Academic literature on the topic 'Nanoscale contact'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanoscale contact.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanoscale contact"

1

Liu, X. M., X. You, and Zhuo Zhuang. "Contact and Friction at Nanoscale." Advanced Materials Research 33-37 (March 2008): 999–1004. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.999.

Full text
Abstract:
Molecular Dynamics (MD) simulations of indentation and scratch over crystal nickel (100) were carried out to investigate the microstructure evolution at nanoscale. The dislocation nucleation and propagation during process were observed preferably between close-packed planes. Dislocation loops are formed under both indentation and scratch process, and indentation and friction energy were transferred to the substrate in the form of phonon of disordered atoms, then part of the energy dissipated and rest is remain in the form of permanent plastic deformation.
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Fut K., Wei Zhang, Yougun Han, Serge Yoffe, Yungchi Cho, and Boxin Zhao. "“Contact” of Nanoscale Stiff Films." Langmuir 28, no. 25 (2012): 9562–72. http://dx.doi.org/10.1021/la301388e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jonáš, Alexandr, Martin Kochanczyk, Alexandro D. Ramirez, Michael Speidel, and Ernst-Ludwig Florin. "Mechanical Contact Spectroscopy: Characterizing Nanoscale Adhesive Contacts via Thermal Forces." Langmuir 35, no. 17 (2019): 5809–20. http://dx.doi.org/10.1021/acs.langmuir.8b04074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sadat, Seid, Aaron Tan, Yi Jie Chua, and Pramod Reddy. "Nanoscale Thermometry Using Point Contact Thermocouples." Nano Letters 10, no. 7 (2010): 2613–17. http://dx.doi.org/10.1021/nl101354e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lazenby, Robert A., Kim McKelvey, Massimo Peruffo, Marc Baghdadi, and Patrick R. Unwin. "Nanoscale intermittent contact-scanning electrochemical microscopy." Journal of Solid State Electrochemistry 17, no. 12 (2013): 2979–87. http://dx.doi.org/10.1007/s10008-013-2168-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jakob, A. M., J. Buchwald, B. Rauschenbach, and S. G. Mayr. "Nanoscale-resolved elasticity: contact mechanics for quantitative contact resonance atomic force microscopy." Nanoscale 6, no. 12 (2014): 6898–910. http://dx.doi.org/10.1039/c4nr01034e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Jie, Guillaume Michal, Ahn Kiet Tieu, Hong Tao Zhu, and Guan Yu Deng. "Hertz Contact at the Nanoscale with a 3D Multiscale Model." Applied Mechanics and Materials 846 (July 2016): 306–11. http://dx.doi.org/10.4028/www.scientific.net/amm.846.306.

Full text
Abstract:
This paper presents a three-dimensional multiscale computational model, which is proposed to combine the simplicity of FEM model and the atomistic interactions between two solids. A significant advantage of the model is that atoms are populated in the contact regions, which saves significant computation time compared to fully MD simulations. The model is used in the case of asperity contact. The normal displacement, contact radius and pressure distribution are compared with those from Hertz’s solution and atomistic simulations in the literature. Some important features of nanoscale contacts obtained by MD simulations can be caught by the model with acceptable accuracy and low computational cost.
APA, Harvard, Vancouver, ISO, and other styles
8

Santos, Sergio, and Neil H. Thomson. "Energy dissipation in a dynamic nanoscale contact." Applied Physics Letters 98, no. 1 (2011): 013101. http://dx.doi.org/10.1063/1.3532097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rivetti, Marco, Thomas Salez, Michael Benzaquen, Elie Raphaël, and Oliver Bäumchen. "Universal contact-line dynamics at the nanoscale." Soft Matter 11, no. 48 (2015): 9247–53. http://dx.doi.org/10.1039/c5sm01907a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Zhenyu, Andrew J. Morse, Steven P. Armes, Andrew L. Lewis, Mark Geoghegan, and Graham J. Leggett. "Nanoscale Contact Mechanics of Biocompatible Polyzwitterionic Brushes." Langmuir 29, no. 34 (2013): 10684–92. http://dx.doi.org/10.1021/la4018689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nanoscale contact"

1

Lee, Ji Hyung. "In-situ Analysis of the Evolution of Surfaces and Interfaces under Applied Coupled Stresses." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1707308/.

