Journal articles on the topic 'Nanoscintillators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanoscintillators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jacobsohn, Luiz G., Kevin B. Sprinkle, Steven A. Roberts, et al. "Fluoride Nanoscintillators." Journal of Nanomaterials 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/523638.
Full textZhao, Jian, Kunyang Wang, Wenhui Chen, Deyang Li, and Lei Lei. "Controlled Synthesis of Cs2NaYF6: Tb Nanoparticles for High-Resolution X-Ray Imaging and Molecular Detection." Nanomaterials 15, no. 10 (2025): 728. https://doi.org/10.3390/nano15100728.
Full textProcházková, Lenka, Tomáš Gbur, Václav Čuba, Vítězslav Jarý, and Martin Nikl. "Fabrication of highly efficient ZnO nanoscintillators." Optical Materials 47 (September 2015): 67–71. http://dx.doi.org/10.1016/j.optmat.2015.07.001.
Full textMeng, Zhu, Benoit Mahler, Julien Houel, et al. "Perspectives for CdSe/CdS spherical quantum wells as rapid-response nano-scintillators." Nanoscale 13, no. 46 (2021): 19578–86. http://dx.doi.org/10.1039/d1nr04781g.
Full textChen, Baoliu, Junduan Dai, Sijie Song, et al. "An Activatable Nanoscintillator Probe for Detecting Telomerase Activity and Screening Inhibitors In Vivo." Targets 1, no. 1 (2023): 34–47. http://dx.doi.org/10.3390/targets1010004.
Full textBulin, Anne-Laure, Andrey Vasil'ev, Andrei Belsky, David Amans, Gilles Ledoux, and Christophe Dujardin. "Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect." Nanoscale 7, no. 13 (2015): 5744–51. http://dx.doi.org/10.1039/c4nr07444k.
Full textSecchi, Valeria, Angelo Monguzzi, and Irene Villa. "Design Principles of Hybrid Nanomaterials for Radiotherapy Enhanced by Photodynamic Therapy." International Journal of Molecular Sciences 23, no. 15 (2022): 8736. http://dx.doi.org/10.3390/ijms23158736.
Full textJung, J. Y., G. A. Hirata, G. Gundiah, et al. "Identification and development of nanoscintillators for biotechnology applications." Journal of Luminescence 154 (October 2014): 569–77. http://dx.doi.org/10.1016/j.jlumin.2014.05.040.
Full textGupta, Santosh K., and Yuanbing Mao. "Recent advances, challenges, and opportunities of inorganic nanoscintillators." Frontiers of Optoelectronics 13, no. 2 (2020): 156–87. http://dx.doi.org/10.1007/s12200-020-1003-5.
Full textKornienko, Anastasia I., Maria A. Teplonogova, Marina P. Shevelyova, et al. "Novel Flavin Mononucleotide-Functionalized Cerium Fluoride Nanoparticles for Selective Enhanced X-Ray-Induced Photodynamic Therapy." Journal of Functional Biomaterials 15, no. 12 (2024): 373. https://doi.org/10.3390/jfb15120373.
Full textMekki, H., L. Guerbous, H. Bousbia-salah, A. Boukerika, and K. Lebbou. "Scintillation properties of (Lu1-x Y x )3Al5O12:Ce3+ nanoscintillator solid solution garnet materials." Journal of Instrumentation 18, no. 02 (2023): P02007. http://dx.doi.org/10.1088/1748-0221/18/02/p02007.
Full textChen, Xiaofeng, Xiaokun Li, Xiaoling Chen, et al. "Flexible X-ray luminescence imaging enabled by cerium-sensitized nanoscintillators." Journal of Luminescence 242 (February 2022): 118589. http://dx.doi.org/10.1016/j.jlumin.2021.118589.
Full textFULBERT, Clémentine, Sarah STELSE-MASSON, Frédéric CHAPUT, et al. "Using rare-earth based nanoscintillators for X-ray induced photodynamic therapy." Photodiagnosis and Photodynamic Therapy 41 (March 2023): 103421. http://dx.doi.org/10.1016/j.pdpdt.2023.103421.
Full textFULBERT, Clémentine, Sarah STELSE-MASSON, Hélène ELLEAUME, and Anne-Laure BULIN. "Nanoscintillators for X-ray induced PDT: unravelling the complex mechanisms involved." Photodiagnosis and Photodynamic Therapy 41 (March 2023): 103426. http://dx.doi.org/10.1016/j.pdpdt.2023.103426.
Full textKlassen, N. V., V. V. Kedrov, Y. A. Ossipyan, et al. "Nanoscintillators for Microscopic Diagnostics of Biological and Medical Objects and Medical Therapy." IEEE Transactions on NanoBioscience 8, no. 1 (2009): 20–32. http://dx.doi.org/10.1109/tnb.2009.2016551.
Full textWei, Aoqing, Jingtao Zhao, Danyang Shen, and Lei Lei. "Controlled synthesis of SrFCl: Tb nanoscintillators with improved X-ray detection limit." Journal of Luminescence 277 (January 2025): 120972. http://dx.doi.org/10.1016/j.jlumin.2024.120972.
Full textScaffidi, Jonathan P., Molly K. Gregas, Benoit Lauly, Yan Zhang, and Tuan Vo-Dinh. "Activity of Psoralen-Functionalized Nanoscintillators against Cancer Cells upon X-ray Excitation." ACS Nano 5, no. 6 (2011): 4679–87. http://dx.doi.org/10.1021/nn200511m.
Full textProcházková, Lenka, Václav Čuba, Alena Beitlerová, Vítězslav Jarý, Sergey Omelkov, and Martin Nikl. "Ultrafast Zn(Cd,Mg)O:Ga nanoscintillators with luminescence tunable by band gap modulation." Optics Express 26, no. 22 (2018): 29482. http://dx.doi.org/10.1364/oe.26.029482.
Full textDinakaran, Deepak, Jayeeta Sengupta, Desmond Pink, et al. "PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy." Acta Biomaterialia 117 (November 2020): 335–48. http://dx.doi.org/10.1016/j.actbio.2020.09.029.
Full textSahin, O., Y. Mackeyev, G. Vijay, et al. "X-Ray Triggered Nanoscintillators Photosensitize Pancreatic Cancer and Stimulate a Robust Systemic Immune Response." International Journal of Radiation Oncology*Biology*Physics 114, no. 3 (2022): e524. http://dx.doi.org/10.1016/j.ijrobp.2022.07.2118.
Full textKlassen, N. V., V. N. Kurlov, S. N. Rossolenko, O. A. Krivko, A. D. Orlov, and S. Z. Shmurak. "Scintillation fibers and nanoscintillators for improving the spatial, spectrometric, and time resolution of radiation detectors." Bulletin of the Russian Academy of Sciences: Physics 73, no. 10 (2009): 1369–73. http://dx.doi.org/10.3103/s1062873809100141.
Full textHong, Zhongzhu, Shuai He, Qinxia Wu, et al. "One-pot synthesis of lanthanide-activated NaBiF4 nanoscintillators for high-resolution X-ray luminescence imaging." Journal of Luminescence 254 (February 2023): 119492. http://dx.doi.org/10.1016/j.jlumin.2022.119492.
Full textChuang, Yao-Chen, Chia-Hui Chu, Shih-Hsun Cheng, et al. "Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics." Theranostics 10, no. 15 (2020): 6758–73. http://dx.doi.org/10.7150/thno.41752.
Full textAlves, Luiz Anastacio, Leonardo Braga Ferreira, Paulo Furtado Pacheco, Edith Alejandra Carreño Mendivelso, Pedro Celso Nogueira Teixeira, and Robson Xavier Faria. "Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators." Oncotarget 9, no. 38 (2018): 25342–54. http://dx.doi.org/10.18632/oncotarget.25150.
Full textAhmad, Farooq, Xiaoyan Wang, Zhao Jiang, et al. "Codoping Enhanced Radioluminescence of Nanoscintillators for X-ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics." ACS Nano 13, no. 9 (2019): 10419–33. http://dx.doi.org/10.1021/acsnano.9b04213.
Full textStelse-Masson, Sarah, Xenie Lytvynenko, Kristel Bedregal-Portugal, et al. "Combined physical and biological contributions to radiotherapy enhancement by Lu-based nanoscintillators in pancreatic cancer models." Nanotheranostics 9, no. 3 (2025): 199–215. https://doi.org/10.7150/ntno.115120.
Full textYu, Xujiang, Xinyi Liu, Weijie Wu, et al. "CT/MRI-Guided Synergistic Radiotherapy and X-ray Inducible Photodynamic Therapy Using Tb-Doped Gd-W-Nanoscintillators." Angewandte Chemie 131, no. 7 (2019): 2039–44. http://dx.doi.org/10.1002/ange.201812272.
Full textYu, Xujiang, Xinyi Liu, Weijie Wu, et al. "CT/MRI-Guided Synergistic Radiotherapy and X-ray Inducible Photodynamic Therapy Using Tb-Doped Gd-W-Nanoscintillators." Angewandte Chemie International Edition 58, no. 7 (2019): 2017–22. http://dx.doi.org/10.1002/anie.201812272.
Full textBulin, Anne‐Laure, Mans Broekgaarden, Frédéric Chaput, et al. "Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma." Advanced Science 7, no. 20 (2020): 2001675. http://dx.doi.org/10.1002/advs.202001675.
Full textZAHRA, Billel. "Characterization of alpha-induced light yield in YAG: Ce3+ nanoscintillator detector for radiation detection applications." Algerian Journal of Signals and Systems 9, no. 4 (2024): 206–11. https://doi.org/10.51485/ajss.v9i4.207.
Full textKirakci, Kaplan, Pavel Kubát, Karla Fejfarová, Jiří Martinčík, Martin Nikl, and Kamil Lang. "X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators." Inorganic Chemistry 55, no. 2 (2015): 803–9. http://dx.doi.org/10.1021/acs.inorgchem.5b02282.
Full textCooper, Daniel R., Konstantin Kudinov, Pooja Tyagi, Colin K. Hill, Stephen E. Bradforth, and Jay L. Nadeau. "Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules." Phys. Chem. Chem. Phys. 16, no. 24 (2014): 12441–53. http://dx.doi.org/10.1039/c4cp01044b.
Full textDaouk, Joël, Mathilde Iltis, Batoul Dhaini, et al. "Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy." Pharmaceuticals 14, no. 5 (2021): 396. http://dx.doi.org/10.3390/ph14050396.
Full textBulin, Anne-Laure, Charles Truillet, Rima Chouikrat, et al. "X-ray-Induced Singlet Oxygen Activation with Nanoscintillator-Coupled Porphyrins." Journal of Physical Chemistry C 117, no. 41 (2013): 21583–89. http://dx.doi.org/10.1021/jp4077189.
Full textSchneller, Perrine, Charlotte Collet, Quentin Been, et al. "Added Value of Scintillating Element in Cerenkov-Induced Photodynamic Therapy." Pharmaceuticals 16, no. 2 (2023): 143. http://dx.doi.org/10.3390/ph16020143.
Full textChen, Hongmin, Geoffrey D. Wang, Yen-Jun Chuang, et al. "Nanoscintillator-Mediated X-ray Inducible Photodynamic Therapy for In Vivo Cancer Treatment." Nano Letters 15, no. 4 (2015): 2249–56. http://dx.doi.org/10.1021/nl504044p.
Full textMorgan, Nicole Y., Gabriela Kramer-Marek, Paul D. Smith, Kevin Camphausen, and Jacek Capala. "Nanoscintillator Conjugates as Photodynamic Therapy-Based Radiosensitizers: Calculation of Required Physical Parameters." Radiation Research 171, no. 2 (2009): 236–44. http://dx.doi.org/10.1667/rr1470.1.
Full textKurudirek, Murat, Sinem V. Kurudirek, Nolan E. Hertel, et al. "Vertically Well-Aligned ZnO Nanoscintillator Arrays with Improved Photoluminescence and Scintillation Properties." Materials 16, no. 20 (2023): 6717. http://dx.doi.org/10.3390/ma16206717.
Full textBuryi, M., N. Neykova, M. G. Brik, et al. "Hydrothermally grown molybdenum doped ZnO nanorod arrays. The concept of novel ultrafast nanoscintillator." Optical Materials 145 (November 2023): 114445. http://dx.doi.org/10.1016/j.optmat.2023.114445.
Full textLiu, Li Sha, Hao Hong Chen, Bi Qiu Liu, Bin Tang, Zhi Jia Sun та Jing Tai Zhao. "Microscintillator of Ce Doped β-NaLuF4 in Uniform Hexagonal Prism Morphology by a Facile Hydrothermal Method". Applied Mechanics and Materials 541-542 (березень 2014): 220–24. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.220.
Full textRivera, J., J. Dooley, M. Belley, et al. "WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry." Medical Physics 42, no. 6Part36 (2015): 3652. http://dx.doi.org/10.1118/1.4925853.
Full textKyung Cha, Bo, Seung Jun Lee, P. Muralidharan, Jon Yul Kim, Do Kyung Kim, and Gyuseong Cho. "Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 633 (May 2011): S294—S296. http://dx.doi.org/10.1016/j.nima.2010.06.193.
Full textSun, Wenjing, Zijian Zhou, Guillem Pratx, Xiaoyuan Chen, and Hongmin Chen. "Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications." Theranostics 10, no. 3 (2020): 1296–318. http://dx.doi.org/10.7150/thno.41578.
Full textLeghighane, B., M. Taibeche, L. Guerbous, et al. "Photoluminescence Spectroscopy and First-Principle Calculation of Electronic Structure of Ce3+-Doped GdBO3 Inorganic Nanoscintillator Material." Russian Journal of Physical Chemistry A 98, no. 7 (2024): 1540–46. http://dx.doi.org/10.1134/s0036024424700559.
Full textSengar, Prakhar, G. A. Hirata, Mario H. Farias, and Felipe Castillón. "Morphological optimization and (3-aminopropyl) trimethoxy silane surface modification of Y3Al5O12:Pr nanoscintillator for biomedical applications." Materials Research Bulletin 77 (May 2016): 236–42. http://dx.doi.org/10.1016/j.materresbull.2016.01.045.
Full textDaouk, Joël, Batoul Dhaini, Jérôme Petit, Céline Frochot, Muriel Barberi-Heyob, and Hervé Schohn. "Can Cerenkov Light Really Induce an Effective Photodynamic Therapy?" Radiation 1, no. 1 (2020): 5–17. http://dx.doi.org/10.3390/radiation1010002.
Full textSengar, Prakhar, Karelid Garcia-Tapia, Kanchan Chauhan, et al. "Dual-photosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy." Journal of Colloid and Interface Science 536 (February 2019): 586–97. http://dx.doi.org/10.1016/j.jcis.2018.10.090.
Full textBünzli, Jean-Claude Georges. "Lanthanide-doped nanoscintillators." Light: Science & Applications 11, no. 1 (2022). http://dx.doi.org/10.1038/s41377-022-00987-2.
Full textCrapanzano, Roberta, Irene Villa, Silvia Mostoni, et al. "Photo- and Radio-luminescence of Porphyrin Functionalized ZnO/SiO2 Nanoparticles." Physical Chemistry Chemical Physics, 2022. http://dx.doi.org/10.1039/d2cp00884j.
Full textVilla, Irene, Roberta Crapanzano, Silvia Mostoni, et al. "The role of energy deposition on the luminescence sensitization in porphyrin functionalized SiO2/ZnO nanoparticles under X-rays excitation." Nanoscale Advances, 2025. https://doi.org/10.1039/d4na00640b.
Full text