To see the other types of publications on this topic, follow the link: Nanorobotics.

Dissertations / Theses on the topic 'Nanorobotics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 dissertations / theses for your research on the topic 'Nanorobotics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Dahmen, Christian [Verfasser]. "Robust Object Tracking for Micro- and Nanorobotics / Christian Dahmen." München : Verlag Dr. Hut, 2014. http://d-nb.info/1063221587/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hamdi, Mustapha. "Conception, modélisation et caractérisation de systèmes bio-nanorobotiques." Thesis, Orléans, 2009. http://www.theses.fr/2009ORLE2030.

Full text
Abstract:
Cette thèse porte sur la conception, la modélisation et le prototypage de nanorobots pour des applications en nanomédecine, en biologie et en nanosystèmes. Principalement deux approches ont été proposées. La première approche implique la modélisation multi-échelle (la mécanique quantique, dynamique moléculaire, mécanique continue) couplée aux techniques de réalité virtuelle. La plateforme ainsi développée a permis en premier lieu, la caractérisation biomécanique de différents composants nanorobotiques : nanoressorts à base de protéines et de nanomoteurs moléculaires (ADN, nanotube de carbone, protéines). Le développement de la plateforme a permis ensuite d’assembler d’une manière interactive (retour visuel et retour de force) des structures nanorobotiques, d’optimiser leur structure et de caractériser leur comportement dynamique. Dans la seconde approche, une méthodologie originale de co-prototypage à été développée. Le co-prototypage permet en effet de coupler les expérimentations et les simulations afin d’avoir un modèle réaliste. Ceci permet de mettre à jour les paramètres de simulation et de réajuster le processus de fabrication après optimisation. D’autre part, les simulations permettent d’observer des phénomènes à l’échelle nanométrique qui sont jusque là inaccessibles par expérimentation. Durant ce travail de thèse, j’ai développé des nouvelles structures nanorobotiques : des nanomachines à base d’ADN, un bio-nanoactionneur linéaire ainsi qu’une nanomachine rotative à base de nanotubes de carbone. Quelques uns de ces prototypes ont été fabriqués, optimisés et validés expérimentalement
Nanorobots represent a nanoscale devices where proteins such as DNA, carbon nanotubes could act as motors, mechanical joints, transmission elements, or sensors. When these different components were assembled together they can form nanorobots with multi-degree-of-freedom, able to apply forces and manipulate objects in the nanoscale world. In this work, we investigated the design, assembly, simulation, and prototyping of biological and artificial molecular structures with the goal of implementing their internal nanoscale movements within nanorobotic systems in an optimized manner. The thesis focuses, mainly on two approaches. The first one involves multiscale modeling tools (quantum mechanics, molecular dynamics, continuum mechanics) coupled to virtual reality advanced techniques. In order to design and evaluate the characteristics of molecular robots, we proposed interactive nanophysics-based simulation which permits manipulation of molecules, proteins and engineered materials in molecular dynamics simulations with real-time force feedback and graphical display. The second approach uses a novel co-prototyping methodology. The optimization of engineered nanorobotic device is coupled to experimental measurements and force field modeling algorithms
APA, Harvard, Vancouver, ISO, and other styles
3

Міхно, Світлана Василівна, Свитлана Васильевна Михно, Svitlana Vasylivna Mikhno, and O. Grytsyna. "Nanorobots." Thesis, Вид-во СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/22615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Плохута, Тетяна Миколаївна, Татьяна Николаевна Плохута, Tetiana Mykolaivna Plokhuta, and D. A. Borshchenko. "Powering nanorobots." Thesis, Вид-во СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/22597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wortmann, Tim [Verfasser]. "Automatic Image Analysis in Micro- and Nanorobotic Environments / Tim Wortmann." München : Verlag Dr. Hut, 2012. http://d-nb.info/1024242927/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bartenwerfer, Malte [Verfasser]. "Automation Capabilities in the Nanorobotic Handling of Nanomaterials / Malte Bartenwerfer." München : Verlag Dr. Hut, 2019. http://d-nb.info/117625099X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kratochvil, Bradley E. "Visual tracking for nanorobotic manipulation and 3D reconstruction in an electron microscope /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eichhorn, Volkmar [Verfasser]. "Nanorobotic handling and characterization of carbon nanotubes inside the scanning electron microscope / Volkmar Eichhorn." München : Verlag Dr. Hut, 2011. http://d-nb.info/1011441667/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tan, Ning. "Calibration of micro and nanorobotic systems : Contribution of influential parameters to the geometric accuracy." Phd thesis, Université de Franche-Comté, 2013. http://tel.archives-ouvertes.fr/tel-01025313.

Full text
Abstract:
Une des conditions fondamentales de la performance des système repose sur leur capacité à généré des déplacement avec précision de positionnement élevée. Cependant, à l'échelle micrométrique, de nombreux paramètres agissent et réduisent cette précision. A cette échelle, il est également particulièrement complexe de mesurer la précision de positionnement d'un système micro ou nanorobotique et donc d'identifier les différentes sources d'imprécision. L'étalonnage géométrique des systèmes micro et nanorobotiques prenant en compte ces différents sources est rarement étudié. Pour ces raisons, l'originalité et les contribution de cette thèse portent sur deux aspects principaux (i) la caractérisation des perperformances des systèmes micro et nanorobotiques et l'analyse des paramètres affectant leur précision de positionnement (ii) l'amélioration des performances de ces robots fondés sur différents types de modèles robotiques.
APA, Harvard, Vancouver, ISO, and other styles
10

Lavryk, D. "The use of nano-robots in medicine." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/62558.

Full text
Abstract:
Today, more and more people question the treatment without surgery. Thanks to modern research and the efforts of scientists a new possible way to use nano-robots was invented. The first thing to know about nanorobots in medicine is that they're not like the robots you're probably imagining. Scientists who build nanorobots are building tiny packages that can complete tasks in an automated way.
APA, Harvard, Vancouver, ISO, and other styles
11

AMATO, PAOLO. "Swarm-Intelligence Strategy for Diagnosis of Endogenous Diseases by Nanobots." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41950.

Full text
Abstract:
An ambitious long-term goal of medicine is to make analyses and deliver drugs selectively at cell level. In particular such "ideal" drugs should be able to travel through the vasculature, reach the intended target at full concentration, and there act selectively on diseased cells and tissues only, without creating undesired side effects. The state of the art in pursuing this goal is represented by \emph{nanoparticles} \cite{Ferrari2010}, which can be roughly defined as the combination of a drug molecule with a suitable vector of nanoscale dimensions. One of the main limitations of nanoparticles is that they do not have an onboard control system. Their ``program'' has to be defined in the drug design phase. A different program means the development of a new nanoparticle. Moreover the lack of onboard control means also that the complexity of the actions to be performed by nanoparticles is quite restricted. The basic idea sustaining this goal is inspired by the immune system. That the immune system is a fantastic machine for surveilling and fighting against exogenous diseases is too well known to deserve discussion. However, it is not perfect. A drawback of the immune system system is the poor recognition of endogenous pathological cells like those responsible for cancer or self-immune diseases. In this context it should be interesting to develop artificial devices (\emph{nanobots}) working as blood white cells but addressed to the recognition and eventually the destruction of endogenous pathological states. A nanobot \cite{Requicha2003} can be defined as any artificial machine with overall size of the order of a few microns or less ($\simeq$ red cells), constituted by nanoscopic components with individual dimensions in the interval $1-10^2$ nm, and able to perform sophisticated functions like navigation, cell recognition, data collection and transmission. To the best of my knowledge no attempt toward the definition of an auxiliary immune system is however known. Of course, this goal is extremely ambitious and is expected to require decades. Nonetheless, sketching a scenario is not a mere speculation, but rather is useful to identify the nature of problems posed by the development of nanobots for real applications. One of the possible reasons for the ineffectiveness of the immune system in detecting malignant cells is that the common features associated with cancer genesis and growth (hyperthermia, hypoxia and acidification) are the same as those characteristic of muscle under physical exercise. My program is thus that of \emph{endowing the immune system with an artificial surveillance system devoted to detecting the simultaneous occurrence of hyperthermia, hypoxia and excessive acidity due to localized cancerous states without confusing it with the similar conditions produced under physiological conditions}. Considering the diagnosis of cancer as a crime detection, the search of the perpetrator is not addressed to the identification of the smoking gun but rather to a frame evidence resulting from the simultaneous occurrence of three events (hyperthermia, hypoxia and excessive acidity) and their persistence in time. The aim of this thesis is twofold. On one side I want to describe an architecture of nanobots which is not only able to embed sophisticated functions, but also suitable for being manufactured by processes compatible with today and likely tomorrow semiconductor industries. On the other side, I want also to analyze and develop the algorithms needed for successfully tackling the nanobot tasks. In particular, since the nanobots would be devices with very limited computational resources and the interaction between them could only happen locally, the algorithms to control them could be based on swarm intelligence; i.e. it could be inspired by the collective behavior of social-insect colonies and other animal societies.
APA, Harvard, Vancouver, ISO, and other styles
12

Sanchez, Samuel, Alexander A. Solovev, Sabine Schulze, and Oliver G. Schmidt. "Controlled manipulation of multiple cells using catalytic microbots." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138608.

Full text
Abstract:
Self-propelled microjet engines (microbots) can transport multiple cells into specific locations in a fluid. The motion is externally controlled by a magnetic field which allows to selectively load, transport and deliver the cells
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
APA, Harvard, Vancouver, ISO, and other styles
13

Sanchez, Samuel, Alexander A. Solovev, Sabine Schulze, and Oliver G. Schmidt. "Controlled manipulation of multiple cells using catalytic microbots." Royal Society of Chemistry, 2011. https://tud.qucosa.de/id/qucosa%3A27763.

Full text
Abstract:
Self-propelled microjet engines (microbots) can transport multiple cells into specific locations in a fluid. The motion is externally controlled by a magnetic field which allows to selectively load, transport and deliver the cells.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
APA, Harvard, Vancouver, ISO, and other styles
14

Ye, Xutao. "Towards Automated Nanomanipulation under Scanning Electron Microscopy." Thesis, 2012. http://hdl.handle.net/1807/33599.

Full text
Abstract:
Robotic Nanomaterial Manipulation inside scanning electron microscopes (SEM) is useful for prototyping functional devices and characterizing one-dimensional nanomaterial’s properties. Conventionally, manipulation of nanowires has been performed via teleoperation, which is time-consuming and highly skill-dependent. Manual manipulation also has the limitation of low success rates and poor reproducibility. This research focuses on a robotic system capable of automated pick-place of single nanowires. Through SEM visual detection and vision-based motion control, the system transferred individual silicon nanowires from their growth substrate to a microelectromechanical systems (MEMS) device that characterized the nanowires’ electromechanical properties. The performances of the nanorobotic pick-up and placement procedures were quantified by experiments. The system demonstrated automated nanowire pick-up and placement with high reliability. A software system for a load-lock-compatible nanomanipulation system is also designed and developed in this research.
APA, Harvard, Vancouver, ISO, and other styles
15

Sahu, Sudheer. "DNA Based Self-Assembly and Nanorobotic : theory and experiments." Diss., 2007. http://hdl.handle.net/10161/443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zimmer, Michael Makoto Owusu Yaw A. "Model characteristics and properties of nanorobots in the bloodstream." Diss., 2005. http://etd.lib.fsu.edu/theses/available/etd-04112005-145540/.

Full text
Abstract:
Thesis (M.S.)--Florida State University, 2005.
Advisor: Dr. Yaw A. Owusu, Florida State University, FAMU-FSU College of Engineering, Dept. of Industrial and Manufacturing Engineering. Title and description from dissertation home page (viewed June 9, 2005). Document formatted into pages; contains xii, 87 pages. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
17

Nunes, Daniel Filipe Vilhena. "Magnetic navigation and actuation of nanorobotic systems through the use of Helmholtz coils." Master's thesis, 2018. http://hdl.handle.net/10451/36460.

Full text
Abstract:
Tese de mestrado em Física, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, em 2018
A navegação magnética de sistemas nano ou micro-robóticos é uma área de investigação na qual o interesse académico é crescente – desde nanopartículas magnéticas a dispositivos nadadores de tamanhos microscópicos. A utilização de campos magnéticos é também de grande interesse para aplicações médicas. Estudos prévios recorrem à utilização de pares de bobines em configuração de Helmholtz (campo magnético uniforme) e em configuração de Maxwell (gradiente magnético uniforme), com o fim de criar campos magnéticos controláveis. Existem várias opções para fornecer energia a nano ou microrobots, sendo as mais comuns a elétrica e a magnética. Enquanto a maioria das soluções elétricas tem a fonte de alimentação no próprio microrobot, as soluções magnéticas tendem a usar campos magnéticos externos de forma a atuar os microrobots. Estas soluções tornam-se assim ideais para aplicações médicas devido ao já estabelecido uso de máquinas de ressonância-magnética em medicina. O maior obstáculo a ultrapassar no desenho destes sistemas microrobóticos a serem usados em aplicações médicas é o fluxo de Stokes. Devido à reduzida dimensão das estruturas nano ou microrobóticas, o número de Reynolds torna-se também pequeno, podendo ser inferior a 1. Nesse caso, o fluido no qual a estrutura se encontra submersa comporta-se como o equivalente a um fluido de elevada viscosidade. Assim, recorrer puramente a uma força magnética para “arrastar” o microrobot, implicaria o uso de gradientes magnéticos elevados e de difícil criação. Utilizando bobines de Helmholtz e com inspiração na propulsão de microrganismos, a locomoção é possibilitada usando somente campos magnéticos de baixa intensidade. Estudos previamente existentes incluem a utilização de campos alternos para locomoção de microrobots, oscilando-os de forma a que parte da sua estrutura (uma cauda flexível) atue como leme. Campos magnéticos com precessão em torno de determinada direção, permitem a rotação de microrobots com caudas helicoidais, também assim propulsionando-os. Gradientes magnéticos são maioritariamente usados em nanorobots cuja componente magnética possui elevando momento magnético (como no caso de nanopartículas superparamagnéticas). Assim, este projeto baseou-se na utilização de campos de magnéticos uniformes gerados por pares de bobines em configuração de Helmholtz para o controlo de microrobots constituídos por materiais flexíveis e com componente magnética capaz de realinhar toda a estrutura. Foram fabricados três pares ortogonais de bobines de Helmholtz ligados a uma fonte de alimentação DC programável (Hameg HMP4040). Esta fonte foi controlada através de uma interface de utilizador gráfica desenvolvida em LabVIEW o que permitiu o controlo da intensidade do campo no plano XY das bobines e na direção do terceiro par de bobines, tal como ângulo que o campo faz com a direção X. No entanto, a fonte tem limitações. Apenas valores positivos de corrente conseguiram ser gerados e a frequência máxima possível foi de 1 Hz. Usando um íman permanente de neodímio com cinco milímetros como objeto de teste, o controlo da direção do campo foi comprovado. A fase seguinte consistiu na fabricação de microrobots (nViper) para testes de controlo em meio fluídico e à microescala. Os nViper foram microrobots fabricados com o intuito de testar as capacidades do sistema de bobines e da fonte de alimentação. O seu desenho geral foi inspirado na estrutura de espermatozoides (uma cabeça e uma cauda), enquanto a geometria da cabeça foi baseada na morfologia de bactérias (coccus e bacillus) e também espermatozoides. Os microrobots foram fabricados em poliamida (base e encapsulamento), um polímero flexível e biocompatível, e uma liga de cobalto-crómio-platina (CoCrPt), uma liga de material ferromagnético (componente magnético na cabeça do microrobot). Seguiram-se três processos diferentes de fabricação. O primeiro teve como objetivo determinar a possibilidade de enrolamento das caudas de forma a obter propulsão com um campo magnético rotativo e uma cauda helicoidal. Para tal, as estruturas foram desenvolvidas por cima de uma camada sacrificial composta por alumínio (na maioria da área) e crómio (por debaixo das cabeças). Ao remover o alumínio, as caudas soltaram-se e a estrutura manteve-se presa ao substrato pela área coberta por crómio. Ao não se verificar o enrolamento, o segundo processo foi simplificado com a suposição que seria possível soltar as estruturas diretamente do substrato de vidro. Ou seja, os microrobots nViper foram fabricados diretamente no vidro. Visto que não foi possível removê-los diretamente do vidro, no terceiro processo voltou a incluir-se uma camada de sacrificial de alumínio. O primeiro processo teve resultados positivos quanto à definição das estruturas, mas o enrolamento das caudas não ocorreu, observando-se, no entanto, ligeiras curvas nas caudas soltas do substrato. Foi também possível verificar que CoCrPt é corroído pelo etchant de alumínio e também pelo de crómio. Após a conclusão do segundo processo, observaram-se restos de CoCrPt à volta da base de poliamida que anteriormente foram confundidos com resíduos de alumínio. O terceiro processo foi concluído com sucesso, terminando na remoção da camada sacrificial e recuperação dos microrobots para o interior de Eppendorfs de capacidade 1.5 mL com água. Foi desenvolvido um script em Python para seguir o movimento dos nViper em caso de locomoção, esta vertente do script não foi necessária. No entanto, este foi usada para captação de imagens através do microscópio USB Veho VMS-004 Delux e poderá ser futuramente utilizado em continuações deste projeto. Os resultados obtidos demonstram sucesso inicial na fabricação e controlo de microrobots com o sistema atual. Após o final do terceiro processo de fabricação existem ainda passos a ser otimizados: a camada de encapsulamento de poliamida, a remoção e recuperação dos microrobots. A utilização dos microrobots nViper com o atual sistema de bobines foi um êxito como primeira prova de conceito para futuras aplicações de novos sistemas microrobóticos ou melhoramentos a serem efetuados nos nViper. Ao se colocar uma gota com microrobots numa lâmina de vidro hidrofóbica, e com o campo ligado na direção Z durante a colocação, foi possível posteriormente realinhar um microrobot. Um campo na direção X foi aplicado e de seguida rodado 20º. O microrobot em questão seguiu com uma rotação de 19.07º, valor calculado através de medições de pixéis das imagens obtidas. Outros microrobots realinharam-se com a mudança do campo noutras tentativas, no entanto o resultado anterior foi o mais aproximado da rotação efetuada pelo campo. Numa última abordagem, foi utilizado um íman permanente de neodímio com aproximadamente cinco centímetros para testar outra forma de controlo. Verificou-se que os microrobots foram capazes de se realinharem com o campo magnético produzido pelo íman permanente após uma breve perturbação causada ao sistema por um pequeno movimento devido a uma súbita oscilação do suporte da lâmina de vidro. A necessidade de alguma forma de perturbação ou alinhamento prévio com o campo na direção Z antes da gota atingir a lâmina de vidro, indica que as estruturas, por forças de atração, são adsorvidas ao substrato de vidro. Em suma, o atual sistema provou ser capaz de controlar estruturas macroscópicas e microscópicas de forma satisfatória. A fabricação de microrobots constituídos por poliamida e CoCrPt mostrou-se possível e os resultados funcionais, embora com espaço para otimização do processo. Embora locomoção não tenha sido atingida, tal poderá ser realizável com recurso a uma fonte de corrente AC programável e utilizando frequências superiores a 5 Hz. Um sistema microfluídico poderá ser utilizado de forma a evitar a deposição dos microrobots e também simular os canais encontrados em sistemas vasculares e assim estudar possíveis aplicações e desenhos para os microrobots nViper em aplicações que incluam o sistema cardiovascular.
Magnetic navigation of nano or microrobotic systems is a research area with growing academic interest – from magnetic nanoparticles to microscopic swimmers. While other options for power supply do exist, magnetic fields are widely used with medical applications already in sight, as the adaptation of magnetic-resonance imaging equipment for the control of said magnetic nano or microrobots is a widely presented possibility. The major obstacle to overcome at the scale that the robots are to operate in is the drag of the fluid surrounding them. As their size decreases so does the corresponding Reynolds number, leading to the equivalent of being submerged in a highly viscous fluid – also known as Stokes flow. In turn, this implies the need of a strong magnetic force. With small volumes, it means a strong magnetic gradient is necessary to overcome the drag force of the surrounding fluid on the robot. As an alternative to applying strong magnetic gradients, previous studies took inspiration in microorganisms that navigate in similar regimes (examples include bacteria and spermatozoa). In this dissertation, nViper, a microrobot that follows that line of thought, is presented. It is composed of polyimide, a flexible and biocompatible polymer, and a ferromagnetic alloy of cobalt-chromium-platinum. Fabrication included stages of chemical etch and lift-off process, with lithography stages performed with direct laser writing. nViper’s structure is alike spermatozoa’s, possessing a head and a tail, both composed of polyimide. On the head, an extra layer of the ferromagnetic alloy was added. A controllable magnetic field was created with three orthogonal pairs of coils in Helmholtz configuration. The microrobots were tested in a water droplet on top of a hydrophobic glass substrate in the centre of the coil setup. Trials consisted in altering the magnetic field’s direction and verifying changes to the alignment of the several nViper on the droplet. While some of the structures adhered to the glass and needed mechanical disturbance of the system to realign, when a droplet with nViper microrobots was poured with the magnetic field already on, structures were observed to realign in real time when the field’s direction changed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography