Journal articles on the topic 'Nanophotonic method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanophotonic method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
So, Sunae, and Junsuk Rho. "Designing nanophotonic structures using conditional deep convolutional generative adversarial networks." Nanophotonics 8, no. 7 (2019): 1255–61. http://dx.doi.org/10.1515/nanoph-2019-0117.
Full textWang, Rui, Baicheng Zhang, Guan Wang, and Yachen Gao. "A Quick Method for Predicting Reflectance Spectra of Nanophotonic Devices via Artificial Neural Network." Nanomaterials 13, no. 21 (2023): 2839. http://dx.doi.org/10.3390/nano13212839.
Full textGómez-Gómez, Maribel, Ángela Ruiz-Tórtola, Daniel González-Lucas, María-José Bañuls, and Jaime García-Rupérez. "New Method for Online Regeneration of Silicon-Based Nanophotonic Biosensors." Proceedings 4, no. 1 (2018): 22. http://dx.doi.org/10.3390/ecsa-5-05741.
Full textBorodin, B. R., F. A. Benimetskiy, V. Yu Davydov, et al. "Mechanical scanning probe lithography of nanophotonic devices based on multilayer TMDCs." Journal of Physics: Conference Series 2015, no. 1 (2021): 012020. http://dx.doi.org/10.1088/1742-6596/2015/1/012020.
Full textBALILI, RYAN B. "TRANSFER MATRIX METHOD IN NANOPHOTONICS." International Journal of Modern Physics: Conference Series 17 (January 2012): 159–68. http://dx.doi.org/10.1142/s2010194512008057.
Full textKumar, Ravi, S. J. Yoon, K. G. Lee, et al. "Purification method dependent fluorescence from nitrogen-vacancy (NV) centers of nano-diamonds." RSC Advances 6, no. 52 (2016): 47164–73. http://dx.doi.org/10.1039/c6ra01510g.
Full textYuan, Hongyi, Zhouhui Liu, Maoliang Wei, Hongtao Lin, Xiaoyong Hu, and Cuicui Lu. "Topological Nanophotonic Wavelength Router Based on Topology Optimization." Micromachines 12, no. 12 (2021): 1506. http://dx.doi.org/10.3390/mi12121506.
Full textLee, Jaechul, Cédric Killian, Sebastien Le Beux, and Daniel Chillet. "Distance-aware Approximate Nanophotonic Interconnect." ACM Transactions on Design Automation of Electronic Systems 27, no. 2 (2022): 1–30. http://dx.doi.org/10.1145/3484309.
Full textChakravarthula, Praneeth, Jipeng Sun, Xiao Li, et al. "Thin On-Sensor Nanophotonic Array Cameras." ACM Transactions on Graphics 42, no. 6 (2023): 1–18. http://dx.doi.org/10.1145/3618398.
Full textMitrovic, Aleksandra, Bozica Bojovic, Dragomir Stamenkovic, and Dejana Popovic. "Characterization of surface roughness of new nanophotonic soft contact lenses using lacunarity and AFM method." Chemical Industry 72, no. 3 (2018): 157–66. http://dx.doi.org/10.2298/hemind170924004m.
Full textHughes, Tyler W., Momchil Minkov, Ian A. D. Williamson, and Shanhui Fan. "Adjoint Method and Inverse Design for Nonlinear Nanophotonic Devices." ACS Photonics 5, no. 12 (2018): 4781–87. http://dx.doi.org/10.1021/acsphotonics.8b01522.
Full textBelozerova, Nadezhda M., Denis A. Kislov, Ilia D. Medvedev, et al. "Raman scattering from silicon resonant Mie-voids." Applied photonics 11, no. 4 (2024): 5–19. https://doi.org/10.15593/2411-4375/2024.4.01.
Full textCui, Dan Feng, Chen Yang Xue, Xiao Gang Tong, Yu Jian Jin, and Wen Dong Zhang. "The Research of Nanophotonic Grating Vertical Coupling." Advanced Materials Research 284-286 (July 2011): 711–16. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.711.
Full textPan, Chengda, Yajie Bian, Yuchan Zhang, et al. "Flexible Silicon Dimer Nanocavity with Electric and Magnetic Enhancement." Photonics 9, no. 4 (2022): 267. http://dx.doi.org/10.3390/photonics9040267.
Full textXu, Yi, Jun Yang, and Rami Melhem. "A Process-Variation-Tolerant Method for Nanophotonic On-Chip Network." ACM Journal on Emerging Technologies in Computing Systems 14, no. 2 (2018): 1–23. http://dx.doi.org/10.1145/3208073.
Full textSushko, O. A., O. M. Bilash, and M. M. Rozhitskii. "115 Detection of organic carcinogens in water by nanophotonic method." Photodiagnosis and Photodynamic Therapy 9 (August 2012): S39. http://dx.doi.org/10.1016/s1572-1000(12)70116-3.
Full textLeung, D. M. H., B. M. A. Rahman, N. Kejalakshmy, and K. T. V. Grattan. "Characterization of silicon nanophotonic devices using the finite element method." Optical and Quantum Electronics 42, no. 8 (2010): 499–509. http://dx.doi.org/10.1007/s11082-010-9425-8.
Full textWang, Kaiyuan, Xinshu Ren, Weijie Chang, Longhui Lu, Deming Liu, and Minming Zhang. "Inverse design of digital nanophotonic devices using the adjoint method." Photonics Research 8, no. 4 (2020): 528. http://dx.doi.org/10.1364/prj.383887.
Full textRikers, Marijn, Ayesheh Bashiri, Ángela Barreda, et al. "Deterministic Fabrication of Fluorescent Nanostructures Featuring Distinct Optical Transitions." Nanomaterials 15, no. 3 (2025): 219. https://doi.org/10.3390/nano15030219.
Full textHughes, Tyler W., Momchil Minkov, Ian A. D. Williamson, and Shanhui Fan. "Correction to “Adjoint Method and Inverse Design for Nonlinear Nanophotonic Devices”." ACS Photonics 8, no. 5 (2021): 1505. http://dx.doi.org/10.1021/acsphotonics.1c00396.
Full textIvinskaya, A. M., A. V. Lavrinenko, and D. M. Shyroki. "Modeling of Nanophotonic Resonators With the Finite-Difference Frequency-Domain Method." IEEE Transactions on Antennas and Propagation 59, no. 11 (2011): 4155–61. http://dx.doi.org/10.1109/tap.2011.2164215.
Full textWang, Yuqi, Amira Aouina, Hui Li, Ian O'Connor, Gabriela Nicolescu, and Sebastien Le Beux. "Thermal-Aware Design Method for Laser Group Control in Nanophotonic Interconnects." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27, no. 3 (2019): 742–46. http://dx.doi.org/10.1109/tvlsi.2018.2888589.
Full textHäyrynen, Teppo, Jakob Rosenkrantz de Lasson, and Niels Gregersen. "Open-geometry Fourier modal method: modeling nanophotonic structures in infinite domains." Journal of the Optical Society of America A 33, no. 7 (2016): 1298. http://dx.doi.org/10.1364/josaa.33.001298.
Full textHoang, Thi Hong Cam, Thanh Binh Pham, Thuy Van Nguyen, et al. "Hybrid Integrated Nanophotonic Silicon-based Structures." Communications in Physics 29, no. 4 (2019): 481. http://dx.doi.org/10.15625/0868-3166/29/4/13855.
Full textLenaerts, Joeri, Hannah Pinson, and Vincent Ginis. "Artificial neural networks for inverse design of resonant nanophotonic components with oscillatory loss landscapes." Nanophotonics 10, no. 1 (2020): 385–92. http://dx.doi.org/10.1515/nanoph-2020-0379.
Full textShi, Zujun, Shiqian Shao, and Yi Wang. "Improved the Surface Roughness of Silicon Nanophotonic Devices by Thermal Oxidation Method." Journal of Physics: Conference Series 276 (February 1, 2011): 012087. http://dx.doi.org/10.1088/1742-6596/276/1/012087.
Full textZouros, Grigorios P., Georgios D. Kolezas, Evangelos Almpanis, Konstantinos Baskourelos, Tomasz P. Stefański, and Kosmas L. Tsakmakidis. "Magnetic switching of Kerker scattering in spherical microresonators." Nanophotonics 9, no. 12 (2020): 4033–41. http://dx.doi.org/10.1515/nanoph-2020-0223.
Full textLebbe, N., C. Dapogny, E. Oudet, K. Hassan, and A. Gliere. "Robust shape and topology optimization of nanophotonic devices using the level set method." Journal of Computational Physics 395 (October 2019): 710–46. http://dx.doi.org/10.1016/j.jcp.2019.06.057.
Full textde Lasson, Jakob Rosenkrantz, Philip Trøst Kristensen, Jesper Mørk, and Niels Gregersen. "Roundtrip matrix method for calculating the leaky resonant modes of open nanophotonic structures." Journal of the Optical Society of America A 31, no. 10 (2014): 2142. http://dx.doi.org/10.1364/josaa.31.002142.
Full textFang, Weina, Sisi Jia, Jie Chao, et al. "Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules." Science Advances 5, no. 9 (2019): eaau4506. http://dx.doi.org/10.1126/sciadv.aau4506.
Full textHARIDAS, M., and J. K. BASU. "HYBRID SEMICONDUCTING QUANTUM DOTS–METALLIC NANOPARTICLES ARRAYS FOR POSSIBLE NANOPHOTONIC DEVICES." International Journal of Nanoscience 10, no. 04n05 (2011): 1113–18. http://dx.doi.org/10.1142/s0219581x11009519.
Full textYuan, Hongyi, Nianen Zhang, Hongyu Zhang, and Cuicui Lu. "A Multi-Channel Frequency Router Based on an Optimization Algorithm and Dispersion Engineering." Nanomaterials 13, no. 14 (2023): 2133. http://dx.doi.org/10.3390/nano13142133.
Full textSapozhnik, Alexey, Paolo Cattaneo, Bruce R. M. Weaver, et al. "Integrated Nanophotonic Electron Beam Modulators Enable Ultra-High Precise Method for Calibrating EELS Spectrometers." Microscopy and Microanalysis 28, S1 (2022): 792–93. http://dx.doi.org/10.1017/s1431927622003579.
Full textHäyrynen, Teppo, Andreas Dyhl Osterkryger, Jakob Rosenkrantz de Lasson, and Niels Gregersen. "Modeling open nanophotonic systems using the Fourier modal method: generalization to 3D Cartesian coordinates." Journal of the Optical Society of America A 34, no. 9 (2017): 1632. http://dx.doi.org/10.1364/josaa.34.001632.
Full textAyoub, Ahmed B., and Mohamed A. Swillam. "Accurate and efficient leap-frog beam propagation method for modeling micro and nanophotonic structures." Applied Optics 59, no. 23 (2020): 6881. http://dx.doi.org/10.1364/ao.398025.
Full textZhang, Qianpeng, Daquan Zhang, Xiaofei Sun, Beitao Ren, and Zhiyong Fan. "(Invited, Digital Presentation) High-Efficiency and Stable Perovskite LEDs and Displays with Nanophotonic Methods." ECS Meeting Abstracts MA2022-02, no. 36 (2022): 1308. http://dx.doi.org/10.1149/ma2022-02361308mtgabs.
Full textLievens, Enes, Kobe De Geest, Ewout Picavet, et al. "A Pathway for the Integration of Novel Ferroelectric Thin Films on Non-Planar Photonic Integrated Circuits." Micromachines 16, no. 3 (2025): 334. https://doi.org/10.3390/mi16030334.
Full textTaleb, Sarah M., Makram A. Fakhri, and Salah Aldeen Adnan. "Optical Investigations of Nanophotonic LiNbO3 Films Deposited by Pulsed Laser Deposition Method." Defect and Diffusion Forum 398 (January 2020): 16–22. http://dx.doi.org/10.4028/www.scientific.net/ddf.398.16.
Full textYatsui, T., Y. Ryu, T. Morishima, et al. "Self-assembly method of linearly aligning ZnO quantum dots for a nanophotonic signal transmission device." Applied Physics Letters 96, no. 13 (2010): 133106. http://dx.doi.org/10.1063/1.3372639.
Full textZhou, Mixing, and Zhaoxin Geng. "Integrated LSPR Biosensing Signal Processing Strategy and Visualization Implementation." Micromachines 15, no. 5 (2024): 631. http://dx.doi.org/10.3390/mi15050631.
Full textLi, Hongqiang, Wenqian Zhou, Meiling Zhang, et al. "Large-Area Binary Blazed Grating Coupler between Nanophotonic Waveguide and LED." Scientific World Journal 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/586517.
Full textAkhtar, Sophia, Shrawan Roy, Trang Thu Tran, Jaspal Singh, Anir S. Sharbirin, and Jeongyong Kim. "Low Temperature Step Annealing Synthesis of the Ti2AlN MAX Phase to Fabricate MXene Quantum Dots." Applied Sciences 12, no. 9 (2022): 4154. http://dx.doi.org/10.3390/app12094154.
Full textSerov, D. A., and I. A. Khorin. "Simulation of a System of Nanoantennas Located in a TSV Channel as a System for Receiving and Transmitting Data." Микроэлектроника 52, no. 3 (2023): 240–46. http://dx.doi.org/10.31857/s0544126923700333.
Full textSvendsen, Mathias B. M., and Beatriz Olmos. "Modified dipole-dipole interactions in the presence of a nanophotonic waveguide." Quantum 7 (August 22, 2023): 1091. http://dx.doi.org/10.22331/q-2023-08-22-1091.
Full textKim, Hwi, and Byoungho Lee. "Mathematical modeling of crossed nanophotonic structures with generalized scattering-matrix method and local Fourier modal analysis." Journal of the Optical Society of America B 25, no. 4 (2008): 518. http://dx.doi.org/10.1364/josab.25.000518.
Full textGhoshal, Sib Krishna, Masni Shafie@Haron, and M. R. Sahar. "Luminescence Features of Silver Nanoparticles Sensitized Samarium Doped Boro-Zinc Tellurite Glasses." Materials Science Forum 846 (March 2016): 96–101. http://dx.doi.org/10.4028/www.scientific.net/msf.846.96.
Full textYatsui, Takashi, Fumihiro Morigaki, and Tadashi Kawazoe. "Controlling the optical and structural properties of ZnS–AgInS2 nanocrystals by using a photo-induced process." Beilstein Journal of Nanotechnology 5 (October 14, 2014): 1767–73. http://dx.doi.org/10.3762/bjnano.5.187.
Full textWang, Zhidong, Lei Liu, Zhihao Cao, Jian Tian, and Xingyue Zhangyang. "A nanophotonic structured resonators for GaInAsSb photocathodes with high electron collection rates." Physica Scripta 100, no. 2 (2025): 025914. https://doi.org/10.1088/1402-4896/ada404.
Full textRazmjooei, Nasrin, and Robert Magnusson. "Band Dynamics of Multimode Resonant Nanophotonic Lattices with Adjustable Liquid Interfaces." Nanomaterials 13, no. 16 (2023): 2350. http://dx.doi.org/10.3390/nano13162350.
Full textChen, Daxing. "Two-Dimensional Variational Mode Decomposition for Noise Suppression in Nanoscale Optoelectronic Signal Processing." Journal of Nanoelectronics and Optoelectronics 20, no. 4 (2025): 415–27. https://doi.org/10.1166/jno.2025.3749.
Full text