attractive physical and chemical properties. The use of TiO2 nanoparticles (NPs) is also constantly increasing, because the nanometric size gives new interesting properties to particles which industrials are looking for. In some daily-life products including paints, plastics, paper, medicines and food, micro-sized TiO2 particles are used as a pigment for their opacifying and whitening capacities. The use of TiO2 as a food additive, i.e. E171 in the EU, has been authorized in most countries since the 60ies, without any established acceptable daily intake, because of their low toxicity and intestinal absorption. However, it was recently shown that E171 can contain up to 43% of particles with diameter ranging from 1 to 100 nm, i.e. NPs. Still, E171 is not a nanomaterial as described in the European recommendation of definition because it contains less than 50% of NPs (in number). Food grade TiO2 is present in a wide range of food products while little is known about its toxicological impact to human health. The toxicity of ingested TiO2, either nano- or micro-sized, is increasingly documented, still E171 itself is rarely used in these studies.According to in vivo and in vitro studies, TiO2 particles were proven relatively safe for intestinal cells, no cytotoxicity neither genotoxicity were reported. Nevertheless, particles were often reported to increase reactive oxygen species (ROS) cell content, to impair autophagic processes and modulate gene expression and the content of proteins involved in oxidative stress, endoplasmic reticulum stress and inflammatory response regulation. Interestingly, their reported impact on intestinal cells suggests alteration of almost all the components of the intestinal barrier function, i.e. microbiota, mucus, cell junctions and transporters. This intestinal barrier function is altered in patients suffering from intestinal bowel diseases, these persons are thus possibly more sensitive to mineral particulate in food.The present study aimed at improving knowledge on the toxicity of food-grade TiO2. To this purpose, the impact of E171 was evaluated on in vitro cell models representative of the human intestinal epithelium, i.e. a model of differentiated Caco-2 enterocytes, a model of mucus-secreting epithelium obtained by coculture of Caco-2 and HT29-MTX mucus-secreting cells and a model of the follicle-associated epithelium, which lines Peyer patches, obtained by coculture of Caco-2(C1) and RajiB cells. These cell models were either acutely exposed for 6 h, 24 h and 48 h or chronically exposed for 21 days to E171. In parallel, they were exposed to two model TiO2-NPs, A12 which has the same crystalline structure as E171 and P25, a well-documented TiO2-NPs. Our results show that E171 and TiO2-NPs induced no overt cell mortality but significant oxidative stress, and that they oxidatively damage DNA. They modulate the expression of genes involved in oxidative stress and endoplasmic reticulum stress regulation. They also modulate the expression of genes, as well as the content of proteins from mucus, ABC transporters and inflammatory markers, which are the main players of the intestinal barrier function and presumably increase epithelium sensitivity to xenobiotics. These data suggest that they may be implicated in the development or aggravation of inflammatory bowel diseases
Michel-Gressel, Elodie. "Thermohydrolyse micro-onde,des nanoparticules aux films minces : application à SnO2 et TiO2 rutile et anatase." Dijon, 2003. http://www.theses.fr/2003DIJOS029.
Full textToloni, Ivan. "Transport de nanoparticules de TiO2 en milieux poreux saturés et non saturés : expériences et modélisation." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAH018/document.
Full textThe transport of manufactured titanium dioxide (TiO2, rutile) nanoparticles (NP) in porous media was investigated under different saturation, water velocity and ionic strength (IS) conditions. The breakthrough curves show that the amount of retained NPs decreases when the water velocity increased and that TiO2 NP retention is influenced by the water content for values of IS larger than 3mM KCl. It can be assumed that the interface between air and water (AWI) does not retain TiO2 NPfor IS equal to, or smaller than, 3 mM KCl.The breakthrough curves with an IS of 5mM KCl, influenced by water content profile and watervelocity profile, were modeled. The 3P transport model was developed to describe the retention ofTiO2 NP, taking into account the AWI and the effects of the water velocity. This model depends on three parameters and takes into account the water content profile of the porous medium, modeled through the previously identified hydrodynamic parameters. The 3P model provides a better data description than the classic Langmuirian retention model, often used in the literature. Moreover, it can be applied under both saturated and unsaturated conditions
Le, trequesser Quentin. "Synthèse de nanoparticules de dioxyde de titane de morphologies contrôlées : localisation, quantification et aspects toxicologiques de la cellule à l'organisme pluricellulaire." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0047/document.
Full textTitanium dioxide nanoparticles are nowadays used in numerous domains. Theyenter in particular in the constitution of every day’s products such as paints or cosmetics(sun screen). The nanometer scale gives them a high reactivity which raises worries abouttheir possible toxicity. Nanoparticles with controlled morphologies were synthesized andcharacterized. They were then introduced in the medium of human cells in cultivation inorder to observe in vitro interactions and identify the reasons of this toxicity. The study wasthen extended to in vivo with a multi-cellular specimen: the nematode Caenorhabditiselegans (C. elegans).Researches have been focalized on detection, tracking and quantification of nanoparticles atthe scale of single-cells and then in nematodes. The different kinds of synthesizednanoparticles allowed identifying the physico-chemical properties involved in their toxicity.Ion beam analyses were conducted in order to visualize and in some case quantify thisnano-objects at the single cell-scale
Disdier, Clémence. "Evaluation of TiO2 exposure impact on adult and vulnerable brains." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS097/document.
Full textThe overwhelming presence of nanoparticles (NPs) in products including foods, medications, cosmetics, or textiles raises serious concerns about their potential harmful effects on human health. In the wide diversity of NPs, titanium dioxide (TiO2) NPs are among those produced on a large industrial scale and can already be found in several commercial products such as paints, cosmetics or in environmental decontamination systems. In the past, TiO2 NPs was considered inert, but, very recently, the International Agency for Research in Cancer (IARC) has classified TiO2 as possibly carcinogenic (group 2B) to human beings. Numerous in vitro and in vivo studies have shown the potential neuro-toxicity of TiO2 NPs, but very few studies focus on the central nervous system (CNS), Nowadays, notwithstanding the reported advances, the biokinetic and bioaccumulation ofTiO2 NPs and the consequences on the physiology of the blood-brain barrier (BBB) in vivo are unknown. In addition, NPs effect on susceptible population such as the elderly have been mostly ignored. In this context, the target of the present studies is to evaluate the in vivo impact of exposure to NPs on the BBB physiology and brain inflammation which could promote neurotoxicity in young adults and aging. Our results have shown that TiO2 NPs bioaccumulate in organs and tissues (lungs, spleen and liver especially) and don’t translocate to the brain either after IV or subacute inhalation exposure. In IV administration case, the direct interaction between NPs and brain endothelial cells induces BBB functional alterations. Despite the lack of CNS translocation, the biopersistence of titanium in peripheral organs may be indirectly the cause of BBB permeability alteration and brain inflammation. The involvement of circulating mediators linking titanium biopersitence in peripheral organs and brain impact has been demonstrated using an in vitro BBB model. An exacerbated response in term of neuro-inflammation and BBB permeability modulation has established the vulnerability of the aging brain to inhaled NPs toxicity. Taken together, our findings demonstrated that despite lack of brain translocation, exposure to TiO2 NPs induce BBB physiology alteration and neuro-inflammation that may lead to CNS disorders. Thereafter, identification of mediators and description of the neurotoxic effects may complete the assessment of the impact of TiO2 NPs exposure on the brain
Rowenczyk, Laura. "Vieillissement de nanoparticules de TiO2 en lotion solaire : évolution de leur impact sur des germes représentatifs du microbiote cutané." Thesis, Le Havre, 2016. http://www.theses.fr/2016LEHA0036/document.
Full textNanoparticles of titanium dioxide (TiO2) are currently used in cosmetics, especially in sunscreens, because of their interesting optical properties. However, the TiO2 is really reactive and could promote the formation of dangerous species for the cutaneous cells. For that reason, these particles are passivated by the application of inert surface treatments. Other coatings could be added in order to improve the dispersion of nanoparticles in the emulsion. Hence, the cosmetic grades of TiO2-nanoparticles have diverse physicochemical surface properties and their behavior in cosmetic use is uncertain. In this work, nanoparticles/emulsion systems were studied during their accelerated aging, mimicking use conditions. First, the impact of two nanoparticles with different surface treatments were tested on the (de)stabilization mechanisms in emulsions. Then, the nanoparticles were characterized within the emulsions and highlighted quick surface modifications. As these changed the physicochemical surface properties of the nanoparticles, they were taken into account during the evaluation of the NP impact on cutaneous bacteria
Ali, Ahmad Mouhamad. "Energie de surface de nanoparticules de TiO2-anatase. Mesure des effets de taille, morphologie et cristallinité par molécules sondes." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20182/document.
Full textIn order to study the relationships between the particle size, the morphology and the surface energy properties of divided solids, several batches of TiO2 anatase were synthesized. A series of materials with morphologies ranging from spheroidal to well faceted, with particle sizes ranging from 4 to 20 nm were obtained by adjusting the pH conditions and the presence of organic acids. The surface heterogeneity of these materials, at solid/gas and solid/liquid interfaces, was studied by combining various molecular probes. The low pressure quasi-equilibrium adsorption volumetry (N2/Ar) coupled with the DIS modeling approach and the flow adsorption microcalorimetry (NH3) have evidenced the various contributions of crystallographic faces and the effect of the crystallinity. These properties have also been analyzed using potentiometric titration in aqueous medium (H+/OH-), coupled with the TDIS procedure, to determine PZC and proton affinity distributions. Such a strategy has led to a complete study of the energetic and geometric surface properties of these nanomaterials
Wojciechowska, Joanna. "Ru/TiO2-based catalysts for the hydrogenation of levulinic acid using formic acid as internal hydrogen source." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF061/document.
Full textActive and selective Ru catalysts based on TiO2 supports have been developed for the combined hydrogenation of levulinic acid to γ-valerolactone with internal hydrogen supply via in-situ formic acid decomposition. A controlled modification of the TiO2 support by Ca2+ improved the catalytic performance in the one-pot hydrogenation, as a result of enhanced performances in both the formic acid dehydrogenation and the levulinic acid hydrogenation. The improved performances were associated to stronger Ru/support interactions with weaker CO adsorption, as well as to an increased support basicity. The performances were further exalted thanks to a one-step solar light photon-assisted synthesis method used as sustainable alternative to classical wet impregnation. It enabled the uniform dispersion of sub-nanometric metallic Ru particles with narrow distribution and fine size monitoring, and a volcano-type profile centered at 1.5 nm was demonstrated between the nanoparticle size and the activity
RENAULT, MORCRETTE ALICE. "Etude de la photoactivite du dioxyde de titane tio 2 : apport de la resonance paramagnetique electronique." Paris 6, 2000. http://www.theses.fr/2000PA066406.
Full textArmand, Lucie. "Effet des nanoparticules de dioxyde de titane sur les métalloprotéases, influence des paramètres physicochimiques." Phd thesis, AgroParisTech, 2011. http://pastel.archives-ouvertes.fr/pastel-00771963.
Full textLiu, Chia-Erh. "Synthèse et caractérisation de nano-cristallites de TiO² à basse température : stabilisation de solutions colloïdales et dépôts par voie chimique." Nantes, 2008. http://www.theses.fr/2008NANT2049.
Full textD'Elia, Daniela. "Elaboration et étude de nanostructures de TiO2 pour la production d'hydrogène par photolyse de l'eau." Paris, ENMP, 2011. https://pastel.archives-ouvertes.fr/pastel-00636920.
Full textHydrogen is considered as an energy carrier of high potentiality to face problems related to the climate change and the depletion of fossil resources. Among the necessary improvements, its production through clean processes is still a big challenge. The water photolysis process under sun irradiation is one of the most relevant ones (usage of renewable energy, abundant and cheap catalyst, room temperature. . . ). The energetic efficiency is however still too low. The objective of this thesis is to study the impact of the morphology and the nanostructure of the reference semiconductor - titanium dioxide (TiO2) - on its performa nce for water splitting. To this end, three types of radically different anatase nanostructures have been prepared and finely characterized: i) nanoparticles (precipitation followed by hydrothermal crystallisation), ii) elongated nanowire-like structures ("Kasuga" process) and iii) aerogels and xerogels like nanostructured materials. The most original ones have been doped following literature processes in order to get vanadium doped nanowires and nitrogen doped aerogels and xerogels. Slurries of the most promising materials have then been evaluated for hydrogen evolution, with or without platinum co-catalyst. It came out from this study that the nanowires and the aerogels were relevant for the foreseen application. Under the chosen experimental conditions, aerogels showed a conversion activity clearly higher than that of the reference photocatalyst (a mixture of anatase and rutile)
Bouhadoun, Sarah. "Synthèse de nanoparticules de dioxyde de titane par pyrolyse laser et leur application en photocatalyse." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS003/document.
Full textTitanium dioxide is the most widely used photocatalyst due to its amazing properties. However, TiO2 is activated by UV radiation which represent about 4-5 % of solar light. One aim of this work is to shift the adsorption of TiO2 to the visible range while maintaining photoactivity under UV. Therefore N-doped and gold modified TiO2 nanoparticles have been synthesized in one step by laser pyrolysis. The materials have been characterized; their photocatalytic activity was evaluated by the degradation of carboxylic acids (C1-C4) under both UV and Visible irradiation. When dealing with the decomposition of formic acid under UV light, all samples exhibit a higher activity compared to commercial P25. Modification with Au increases the reaction rate by enhancing charge separation, while N-doped sample are less efficient due to recombination centers induced by Nitrogen. These results were correlated to the dynamic of electron/hole pairs studied by TRMC (Time Resolved Microwave Conductivity). Moreover, the combination of Au and N showed an efficiency similar to commercial P25 under UV irradiation associated to photoactivity in the visible range. In the case of C2-C4 acids, photocatalytic performances of all photocatalysts are similar to commercial P25 under UV, but very weak under visible light. Degradation mechanisms were investigated by ESR (Electron Spin Resonance)
Salou, Samantha Eva. "Détection et quantification de nanoparticules de dioxyde de titane dans les fluides biologiques par Simple Particule ICP-MS." Doctoral thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/68758.
Full textThe use of nanoparticles has revolutionized many industrial sectors, including cosmetics, food and even pharmaceuticals. Their omnipresence in consumer products is raising major concerns about users’ health. Titanium dioxide is widely used as a food additive, whitening agent or UV filter. Its extensive use exposes humans to potential risk of toxicity. Many epidemiological studies on animals have highlighted the harmful effects of chronic exposure on various organs, sometimes leading to numerous diseases. In the case of the analysis of biological fluids, the existing methods of quantification are not suitable. Blood and urine being complex matrices, commonly used analytical tools suffer from a lack of sensitivity, specificity and selectivity. In order to overcome these limitations, it is essential to develop faster, simpler, more precise and robust methods based on innovative approaches to be able to detect and quantify titanium dioxide nanoparticles in these biological matrices. This project is part of a global vision to understand and assess human exposure to titanium dioxide nanoparticles. The aim of this thesis is to develop unique innovative methods that can be employed on a routine basis to detect and quantify those nanoparticles in various biological fluids such as urine and blood. Particular attention should be paid to the sample preparation, as most analytical techniques require particle suspension. Titanium dioxide having a strong tendency to agglomerate or aggregate, an approach to stabilize suspensions had to be optimized to ensure reliable size and concentration determination. Analytical methods were developed using an innovative technique, Simple Particle-ICP-MS, dedicated to monitoring individual nanoparticles. This specialized technique is a fast, robust, sensitive metrological tool requiring limited sample preparation. Urine and blood samples are spiked with titanium dioxide nanoparticles to optimize the detection parameters. To ensure the reliability of those methods and use them in a routine mode, validation according the ISO/CEI 17025:2017 guidelines is essential. Thus, this thesis presents a complete methodology for the analysis of titanium dioxide nanoparticles in urine and blood samples. To guide the reader, a theoretical part dealing with the physico-chemical properties of the element of interest will be provided. In addition, overall strategies on their quantification will also be detailed in order to demonstrate the novelty of this work.
Ishchenko, Olga. "Elaboration of plasmonic nano-composites and study of their specific catalytic activities." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAF042/document.
Full textThe objective of this thesis is to improve the photo-response of well-known photocatalytic material such as TiO2, which is usually only active in the UV range. The basic idea is to assemble several approaches within one device to improve the photocatalytic properties: fabrication of periodically-organised TiO2 nanostructures and their assembly with plasmonic nanoparticles. Two fabrication strategies were investigated for these purposes. The first approach consists of selective vapour phase growth. The second approach implements the use of an AAO template. In parallel, TiO2 films deposited by ALD and assembled with plasmonic gold nanoparticles are investigated. The photocatalytic measurements on various TiO2 architectures were performed in both irradiation ranges UV and Vis. A new fabrication approach of mesoporous H-TiO2 films was developed giving promising results of photocatalytic efficiency improvement in both UV and Visible ranges
Bernier, Marie-Charlotte. "Étude des interactions de nanoparticules de dioxyde de titane manufacturées avec des cellules et des biomolécules." Compiègne, 2011. http://www.theses.fr/2011COMP1973.
Full textThe small size (<100 nm) of titanium dioxide nanoparticles (nTiO2) gives them special properties that make them usefull for many everyday life applications (cosmetics, biomaterials. . . ). However, their effects on human health and the environment remain unkown or misunderstood. In this study, anatase nTiO2 and silica-coated rutile nTiO2 were tested on two murine cell lines: MC-3T3 pre-osteoblasts and L929 fibroblasts. In order to understand the cytotoxic mechanisms, TiO2 nanoparticles aggregation in different culture media and their interaction with fibronectin (Fn) –the major protein of the extracellular matrix– were studied. The consequences on MC-3T3 cell adhesion to Fn coatings were also evaluated. We have demonstrated that nTiO2 cytotoxicity depends on their concentration, the cell type, and the chemical nature of the nanoparticle surface. The interaction of nTiO2 with Fn and the decrease of cell adhesion also depend on the concentrations and surface’s nature of nanoparticles. Moreover, our cytoxicity studies concerning pre-osteoblasts have shown a secretion of high levels of the pro-inflammatory cytokine IL-6, known to mediate osteolysis by osteoclast activation. Thus, our study highlights the urgent need to reconsider the use of nanostructured biomaterials and to determine if they could inhibit bone reconstruction
Rossano, Manon. "Utilisation des nanoparticules de dioxyde de titane dans les émulsions cosmétiques : impact sur la santé humaine et l'environnement." Thesis, Le Havre, 2014. http://www.theses.fr/2014LEHA0003/document.
Full textTitanium dioxide, the most commonly used mineral compound in cosmetic sunscreen products, has recently been incorporated in the form of nanoparticles, which raises health issues. We have developed a protocol of oil-in-water emulsions that enables the incorporation of different amount (2.5-10%) of TiO2 nanoparticles coated with two distinct hydrophobic surface treatments: an isopropyl titanium triisostearate / triethoxycaprylylsilane hybrid coating and a triethoxycaprylylsilane coating. The incorporation of nanoparticles preserves the microscopic structure of the emulsion while enhancing the rheological properties. Physico-chemical analyses showed that the initial state of flocculation of the emulsions is coating-dependant. At 50°C, emulsions destabilize over time until a strong aggregation of nanoparticles, in a delayed way for the hybrid coating. Formulations with and without nanoparticles appear slightly cytotoxic, with an enhanced effect for high amount of TiO2 and for a 40 days aging at high temperatures. We have shown that the surface of nanoparticles extracted from the formulations has been modified during aging, due to an adsorption of chemicals of the emulsion to the nanoparticle surface. Such modified nanoparticles become more cytotoxic if compared to raw nanoparticles. Aging mechanisms can therefore release nanomaterials residues with an increased toxic activity compared to their initial state, and thus could lead to health hazard for humans and for the environment
Vu, Thi Thuy Duong. "TiO₂ and its derivatives : synthesis, characterization and application in H₂ production via water splitting and in bulk heterojunction solar cells." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/25661.
Full textIn a context of environmental crisis and depletion of conventional energy resources, the current energy model based on fossil fuels is obsolete and needs to be redefined and redesigned. Even though, there are many different renewable alternatives developed or under developing, which are expected to take a main role in the middle and long term. The use of energy from the sun is currently attracting much attention from the scientists. For example, hydrogen generation via water splitting and photovoltaic devices that convert directly sunlight into electricity become more competitive as the cost continues to decrease with the technology advancement. Taking this into account, this thesis is focused on the synthesis and modification of titanium dioxide nanoparticles (TiO2 NPs) and the development and optimization of devices based on these nanoparticles for photovoltaic applications and photocatalyst water splitting. The synthesis of TiO2 NPs was mainly emphasized on controlling the morphologies, especially their shape and size, by using different types of capping agents. TiO2 NPs with various shapes, such as nanosphere, nanorod, nanorhombic, and various sizes from 3 x 40 nm to 3 x 20 nm were achieved. The effects of capping agent on TiO2 NPs morphologies were characterized and analyzed carefully. Based on the developed TiO2 NPs, cadmium sulfide (CdS) was deposited on the surface of TiO2 NPs, and then was optimized for the hybrid bulk heterojunction solar cells (BHJs) and photocatalytic hydrogen production via water splitting. Especially, with the use of TiO2-based nanocomposites in BHJs systems, it showed improvement of around 17 times in power efficiency conversion compared to the system used unmodified TiO2 NPs. On the other hands, with the use of a new non-noble metal-nanocomposites composed of CdS/TiO2, and Nikel clusters, the performance of the photocatalytic hydrogen production via water splitting system was enhanced and it showed that the reaction is stable up to 15h.
D'Elia, Daniela. "Élaboration et étude de nanostructures de TiO2 pour la production d'hydrogène par photolyse de l'eau." Phd thesis, École Nationale Supérieure des Mines de Paris, 2011. http://pastel.archives-ouvertes.fr/pastel-00636920.
Full textBiola-Clier, Mathilde. "Génotoxicité et impact de nanoparticules de dioxyde de titane sur la réparation de l’ADN dans des cellules alvéolaires pulmonaires." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV004/document.
Full textTitanium dioxide (TiO2) belongs to the top nanoparticles (NPs) most produced worldwide. This raises the question of their impact on human health, especially through inhalation, which is the main exposure route in occupational settings. It was previously shown in vitro that these NPs induce DNA damage and impair DNA repair activity. The aim here is to study the underlying toxicity mechanisms, in human A549 epithelial alveolar cells exposed to 1-100 µg/ml TiO2 NPs during 4-48 h. The expression of 40 genes and 6 proteins involved in DNA repair was investigated by RT-qPCR and western-blotting. The impact of TiO2 NPs on upstream regulators such as the methylation rate of some corresponding gene promoters, proteasome activity and cellular signaling through phosphorylation was assayed as well. Moreover cyto-/geno-toxicity and DNA repair gene expression patterns were compared with those of BEAS-2B bronchial epithelial cells. Results show a global down-regulation of genes and proteins in all DNA repair pathways. This could be partly explained by the down-regulation of transcriptional regulators and increased gene promoter methylation and caspase-like proteasome activity. TiO2 NPs also scramble the phosphoproteome. While invisible on a global scale, this dysregulation affects numerous proteins involved in diverse cellular processes, which reflect the toxicity pathways reported for these NPs. Although cell proliferation is unaffected, a significant impact is observed on cell cycle, as well as on a few proteins involved in DNA repair. Finally cyto-/geno-toxicity and DNA repair gene expression profiles are similar in both A549 and BEAS-2B cells, thereby strengthening the relevance of using any of these cell lines in nanomaterial genotoxicity studies. On the whole these data bring novel insights into TiO2-NP toxicity mechanisms, which could especially explain the previously observed impairment of DNA repair activity
Bigorgne, Emilie. "Ecotoxicité des nanoparticules et des sous produits d'altération de dioxyde de titane sur le ver de terre, Eisenia fetida." Thesis, Metz, 2011. http://www.theses.fr/2011METZ034S/document.
Full textThe amount of nanomaterials produced annually is constantly increasing and this trend may result in a strong input of manufactured nanoparticles in air, water, soils, and therefore in contact with organisms. Among the manufactured nanoparticles, titanium dioxide (TiO2) nanoparticles have been produced massively for their photocatalytic properties and UV absorption ability. Surprisingly, ecotoxicological risks associated with TiO2 nanoparticles and TiO2 byproducts resulting from the alteration and aging of nanomaterials are poorly documented on terrestrial organisms. The potential toxicity of TiO2 nanoparticles and TiO2 byproducts on the earthworm Eisenia fetida has been evaluated, using different approaches: the first with in vitro assay to determine toxicity of TiO2 nanoparticles (1 to 25 µg/ml), the second with in vivo exposure of earthworm to liquid medium contaminated by TiO2 byproducts (0.1 to 10 mg/l) and the third with in vivo exposure to artificial soil contaminated by TiO2 nanoparticles (2 to 200 mg/kg) or TiO2 byproducts (2-20 mg/kg). Ecotoxicity of TiO2 nanomaterials was determined using a battery of biomarkers at different biological levels: survival and reproduction at individual level, cell viability (MTT and LDH assay), phagocytosis and apoptosis at cellular level, mRNA expression of detoxification (metallothioneins, GST), antioxidant (SOD, CAT) and immunes genes (CCF and fetidins) by RT-qPCR at molecular level. Our results showed that TiO2 nanoparticles were internalized by immune cells (in vitro assay) and titanium was bioaccumulated by worms exposed to TiO2 byproducts in artificial exposure assay (liquid medium). Molecular biomarkers (metallothioneins, CCF and fetidins) were sensitive to TiO2 nanoparticles after in vitro exposures, while both molecular (metallothioneins and SOD) and cellular (phagocytosis, apoptosis) biomarkers were sensitive to TiO2 byproducts in liquid medium after only 24 hours of exposure. In contrast, in more realistic conditions of exposure, no effect on life-history traits or molecular biomarker were noticed on earthworms exposed to soils contaminated by TiO2 nanoparticles or byproducts. A low bioavailability of TiO2 nanomaterials in soil matrixes could explain the lack of effect at the concentrations tested. These results underline the necessity to evaluate mobility, behaviour and bioavailability of nanomaterials in soil matrixes before their ecotoxicity assessment
Dudefoi, William. "Le Dioxyde de titane en alimentation : caractérisation, devenir dans les fluides digestifs et impact sur le microbiote intestinal humain." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4019/document.
Full textTitanium dioxide (TiO2) is a white metal oxide commonly used as a coloring agent in food products, constituting for example the coating of confectionary. Considering that food-grade TiO2 (E171/INS171) contains nanoparticles (NPs) and that TiO2 NPs are classified as potentially harmful for humans by inhalation, we aimed to determine the fate and impact of TiO2 particles via ingestion. The physicochemical characterization of E171 samples confirmed that E171 contains NPs, however below the threshold defining the labelling of nanomaterial (50%). Moreover, they resemble TiO2 extracted from the coating of several confectioneries, indicating that they can be used directly as models of ingested particles. Furthermore, the physicochemical properties of E171 were proved to be very different from those of P25, a kind of TiO2 used as a reference in toxicology (100% NPs). Food grade E171 TiO2 may be thus preferred to the currently used model P25 for further studies on the impact of TiO2 via ingestion. Monitoring food grade TiO2 at each step of an in vitro digestion showed that, due to interactions with both ions and proteins composing the digestive fluids, TiO2 particles agglomerated all along the digestion and formed large agglomerates (up to 90μm in the intestinal phase), explaining the low absorption rate of TiO2 after ingestion observed in vivo. Finally, the impact of TiO2 on the human gut microbiota was assessed. No impact on the human gut microbiota viability and ecological richness was observed after a single dose of TiO2 equivalent to the ingestion of one piece of candy. These results are still to be confirmed for a chronic ingestion
Vinches, Ludwig. "Évaluation expérimentale de l'efficacité des gants de protection contre les nanoparticules de dioxyde de titane dans des condtions de travail." Mémoire, École de technologie supérieure, 2013. http://espace.etsmtl.ca/1212/1/VINCHES_Ludwig.pdf.
Full textGivelet, Lucas. "Détection et caractérisation des nanoparticules de dioxyde de titane dans les aliments par AF4-ICP-MS et Sp-ICP-MS." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI037/document.
Full textThe thesis focuses on the development of methods for the titanium dioxide (TiO2) nanoparticles (NPs) characterization in food products. The study was separated distinctly into two axes. The development of the AF4-ICP-MS (I) method within the CEA Nano-Safety Platform in Grenoble and the development of the Sp-ICP-MS (II) method within the Food Safety Laboratory of the Anses in Maisons-Alfort.For the first axis, the electrostatic interactions between the particles and the AF4 membrane were studied. The surface charge (zeta potential) was measured for particles and membranes depending on several solvent parameters such as pH, ionic strength and the presence of surfactants. Following the several analyzes carried out, several solvent conditions have been identified as promoting the electrostatic repulsion between the particles and the membrane, which will make it possible to reduce the losses of particles at the level of the membrane. Several conditions were therefore directly tested for NPs analysis of TiO2 in AF4-ICP-MS. It has thus been shown that the conditions favoring electrostatic repulsions make it possible to improve the efficiency of the particles at the level of the AF4 system. However, the analyzes also showed that the TiO2 NPs were not sufficiently dispersed to obtain a reliable size distribution.The second part of the thesis aimed at first optimizing the data treatment of the Sp-ICP-MS method. Several improvements have been made such as the automatic calculation of the background-particle threshold, the calculation of the transport efficiency or the addition of quality control parameters. This data treatment was then compared to a software dedicated to analyzes by Sp-ICP-MS and made it possible to highlight that the internal spreadsheet gives results with a better accuracy, while providing additional parameters.In a second time an optimization of the Sp-ICP-MS method was carried out. Several parameters were therefore evaluated such as the choice of the titanium isotope, the acquisition time, the type of solvent to disperse the particles, as well as the sample collection mode and its flow rate.Finally, several foods were analyzed after setting up an extraction protocol for NPs. The results obtained made it possible to determine a size distribution of the NPs of TiO2 present in the samples
Cohignac, Vanessa. "Réponse macrophagique à des nanoparticules manufacturées : effets de leurs caractéristiques physico-chimiques sur l’autophagie." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1185/document.
Full textL'exposition à des nanoparticules manufacturées (NP) peut entraîner des effets sur la santé, notamment au niveau respiratoire, où elles peuvent induire des phénomènes de remodelage pulmonaire. Toutefois, les mécanismes cellulaires sous-jacents à ces effets et l'influence des caractéristiques physico-chimiques des NP dans ces effets sont encore loin d'être compris. L'objectif de cette thèse était d'évaluer la réponse macrophagique à des NP présentant différentes caractéristiques physico-chimiques (taille/longueur, composition chimique, forme, structure cristalline ou propriétés de surface) en se concentrant particulièrement sur leurs effets sur l'autophagie. Nous avons montré que l'exposition de macrophages murins à des nanotubes de carbone multi-parois (MWCNT) induisait un blocage de l'autophagie tandis que l'exposition à des NP sphériques induisait une autophagie fonctionnelle. Le blocage du flux autophagique par les MWCNT est associé à une accumulation de lysosomes non fonctionnels. Par ailleurs, les MWCNT induisaient une réponse oxydante et pro-inflammatoire plus importante que les particules sphériques qui pourrait être lié à leur blocage de l'autophagie. Ces résultats montrent un rôle prépondérant de la forme des nanomatériaux sur le processus autophagique, et ouvrent de nouvelles voies pour l'interprétation et la compréhension de la toxicité des nanomatériaux
Simon, Marina. "Analyse par microfaisceau d’ions. Application à l’étude de la fonction barrière cutanée et à la nanotoxicologie in vitro." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13950/document.
Full textSince many years, nanosciences are of great interest for researchers and industrialists, with numerous applications in various domains, however, their potential effects on human health have also attracted attention (environmental, industrial and medical exposures). Up to now, it has been very difficult to detect and track metallic oxides and manufactured nanoparticles in biological tissues, most particularly in skin. Thus, it is essential to precise the mechanisms involved in skin barrier function processes face to these exogenous agents and to characterize them in biological models in vitro/in vivo. During my PhD, I had the opportunity to combine quantitative methods of analysis with high resolution imagery techniques (confocal microscopy, transmission electron microscopy and ion beam analysis) in order to characterize: (i) the skin barrier function of an ex vivo pig ear skin model understanding the ion homeostasis behavior face to different stresses, chemical or physical (Collaboration with Hélène Duplan, Pierre Fabre Research Institute), (ii) the impact on viability, accumulation and intracellular distribution of nanoparticles (Titanium Oxides) naked or functionalized with fluorescent dyes (FITC, Rhodamine) (Collaboration with M.H. Delville, Bordeaux Institute of Condense Matter Chemistry). Results show the possibility to define (i) the role of ions in skin barrier function of a biological ex vivo model in native conditions and after exposure to different stresses (ii) in vivo toxicology of manufactured nanoparticles (iii) their future in a biological model of interest (keratinocytes)
You, Sheng Mu. "Metal organic frameworks as efficient photosensitizer for TiO₂ nanoarray anode and application to water splitting in PEC cells Fe/Ni Bimetallic organic framework deposited on TiO₂ nanotube array for enhancing higher and stable activity of oxygen evolution reaction Novel nano-architectured water splitting photoanodes based on TiO₂-nanorod mats surface sensitized by ZIF-67 coatings Surface sensitization of TiO₂ nanorod mats by electrodeposition of ZIF-67 for water photo-oxidation Electrochemically capacitive deionization of copper (II) using 3D hierarchically reduced graphene oxide architectures." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASF015.
Full textThe fossil fuel reserves are dwindling and their unrestricted use has generated profound changes in Earth's surface temperature and climate. Storing solar energy in the form of hydrogen produced by dissociation of water is an ideal way to mitigate global warming. Materials from the “metal organic framework” (MOF) family are starting to be used as photo-electrocatalysts, especially for photo-dissociation of water. Their extremely high porosity and their great versatility, both chemical and structural, designate them as potential candidates to facilitate the absorption of solar radiation and catalyze the dissociation of water in photoelectrochemical cells. By controlling the chemical composition and doping of the linker used in the MOF, it is possible to adjust the band gap energy, to favor the functionalization on very varied substrates or even to adjust their resistance to corrosion in various chemical environments. They are therefore materials of great interest for catalysis, electrocatalysis or photo-electro-catalysis. On the other hand, nano-structured TiO₂, for example in the form of nanotube or nanowire mats, sometimes called TiO₂ nanoarray (TNA), is a material very suitable for the construction of photoanodes for the evolution of oxygen in aqueous medium. It has already been extensively studied and described in the literature. During our thesis, we manufactured composite materials made up of MOFs of transition metals (Ni, Co, Fe) deposited on TNA (network of nanotubes or nanowires). For this we used an electrochemical method of electrodeposition (cyclic voltammetry). This allowed us to deposit metallic nanoparticles on TNA with fixed potential - 1.0 V and then transform them by chemical reaction with organic ligands (1,3,5-benzenetricarboxylic acid, BTC, 1,4-benzenedicarboxylic acid, BDC and imidazole, 2MZ) by thermal-thermal route. The materials obtained exhibit significant electrocatalytic activity and excellent photoelectrochemical durability. These composite materials have been successfully used as an active phase in photo-electrodes for the oxygen release reaction (OER)
Ibrahim, Michael. "Polyaniline-Oxyde de Titane : un composite pour la récolte et le stockage d’énergie." Thesis, Lyon 1, 2011. http://www.theses.fr/2011LYO10330/document.
Full textThis thesis is divided in three parts. The first one deals with the synthesis of polyaniline (PANI), a hole conducting polymer, used in many applications. By varying the quantities of the monomer and the oxidant while fixing the molar ratio at 1:1.25, and by adding magnesium oxide, novel echinoid-like and PANI needles were formed. The formation mechanism of the 1D structures is explained using the multi-layer theory. The second section is devoted for the fabrication of low cost single-layered photovoltaic devices based on the working principle of dye-sensitized solar cells (DSSCs). In 1991, Grätzel reintroduced the photo-electrochemical effect by developing the first DSSC, one of the third generation solar cells, formed of a TiO2 film (photoanode) sensitized using a dye and an electrolyte regenerating the excited dye. Despite their low cost, DSSCs face many problems such as the high cost of the dye, leaking of the electrolyte, sublimation of the I-/I3- through I2, etc. To solve these problems a single layer photovoltaic device has been developed. Composites formed of PANI, and TiO2 are the basis of the new generation photovoltaics. The in-situ polymerization of aniline inside a titania solution results in a strong interaction between PANI and TiO2 particles where a core (TiO2)/shell (PANI) structure exists inside the composite. In the single-layered photovoltaic device based on PANI-TiO2 composite, PANI is considered as sensitizer at the photoanode and as polyelectrolyte deeper inside the composite layer. In addition, textiles fabricated using such composites generated a voltage of 0.6 V and a current of 1 A/m2 when ethanol is injected in the solar cell. A new architecture has been developed to enhance the performance of the device and at the same time to store the converted energy for later use. The final part is devoted to the fabrication of DSSCs based on natural dyes. Anthocyanin; a halochromic natural dye responsible for the red color in plants, extracted from red cabbage was used to sensitize TiO2 films. This property results in the fabrication of DSSCs with different colors and photovoltaic behavior. At a pH equal to 0, a Voc and Jsc of 520 mV and 185 μA/cm2 were respectively recorded proving the possibility of using red cabbages as a very low cost dye source for DSSCs
Simon, M. "Analyse par microfaisceau d'ions. Application à l'étude de la fonction barrière cutanée et à la nanotoxicologie in vitro." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2009. http://tel.archives-ouvertes.fr/tel-00525919.
Full textRamaye, Yannic. "Optimisation des latex magnétiques utilisés dans les biotechnologies." Paris 6, 2004. http://www.theses.fr/2004PA066423.
Full textMesnage, Alice. "Procédé d'ancrage induit par des sels de diazonium : mécanisme, application(s)." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00629041.
Full textSengele, Armelle. "Décontamination et dépollution par photocatalyse : réalisation d'un dispositif d'élimination d'agents chimiques toxiques et de polluants dans l'air et dans l'eau." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAF066/document.
Full textThis work consists in the synthesis of titanium dioxide nanoparticles for the decontamination of chemical warfare agents by photocatalysis. The main goal is to optimize the photocatalyst to eliminate diethylsulfide (DES), simulating yperite. The oxidation of DES generates sulfates that lead to the poisoning of TiO2. Thus, the aim is to limit this deactivation and to avoid a release of harmful products. A solution is to increase the specific suface area by two methods: doping TiO2 with tantalum or tin and adding a porogen during the sol-gel synthesis. These optimized catalysts exhibit high conversion rates for DES elimination in the gas phase under a continuous flow thanks to their high specific surface area and their adsorption properties. The best catalysts are immobilized on tridimensional β-SiC foams. These photocatalytic foams deactivates slower than the TiO2 powders. A regeneration by an NaOH solution can restore their initial activity. It allows a possible industrial application for these catalysts. This thesis opens the way to realize a decontamination prototype for air to eliminate chemical warfare agents
Jalili, Pégah. "Toxicité intestinale et hépatique de nanomateriaux utilisés dans l'alimentation et l'emballage : comparaison de leur absorption et des mécanismes impliqués." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1B007.
Full textThe growing incorporation of nanomaterials (NMs) into food and packaging has contributed to the increasing demand for the assessment of the health hazards of these particles. However, this task is rendered difficult since the numerous intrinsic parameters (size, shape, crystalline structure, solubility ...), as well as physiological processes (such as digestion) can have an impact on the absorption and toxicological responses of NMs. Moreover, their evaluation in vitro is complicated by various sources of interference (optical, catalytic …) with toxicity tests. Our research project aimed to evaluate, the impact of hydrophobicity of rutile TiO2 NMs and solubility of AlO and Al2O3 NMs on their intestinal (first-exposed organ) and hepatic (accumulation organ) toxicity/genotoxicity. The effects of these NMs were investigated by a combination of complementary methods, in the rat in vivo by gavage, and in vitro using differentiated human Caco-2 and HepaRG cell lines, while taking into account potential interference with in vitro tests. No toxic/genotoxic response was observed in vitro despite the difference of hydrophobic/hydrophilic surface coating for TiO2 NMs. Only Al2O3 induced oxidative DNA damage solely in Caco-2 cells, while significant interference led to inconclusive results for AlO NMx. No chromosomal damage was observed for Al0 or Al2O3 NMx. In vivo no genotoxic effect was observed in the intestine, colon and liver but DNA damage was detected with Al2O3NMx in the bone marrow. Comparison of results with those for the ionic form AlCl3 demonstrated that effects observed were not related to the solubility of Al0 and d’ Al2O3 NMs in the biological environment. Despite considerable progress in nanotoxicology, our results have highlighted the difficulty to obtain reliable re sults with the traditional toxicity tests used for chemical compounds in vitro, the difficulty associated with the in vitro/in vivo extrapolation of the effects of NMs, as well as the need to continue research aimed at developing robust and reliable methods and tools for the evaluation of the effects of NMs
Chézeau, Laëtitia. "Étude au niveau pulmonaire du profil d’expression de gènes et de protéines chez le rat exposé par inhalation à un aérosol de particules nanostructurées de dioxyde de titane." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0226/document.
Full textDue to the growing use of nanomaterials in various industrial processes, the number of workers potentially exposed is increasing even though the toxicological properties of these compounds are not completely known. Since nanoparticles (NP) may get aerosolized, inhalation represents their main route of occupational exposure. Then, inhalation studies of nanomaterial toxicity in animal models appear to be the most relevant approach to assess their hazards. In this work, we studied the short and long term pulmonary toxicological properties of inhaled titanium dioxide (TiO2) nanostructured aerosol (NSA), using conventional (broncho-alveolar lavage (BAL) analyses, lung and lymph nodes histopathology); and high content molecular toxicological approaches (transcriptomics and proteomics analyses). Fischer 344 rats were exposed to 10 mg/m3 of TiO2 nanostructured aerosol by nose-only inhalation, 6h/day, 5 days/week for 4 weeks. Biological samples were collected immediately and up to 180 post-exposure days. Exposure to TiO2 NSA resulted in a strong acute pulmonary inflammation. This response was characterized by a neutrophil influx, the presence of particle-laden macrophages in the alveolar lumen, as well as overexpression of genes and proteins involved in inflammatory and immune responses, complement and coagulation cascades, oxidative stress. Some overexpressed genes were also involved in DNA damage and fibrosis; and some overexpressed proteins in proteasome and cytoskeleton organization. In the BAL supernatant, the increased level of histones and other neutrophilic extracellular trap (NET) -associated proteins suggests the release of these traps in the alveolar space. This possible NET release occurs in an inflammatory context but in the absence of significant histopathological changes. Very few studies reported this unexpected process related to exposure to nanomaterials. Six months after the end of exposure (long-term response), inflammation had decreased in line with the decrease of titanium lung burden (a surrogate for TiO2 pulmonary deposition), but many genes and proteins remained differentially expressed. The physiopathological consequences of the molecular changes reported here are not fully known, but these results should raise concern about the long-term pulmonary effects of inhaled low toxicity NP such as TiO2. Altogether, this work shows that there is a good relationship between cytological and histopathological changes in one hand and gene as well as protein expression profile modifications in the other hand. However, in some cases transcriptomics or proteomics could be more sensitive than conventional methods to identify new toxicological properties or to better understand the underlying molecular mechanisms of chemicals toxicity. Our study along with others could also be helpful to identify biomarkers of exposure or predict the long-term adverse effects of nanomaterials
Cognard, Gwenn. "Electrocatalyseurs à base d’oxydes métalliques poreux pour pile à combustible à membrane échangeuse de protons." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI007.
Full textConventional electrocatalysts used in proton exchange membrane fuel cells (PEMFC) are composed of platinum nanoparticles supported on high specific surface area carbon blacks. At the cathode side of the PEMFC, where the oxygen reduction reaction (ORR) occurs, the electrochemical potential can reach high values - especially during startup-shutdown operating conditions - resulting in irreversible degradation of the carbon support. A “material” solution consists of replacing the carbon with supports based on metal oxides. The latter have to be resistant to electrochemical corrosion, be electronic conductor and have a porous and nano-architectural structure (for the transport of reagents and products and the homogeneous distribution of the ionomer and platinum nanoparticles).In this work, we have developed and characterized electrocatalysts composed of platinum (Pt) nanoparticles based on tin dioxide (SnO2) and titanium dioxide (TiO2) with optimized textural (aerogel, nanofibres or loosetubes morphologies) and electron-conduction properties (doped with niobium Nb or antimony Sb). The best electrocatalytic properties are reached for an antimony-doped SnO2 aerogel support, denoted ATO. The Pt/ATO electrocatalyst has especially a higher specific activity for the ORR than a Pt/carbon Vulcan® electrocatalyst, synthesized in the same conditions, suggesting beneficial interactions between the Pt nanoparticles and the metal oxide support (Strong Metal Support Interactions SMSI).Durability tests simulating automotive operating conditions of a PEMFC were carried out in liquid electrolyte at 57 °C on these two electrocatalysts by cycling between 0.60 and 1.00 V vs the reversible hydrogen electrode (RHE) or between 1.00 and 1.50 V vs RHE. The Pt/ATO electrocatalyst has an increased stability compared to the reference Pt/carbon Vulcan® electrocatalyst. However, new degradation mechanisms were highlighted in this study: first, the doping element (Sb) is progressively dissolved during electrochemical ageing, which implies a loss of electronic conductivity. This loss is partly due to incursions at low potential, including during electrochemical characterizations. Moreover, between 5,000 and 10,000 cycles of the accelerated stress tests (between 0.60 and 1.00 V vs RHE or between 1.00 and 1.50 V vs RHE at 57 °C), the support loses its porous structure and forms a poorly conductive amorphous film
Azouani, Rabah. "Élaboration de nouveaux nanomatériaux photocatalytiques actifs sous rayonnement visible." Phd thesis, Université Paris-Nord - Paris XIII, 2009. http://tel.archives-ouvertes.fr/tel-00464422.
Full textHatat, Fraile Mélisa Marie. "Etude des méthodes d'élaboration et de la mise en oeuvre de photocatalyseurs pour le traitement de la micro pollution bio-réfractaire dans l'eau." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20043/document.
Full textThis PhD work is devoted to the elaboration of photocatalytic membranes using TiO2 nanoparticles synthetized by sol-gel process (titanium tetra-isopropoxyde precursor – water). Sols are prepared in sol-gel reactor with rapid turbulent micro-mixing. The effect of hydrodynamic using 3 T mixers (T simple, T with 3 baffles and T with narrow) during the mixing was studied with k-ε modeling Computational fluid Dynamics (CFD), as well as the morphology and the photo-activity of thin layers deposited on alumina support during induction period. Differences on hydrodynamic during micro-mixing have only impact on the time of nanoparticles stability (induction period). Photo-active thin layers and membranes are synthesized for coupling membrane separation and photocatalytic reaction. Photocatalytic activities of thin layers and membranes are performed with an aqueous solution of acid orange 7. Significant increases of permeate flux are observed during the filtration of water and solution containing dye. Effects of concentration and pH are evaluated on permeation flux and photodegradation
Ma, Hongfeng. "Étude numérique de la micro et nano structuration laser de matériaux poreux nanocomposites." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSES001.
Full textThis thesis is focused on numerical simulations of the laser interaction with porous materials. A possibility of well-controlled processing is particularly important for the laser based micro-structuring of porous glass and nano-machining of semiconducting porous materials in the presence of metallic nanoparticles. The self-consistent modeling is, therefore, focused on a detailed investigation of the involved processes. Particularly, to understand the periodic micro-void structures produced inside porous glass by femtosecond laser pulses, a detailed numerical thermodynamic analysis was performed. The calculation results show the possibility to control laser micro-machining in volume of SiO2 . Furthermore, the dimensions of laser-densified structures are examined for different focusing conditions at low pulse energies. The obtained characteristic dimensions of the structures correlate with the experimental results. Comparing to the porous glass, the mesoporous TiO2 films loaded by Ag ions and nanoparticles support localized plasmon resonances. The resulted nanocomposite films are capable to transfer free electrons and to resonantly absorb laser energy providing additional possibilities in controlling Ag nanoparticle size.To identify the optimum parameters of the continuous-wave laser, a multi-physical model considering Ag nanoparticle growth, photo-oxidation, reduction was developed. The performed simulations show that the laser writing speed controls the Ag nanoparticles size. The calculations also depicted a novel view that Ag nanoparticles grow ahead of the laser beam center due to the heat diffusion. The thermally activated fast growth followed by the photo-oxidation was found to be the main reason for the writing speed dependent sizechange and temperature rises. A three-dimensional model was developed and reproduced the laser written lines.Writing of mesoporous TiO2 films loaded with Ag nanoparticles by a pulsed laser is, furthermore, promising to provide additional possibilities in the generation of two kinds of nanostructures: laser induced periodic surface grooves (LIPSS) and Ag nanogratingsinside the TiO2 film. To better understand the effects of a pulsed laser, two multi-pulses models - one semi-analytic and another one based on a finite element method (FEM) are developed to simulate the Ag nanoparticle growth. The FEM model is shown to be precise because it better treats heat diffusion inside the TiO2 thin films. The model could be extended in future to understand the formation of LIPSS and Ag nanogratings in such media by coupling with nanoparticle migrations, surface melting and hydrodynamics. The obtained results provided new insights into laser micro-processing of porous material and better laser controlling over nanostructuring in porous semiconducting films loaded with metallic nanoparticles
Hochepied, Jean-François. "Précipitation d'hydroxydes et d'oxydes métalliques en solution aqueuse : vers le contrôle morphologique d'objets multi-échelles." Habilitation à diriger des recherches, Université Paris-Diderot - Paris VII, 2009. http://tel.archives-ouvertes.fr/tel-00574750.
Full textNoël, Alexandra. "Influence de la taille de départ, de l’état d’agglomération et de la dose de nanoparticules de dioxyde de titane (TiO2) inhalées sur la réponse pulmonaire chez le rat." Thèse, 2013. http://hdl.handle.net/1866/10121.
Full textGiven their small size, nanoparticles (NP) (< 100 nm) can coagulate quickly, which promotes their entry into the body in the form of agglomerates. The objective of this study is to evaluate the influence of the agglomeration state of three different primary particle sizes (5, 10-30 and 50 nm) of titanium dioxide (TiO2) NP on the pulmonary toxicity of male rats (F344) exposed to aerosols at 2, 7 or 20 mg/m3 for 6 hours. In an inhalation chamber, six groups of rats (n = 6 per group) were acutely exposed by nose-only inhalation to aerosols with a 5-nm primary particle size, produced in the form of small agglomerates (< 100 nm) (SA) or large agglomerates (> 100 nm) (LA) at 2, 7 and 20 mg/m3. Similarly, four other groups of rats were exposed to aerosols at 20 mg/m3 with a primary particle size of 10-30 and 50 nm. The different aerosols were generated by nebulization of suspensions or by dry dispersion. For each mass concentration, one group of control rats (n = 6 per group) was exposed to compressed air under the same conditions. The animals were sacrificed 16 hours after the end of exposure, and analysis of the bronchoalveolar lavage fluids was used to measure markers of inflammatory, cytotoxicity and oxidative stress effects. Lung sections were also analyzed for histopathology. The influence of the agglomeration state of TiO2 NP (5 nm) could not be determined at 2 mg/m3. For mass concentrations of 7 and 20 mg/m3, our results showed that an acute inflammatory response was induced following exposure to LA aerosols. In addition to this response, exposure to SA aerosols resulted in a significant increase in 8-isoprostane and lactate dehydrogenase. At 20 mg/m3, the cytotoxic effects were greater after exposure to the 5-nm NP in the SA aerosol. This study showed that TiO2 NP use different mechanisms to induce their pulmonary toxicity as a function of their primary particle size and their agglomeration state.
Tabbaa, Chalabi Rajaa. "Effets des nanoparticules manufacturées sur les cellules pulmonaires humaines." Thèse, 2015. http://hdl.handle.net/1866/13674.
Full textDetection and characterization of manufactured nanoparticles (NPs) is one of the first steps to control and reduce potential risks to human health and the environment. Various sampling schemes in air exist for the evaluation of exposure to NPs. However, they do not measure the potential risk of this exposure to the human health and the cellular mechanisms that are responsible. Our research objectives are 1) To evaluate the effects of different types of nanoparticles on human lung cells and 2) Identify new intracellular mechanisms activated during exposure to various types of NPs. Methodology: The cell line A549 was used. Three types of NPs were studied (different concentrations and exposure time): titanium dioxide nanoparticles of anatase (TiO2), the simple wall carbon nanotubes (SWCN) and black carbon nanoparticles (BC). Cell viability was measured by the MTS assay, the PrestoBlue assay and the Trypan blue due exclusion test (only for the SWCN). To investigate whether the NPs stimulated ROS generation in A549 cels, the intracellular ROS level was measured using the DCFH-DA assay. The potential induction of oxidative stress responses in cells when exposed to TiO2 and SWCN was determined by the quantification of the extracellular levels of reduced (GSH) and oxidized glutathione (GSSG) forms. Results: The three nanoparticles do not appear to be toxic to A549 cells because there is a significant but small decrease in cell viability. However, they induce ROS production which is both time and concentration dependent. No change in the concentrations of GSH and GSSG were observed. In conclusion, our data indicate that measuring the cell viability is not a sufficient criterion for concluding if the NPs are toxic. ROS production is an interesting criterion, however, we have to demonstrate the activation of anti-oxidative systems to explain the absence of cell death following exposure to the NPs.