Full text
Abstract:
To study the effect of the substrate support on the nanoscale contact, three different regimes, i.e., graphene on rigid (ultra-crystalline diamond) and on elastic (Polydimethylsiloxane) supports and free-standing graphene, were considered. The contribution of the graphene support to the mechanical and electrical characteristics of the graphene/metal contact was studied using the conductive atomic force microscopy (AFM) technique.The results revealed that the electrical conductivity of the graphene/metal contact highly depends on the nature of the graphene support. The conductivity increased when transitioning from suspended to elastic and then to rigid substrates, which is attributed to the changes in the contact area being higher for the suspended graphene and lower for the rigid substrate. The experimental observations showed good agreement with theoretical results obtained from modeling of the studied material systems. Further, the results indicated that in addition to the substrate support, the nature of the contact, static or dynamic, results in large variations of the electrical conductivity of the graphene/metal contacts. In case of the static mode, the contact made with supported graphene was very stable for a wide range of applied normal loads. Transitioning to the dynamic mode led to instability of the graphene/metal contact as demonstrated by lowering in the electrical conductivity values. This transition was even more pronounced for free-standing graphene which is attributed to graphene sagging during rapid scanning of the tip over the graphene surface. This study creates a new knowledge on understanding of the nanoscale contacts forming with 2D materials thus enabling further advances in the applications of 2D materials in highly stable and reliable electronic devices.
APA, Harvard, Vancouver, ISO, and other styles
2

Satarifard, Vahid. "Polymorphism of Biomembranes at the Nanoscale." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22252.

Full text
Abstract:
In dieser Arbeit untersuchen wir den Polymorphismus von Biomembranen im Nanometerbereich anhand von Computermodellen. In Kapitel drei werden auf Dissipative Particle Dynamis basierende molekulare Simulationen genutzt, um die Wechselwirkungen zwischen Membranen und Nanotropfen mit hohen Oberflächenspannungen in der Größenordnung von Milli Newton pro Meter zu untersuchen. Wir zeigen, dass Nanotropfen eine negative Linienspannung an der dreiphasigen Kontaktlinie mit der Membran aufweisen. Die negative Linienspannung führt zu einem spontanen Symmetriebruch des Membran-Tropfensystems und zur Bildung eines enggeschlossenen länglichen Membranhalses. In Kapitel vier untersuchen wir Nanotropfen mit niedrigen Grenzflächenspannungen in der Größenordnung von Mikro-Newton pro Meter. Eine Energieminimierung ermöglicht uns, eine Vielzahl von Parametern zu variieren und die Abhängigkeit der Membranbenet-zungsphänomene von der Grenzflächenspannung, der Biegesteifigkeit, der Linienspannung und der spontanen Krümmung systematisch zu bestimmen. Wir beobachten eine neue morphologische Transformation, die sowohl die Vesikel als auch das Tröpfchen betrifft und eine weiter Geometrie mit gebrochener Rotationssymmetrie. Schließlich bestimmen wir die Grenze zwischen symmetrischen und asymmetrischen Kontaktlinien innerhalb des dreidimensionalen Parameterraums bei verschwindender spontanen Krümmung. In Kapitel fünf verwenden wir molekulare Simulationen, um die morphologischen Transformationen einzelner Nanovesikel mit unterschiedlichem Grad an Asymmetrie zwischen den beiden Schichten der Doppelmembranen zu beobachten. Wir beginnen mit kugelförmigen Vesikeln, die ein bestimmtes Wasservolumen einschließen und aus einer bestimmten Gesamtzahl von Lipiden bestehen. Wenn ihr Volumen verringert wird, verwandeln sich die kugelförmigen Vesikel in eine Vielzahl von nicht kugelförmigen Formen. Dieser Polymorphismus kann durch Umverteilung weniger Lipide zwischen der inneren und äußeren Schicht der Membranen kontrolliert werden.<br>In this thesis, we use computational methods to study polymorphism of biomembranes at the nanoscales. In chapter three, we use molecular simulations based on dissipative particle dynamics to investigate the interaction of membranes with nanodroplets at high interfacial tensions of the order of milli Newton per meter. We find that nanodroplets have negative line tension at the three phase contact line on the membrane. The negative line tension leads to spontaneous symmetry breaking of the membrane-droplet system and formation of a tight-lipped membrane neck. In chapter four, we study nanodroplets with low interfacial tensions of the order of micro Newton per meter. We use energy minimization, which allows us to explore a wide range of parameters and to systemati-cally determine the dependence of membrane wetting phenomena on interfacial tension, bending rigidity, line tension, and spontaneous curvature. We observe a new morphological transformation that involves both vesicles and droplets, leads to another regime with broken rotational symmetry. Finally, we determine the boundary between symmetric and asymmetric contact line geometries within the three-dimensional parameter space in vanishing spontaneous curvature. In chapter five, we use molecular simulations to monitor the morphological transformations of individual nanovesicles with different degrees of asymmetry between the two leaflets of the bilayer membranes. We start with the assembly of spherical vesicles that enclose a certain volume of water and contain a certain total number of lipids. When we reduce their volume, the spherical vesicles transform into a multitude of nonspherical shapes such as oblates and stomatocytes as well as prolates and dumbbells. This polymorphism can be controlled by redistributing a small fraction of lipids between the inner and outer leaflets of the bilayer membranes. As a consequence, the inner and the outer leaflets experience different mechanical tensions.
APA, Harvard, Vancouver, ISO, and other styles
3

Tsao, Joanna W. "Influence of nanoscale roughness on wetting behavior in liquid/liquid systems." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53045.

Full text
Abstract:
Wetting behavior of fluid/fluid/solid systems, largely influenced by surface properties and interactions between the three phases, plays a big role in nature and in industrial applications Traditionally, wetting studies have focused on liquid/vapor systems, especially the study of a sessile liquid droplet in air. Liquid/vapor systems can only probe the effects of surface properties and interactions between the solid and the wetting liquid. This type of characterization is inadequate for liquid/liquid systems, where surface wettability is additionally influenced by interactions between the two wetting liquids. The present study is the first to examine the effects of nanoscale roughness on wetting behavior in liquid/liquid systems and the modulation of roughness effects by fluid properties and the wetting order. This study examines both equilibrium and dynamic wetting behavior in liquid/liquid systems using well characterized substrates. Rough substrates were fabricated by coating glass substrates with nanometer sized polymer particles. Partial dissolution of the particles and molecular de-deposition of the polymer allowed for tuning of substrate roughness while retaining the original surface chemistry. The effectiveness of this fabrication technique was verified using electron microscopy and electrokinetic analysis. We examined the wetting behavior in three fluid/fluid systems: an air/water system, a decane/water system, and an octanol/water system. The oils were chosen based on their different polarities. Equilibrium wetting behavior was determined using contact angle measurements. Results indicate that for all systems where the primary wetting fluid was a liquid, an increase of the surface roughness resulted in Cassie-Baxter wetting. How hydrophilic a surface appears with regard to a water/fluid interface depended on the polarity of that fluid. The octanol/water system provided the strongest evidence regarding the effect of wetting order: a transition from Wenzel to Cassie-Baxter wetting was only observed when water was the primary wetting liquid. The observed transition was confirmed using a modified Wenzel/Cassie-Baxter model. The kinetics of droplet spreading was measured using high speed optical microscopy. After a droplet was placed on a solid surface, the motion of the contact line was imaged at a rate of 1000 fps. The wetted area was then extracted using custom Matlab® scripts. The spreading kinetics underwent a transition between two regimes: a visco-inertial regime and a slower spreading regime. Results indicated that surface roughness influenced spreading kinetics in both regimes. The overall spreading rate was always slower for rough surfaces than for smoother surfaces. In liquid/liquid systems, the duration of visco-inertial regime was dependent on the surface roughness as well; in general, it was shorter for smooth substrates compared to rough substrates. Increasing the viscosity of the non-aqueous fluid significantly increased the duration of the visco-inertial regime and decreased the overall spreading rate. This study provides insight into the competitive wetting of solid surfaces relevant in many industrial applications such as oil recovery or inkjet printing, and may guide the development of improved wetting models in an area that currently lacks an adequate theoretical description.
APA, Harvard, Vancouver, ISO, and other styles
4

Donehoo, Brandon. "A superconducting investigation of nanoscale mechanics in niobium quantum point contacts." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24784.

Full text
Abstract:
Thesis (Ph.D.)--Physics, Georgia Institute of Technology, 2008.<br>Committee Chair: Alexei Marchenkov; Committee Member: Bruno Frazier; Committee Member: Dragomir Davidovic; Committee Member: Markus Kindermann; Committee Member: Phillip First
APA, Harvard, Vancouver, ISO, and other styles
5

Kumar, Aditya [Verfasser]. "Accessing the tribological contact on the nanoscale by means of scanning probe techniques / Aditya Kumar." Siegen : Universitätsbibliothek der Universität Siegen, 2012. http://d-nb.info/1024804240/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jones, Alexander M. "Onset of Spin Polarization in Four-Gate Quantum Point Contacts." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1485188708345005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Coyer, Sean R. "Modulation of cell adhesion strengthening by nanoscale geometries at the adhesive interface." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34763.

Full text
Abstract:
Cell adhesion to extracellular matrices (ECM) is critical to many cellular processes including differentiation, proliferation, migration, and apoptosis. Alterations in adhesive mechanisms are central to the behavior of cells in pathological conditions including cancer, atherosclerosis, and defects in wound healing. Although significant progress has been made in identifying molecules involved in adhesion, the mechanisms that dictate the generation of strong adhesive forces remain poorly understood. Specifically, the role of nanoscale geometry of the adhesive interface in integrin recruitment and adhesion forces remains elusive due to limitations in the techniques available for engineering cell adhesion environments. The objective of this project was to analyze the role of nanoscale geometry in cell adhesion strengthening to ECM. Our central hypothesis was that adhesive interactions are regulated by integrin clusters whose recruitment is determined by the nanoscale geometry of the adhesive interface and whose heterogeneity in size, spacing, and orientation modulates adhesion strength. The objective of this project was accomplished by 1) developing an experimental technique capable of producing nanoscale patterns of proteins on surfaces for cell adhesion arrays, 2) assessing the regulation of integrin recruitment by geometry of the adhesive interface, and 3) determining the functional implications of adhesive interface geometry by systematically analyzing the adhesion strengthening response to nanoscale patterns of proteins. A printing technique was developed that patterns proteins into features as small as 90nm with high contrast and high reproducibility. Cell adhesion arrays were produced by directly immobilizing proteins into patterns on mixed-SAMs surfaces with a protein-resistant background. Colocalization analysis of integrin recruitment to FN patterns demonstrated a concentrating effect of bound integrins at pattern sizes with areas equivalent to small nascent focal adhesions. At adhesion areas below 333 × 333 nm2, the frequency of integrin recruitment events decreased significantly indicating a threshold size for integrin clustering. Functionally, pattern sizes below the threshold were unable to participate in generation of adhesion strength. In contrast, patterns between the threshold and micron sizes showed a relationship between adhesion strength and area of individual adhesion points, independent of the total available adhesion area. These studies introduce a robust platform for producing nanoscale patterns of proteins in biologically relevant geometries. Results obtained using this approach yielded new insights on the role of nanoscale organization of the adhesive interface in modulating adhesion strength and integrin recruitment.
APA, Harvard, Vancouver, ISO, and other styles
8

Jakob, Sebastian Bernhard Ludwig [Verfasser], Werner [Akademischer Betreuer] Schindler, and Katharina [Akademischer Betreuer] Krischer. "The n-Si(111):H Surface in Contact with an Aqueous Electrolyte: Surface States, Electrochemical Charge Transfer, and Nanoscale Structuring / Sebastian Bernhard Ludwig Jakob. Gutachter: Katharina Krischer ; Werner Schindler. Betreuer: Werner Schindler." München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1038787203/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Leoni, Thomas. "Contribution à l'étude des contacts atomiques et moléculaires ponctuels." Phd thesis, Université de la Méditerranée - Aix-Marseille II, 2009. http://tel.archives-ouvertes.fr/tel-00412904.

Full text
Abstract:
De manière ultime, l'électronique moléculaire aspire à utiliser une molécule unique comme partie active d'un composant. Une telle réalisation fusionnerait l'énorme potentiel de la chimie aux technologies les plus avancées des nanosciences. Cependant, les propriétés de transport électronique d'une seule molécule restent, aujourd'hui, l'enjeu de débats animés qui s'appuient sur des calculs et sur de trop rares expériences. Les expériences sont, en effet, difficiles car elles nécessitent de pouvoir fabriquer des électrodes de contact dont l'écartement correspond à la taille de la molécule. Notre travail contribue au développement de telles techniques instrumentales dont l'intérêt dépasse celui de l'électronique moléculaire et englobe, plus généralement, le transport électronique à l'échelle nanométrique. Dans la première partie, nous décrivons d'abord la technique. Elle fait appel à un microscope à effet tunnel modifié pour fabriquer des électrodes nanométriques (technique des jonctions brisées). Cette approche combine en fait deux domaines de recherche qui sont d'une part, les mesures de conductance moléculaire et, d'autre part, les contacts atomiques ponctuels. Plus précisément, la physique de la formation et du transport d'électrons dans ces derniers est particulièrement étudiée. Après avoir décrit l'instrumentation développée, nous présentons donc des résultats à la fois sur des contacts atomiques ponctuels (jonction Au-Au) et sur des contacts moléculaires (jonction Au-molécule-Au). Notamment, la quantification de la conductance et le transport balistique sont mis en évidence. Cela montre que la présence d'une seule molécule peut être décelée électriquement. Nous soulignons qu'en dépit des énormes progrès apportés par cette technique à la détermination de la conductance d'une molécule, la disparité des résultats expérimentaux reportés reste importante. Nous clôturons la première partie en insistant sur l'impérieuse nécessité d'études statistiques rigoureuses à partir des nombreuses données expérimentales. Nous effectuons ce travail pour les jonctions Au-Au. Dans la seconde partie nous développons des outils d'analyse statistique. Ils permettent d'extraire de chaque mesure de conductance d'une nanojonction d'Au les paramètres indispensables à leur étude (le temps de vie par exemple). La statistique de ces paramètres sur des dizaines de milliers de mesures dans différentes conditions expérimentales est discutée et, outre les aspects de transport, donne des informations sur la mécanique de ces nanosystèmes (i.e. sur des mécanismes de rupture de la nanojonction). Les outils développés permettent d'observer des effets fins. Il est montré qu'une petite fraction des électrons échappe au transport balistique. Enfin, nous montrons l'existence de fluctuations bistables et discutons de leur effet sur le transport balistique et de leur rapport avec les mouvements atomiques.
APA, Harvard, Vancouver, ISO, and other styles
10

Westbrook, Paul S. (Paul Stephen) 1967. "Photoresponse and conductance mechanisms in nanoscale superconductor normal-metal point contacts." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Nanoscale contact"

1

Bueno, Paulo Roberto. Nanoscale Electrochemistry of Molecular Contacts. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90487-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nagata, Takahiro. Nanoscale Redox Reaction at Metal/Oxide Interface: A Case Study on Schottky Contact and ReRAM. Springer, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bueno, Paulo Roberto. Nanoscale Electrochemistry of Molecular Contacts. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burton, J. D., and E. Y. Tsymbal. Magnetoresistive phenomena in nanoscale magnetic contacts. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.18.

Full text
Abstract:
This article examines magnetoresistive phenomena in nano- and atomic-size ferromagnetic metal contacts. In particular, it considers how magnetization affects the flow of electrical current in ferromagnetic materials by focusing on two major categories of magnetoresistive phenomena: the ‘spin-valve’, where the flow of spin-polarized electrical current is affected by an inhomogeneous magnetization profile, and anisotropic magnetoresistance (AMR), which involves the anisotropy of electrical transport properties with respect to the orientation of the magnetization. The article first provides an overview of ballistic transport and conductance quantization before discussing domain-wall magnetoresistance at the nanoscale. It also describes AMR in magnetic nanocontacts as well as tunnelling anisotropic magnetoresistance in broken contacts.
APA, Harvard, Vancouver, ISO, and other styles
5

Mate, C. Mathew, and Robert W. Carpick. Tribology on the Small Scale. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199609802.001.0001.

Full text
Abstract:
Friction, lubrication, adhesion, and wear are prevalent physical phenomena in everyday life and in many key technologies. The goal of this book is to incorporate a bottom up approach to friction, lubrication, and wear into a versatile textbook on tribology. This is done by focusing on how these tribological phenomena occur on the small scale—the atomic to the micrometer scale—a field often called nanotribology. The book covers the microscopic origins of the common tribological concepts: roughness, elasticity, plasticity, friction coefficients, and wear coefficients. Some macroscale concepts (like elasticity) scale down well to the micro- and atomic scale, while other macroscale concepts (like hydrodynamic lubrication) do not. In addition, this book also has chapters on topics not typically found in tribology texts: surface energy, surface forces, lubrication in confined spaces, and the atomistic origins of friction and wear. These chapters covered tribological concepts that become increasingly important at the small scale: capillary condensation, disjoining pressure, contact electrification, molecular slippage at interfaces, atomic scale stick-slip, and bond breaking. Numerous examples are provided throughout the book on how a nanoscale understanding of tribological phenomena is essential to the proper engineering of important new technologies such as MEMS, disk drives, and nanoimprinting. For the second edition, all the chapters have been revised and updated, with many new sections added to incorporate the most recent advancements in nanoscale tribology. Another important enhancement to the second edition is the addition of problem sets at the end of each chapter.
APA, Harvard, Vancouver, ISO, and other styles
6

Narlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.001.0001.

Full text
Abstract:
This Handbook consolidates some of the major scientific and technological achievements in different aspects of the field of nanoscience and technology. It consists of theoretical papers, many of which are linked with current and future nanodevices, molecular-based materials and junctions (including Josephson nanocontacts). Self-organization of nanoparticles, atomic chains, and nanostructures at surfaces are further described in detail. Topics include: a unified view of nanoelectronic devices; electronic and transport properties of doped silicon nanowires; quasi-ballistic electron transport in atomic wires; thermal transport of small systems; patterns and pathways in nanoparticle self-organization; nanotribology; and the electronic structure of epitaxial graphene. The volume also explores quantum-theoretical approaches to proteins and nucleic acids; magnetoresistive phenomena in nanoscale magnetic contacts; novel superconducting states in nanoscale superconductors; left-handed metamaterials; correlated electron transport in molecular junctions; spin currents in semiconductor nanostructures; and disorder-induced electron localization in molecular-based materials.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanoscale contact"

1

Sauer, Roger A. "Challenges in Computational Nanoscale Contact Mechanics." In Recent Developments and Innovative Applications in Computational Mechanics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17484-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Volokitin, Aleksandr I., and Bo N. J. Persson. "Phonon and Internal Non-contact Friction." In Electromagnetic Fluctuations at the Nanoscale. Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53474-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Naidyuk, Yu G., N. L. Bobrov, V. N. Chernobay, et al. "Point-Contact Study of the Superconducting Gap in the Magnetic Rare-Earth Nickel-Borocarbide RNi2B2C (R = Dy, Ho, Er, Tm) Compounds." In Nanoscale Phenomena. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00708-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramisetti, Srinivasa Babu, Guillaume Anciaux, and Jean-Francois Molinari. "MD/FE Multiscale Modeling of Contact." In Fundamentals of Friction and Wear on the Nanoscale. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10560-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Zhiqiang. "Contact Resistance of Ge Devices." In The Source/Drain Engineering of Nanoscale Germanium-based MOS Devices. Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49683-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khim, Zheong G., and Jaewan Hong. "Dynamic-Contact Electrostatic Force Microscopy and its Application to Ferroelectric Domain." In Nanoscale Phenomena in Ferroelectric Thin Films. Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9044-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Persson, Bo, Giuseppe Carbone, Vladimir N. Samoilov, et al. "Contact Mechanics, Friction and Adhesion with Application to Quasicrystals." In Fundamentals of Friction and Wear on the Nanoscale. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10560-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sahoo, Deepak R., Walter Häberle, Abu Sebastian, Haralampos Pozidis, and Evangelos Eleftheriou. "High-Bandwidth Intermittent-Contact Mode Scanning Probe Microscopy Using Electrostatically-Actuated Microcantilevers." In Control Technologies for Emerging Micro and Nanoscale Systems. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22173-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Paggi, Marco, and Alberto Carpinteri. "Size-Scale Effects on the Friction Coefficient: From Weak Faults at the Planetary Scale to Superlubricity at the Nanoscale." In Recent Advances in Contact Mechanics. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33968-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mazzola, L., and A. Galderisi. "Determination of Surface Free Energy at the Nanoscale via Atomic Force Microscopy without Altering the Original Morphology." In Advances in Contact Angle, Wettability and Adhesion. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118795620.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanoscale contact"

1

Yoon, Hong Min, and Joon Sang Lee. "Effect of the contact geometry on nanoscale and sub-nanoscale friction behaviors." In 2016 Asia-Pacific Magnetic Recording Conference (APMRC). IEEE, 2016. http://dx.doi.org/10.1109/apmrc.2016.7524286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Hyungjun, Jaehong Yoon, and Han-Bo-Ram Lee. "Atomic layer deposition for nanoscale contact applications." In 2011 Materials for Advanced Metallization (MAM). IEEE, 2011. http://dx.doi.org/10.1109/iitc.2011.5940260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Seung Ho, and Stephen M. Hsu. "Nanoscale Surface Force Measurement." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63702.

Full text
Abstract:
At nanoscale, surface forces often dominate or exert significant influence on contact interfaces. Adhesion and stiction in micro- and nanodevices are important technological challenges in nanotechnology and they are closely linked to our ability to control the surface forces. Yet our understanding of surface forces in nanoscale contacts is lacking, especially the interplay between surface roughness, material properties, contact geometry and the environment. Traditional means of measuring surface forces use a macrocontact with atomically flat mica surfaces and the forces measured by laser interferometry. Semiconductor and insulator materials cannot be measured by this technique. We have developed a preliminary AFM-based technique using colloidal probes capable of directly measure the surface forces at nanoscale. The difficulties are surface roughness control, force sensitivity of the cantilevers, the control of snapon, and the size of the probe tip. We have demonstrated that all these issues can be controlled to a large extent and reasonable surface forces can be measured between a probe tip and a flat surface down to a nanometer distance to the surface.
APA, Harvard, Vancouver, ISO, and other styles
4

Shine, G., C. E. Weber, and K. C. Saraswat. "Statistical limits of contact resistivity due to atomistic variation in nanoscale contacts." In 2016 IEEE Symposium on VLSI Technology. IEEE, 2016. http://dx.doi.org/10.1109/vlsit.2016.7573422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karabanov, S. M., A. S. Karabanov, D. V. Suvorov, et al. "Magnetically controlled MEMS switches with nanoscale contact coatings." In 26th International Conference on Electrical Contacts (ICEC 2012). IET, 2012. http://dx.doi.org/10.1049/cp.2012.0675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, Joshua T., Yanjie Zhao, Chen Yang, and Joerg Appenzeller. "Effects of nanoscale contacts to silicon nanowires on contact resistance: Characterization and Modeling." In 2010 68th Annual Device Research Conference (DRC). IEEE, 2010. http://dx.doi.org/10.1109/drc.2010.5551876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Honghui, Liang Fang, Yao Wang, Yaqing Chi, and Rulin Liu. "A low contact resistance graphene field effect transistor with single-layer-channel and multi-layer-contact." In 2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). IEEE, 2014. http://dx.doi.org/10.1109/nanoarch.2014.6880502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Qingquan, and Norman C. Tien. "Design and Modeling of Liquid Gallium Contact RF MEMS Switch." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18257.

Full text
Abstract:
Due to the high power density and local temperature increase on nanoscopic asperities of solid metal contacts, traditional MEMS contact switches suffer from contact welding, pitting, electromigration and oxidation. Particularly, when MEMS switches are used to handle high power, solid metal contacts pose serious limitation on the contact reliability. A self-healing RF MEMS switch, which utilizes liquid gallium contacts to take the place of the traditional solid metal-to-metal contacts, is proposed in this paper. Electrostatic actuation is used to drive a silicon nitride bridge with upper electrodes. When the bridge is pulled down, liquid gallium droplets work as an interface between the upper and lower contact electrodes. The loss of the gallium droplets can be avoided due to the unwettability of the material surrounding the contact electrodes. The switch is fabricated using a surface micromachining process. A coupled-field finite element analysis (FEA) is used to model the electric current, heating and thermal conduction of the contacts. The model includes deformable gallium droplets with 4 μm base diameter. The two sides of the droplets are connected to the upper and lower solid metal contact electrodes, respectively. By using the FEA models, the electric and thermal characteristics of the gallium droplets featuring a variety of geometric parameters have been studied. 1 A current handling capability of the liquid gallium contact is verified by the FEA models.
APA, Harvard, Vancouver, ISO, and other styles
9

"Contact 3M-NANO 2012." In 2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2012. http://dx.doi.org/10.1109/3m-nano.2012.6473015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Contact 3M-NANO 2013." In 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2013. http://dx.doi.org/10.1109/3m-nano.2013.6737372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography