Academic literature on the topic 'Nanostructured materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanostructured materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanostructured materials"
Chen, Huige, Run Shi, and Tierui Zhang. "Nanostructured Photothermal Materials for Environmental and Catalytic Applications." Molecules 26, no. 24 (December 13, 2021): 7552. http://dx.doi.org/10.3390/molecules26247552.
Full textYang, Ming, Xiaohua Chen, Zidong Wang, Yuzhi Zhu, Shiwei Pan, Kaixuan Chen, Yanlin Wang, and Jiaqi Zheng. "Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications." Nanomaterials 11, no. 8 (July 23, 2021): 1895. http://dx.doi.org/10.3390/nano11081895.
Full textRamadan, Rehab, and Raúl J. Martín-Palma. "The Impact of Nanostructured Silicon and Hybrid Materials on the Thermoelectric Performance of Thermoelectric Devices: Review." Energies 15, no. 15 (July 24, 2022): 5363. http://dx.doi.org/10.3390/en15155363.
Full textHan, Yang, and Zhien Zhang. "Nanostructured Membrane Materials for CO2 Capture: A Critical Review." Journal of Nanoscience and Nanotechnology 19, no. 6 (June 1, 2019): 3173–79. http://dx.doi.org/10.1166/jnn.2019.16584.
Full textMatteazzi, Paolo. "Nanostructured Titanium Based Materials." Materials Science Forum 539-543 (March 2007): 2878–83. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.2878.
Full textAfshar, Elham N., Georgi Xosrovashvili, Rasoul Rouhi, and Nima E. Gorji. "Review on the application of nanostructure materials in solar cells." Modern Physics Letters B 29, no. 21 (August 10, 2015): 1550118. http://dx.doi.org/10.1142/s0217984915501183.
Full textHu, Zeyi, Wenliang Liu, and Caihe Fan. "Micro-Nanostructure Formation Mechanism of High-Mg Al Alloy." Nanoscience and Nanotechnology Letters 11, no. 10 (October 1, 2019): 1338–48. http://dx.doi.org/10.1166/nnl.2019.3016.
Full textHelal, Hicham, Mohammadi Ahrouch, Abdelaziz Rabehi, Dario Zappa, and Elisabetta Comini. "Nanostructured Materials for Enhanced Performance of Solid Oxide Fuel Cells: A Comprehensive Review." Crystals 14, no. 4 (March 26, 2024): 306. http://dx.doi.org/10.3390/cryst14040306.
Full textZhang, Shiying, Huizhao Zhuang, Chengshan Xue, and Baoli Li. "Effect of Annealing on Morphology and Photoluminescence of β-Ga2O3 Nanostructures." Journal of Nanoscience and Nanotechnology 8, no. 7 (July 1, 2008): 3454–57. http://dx.doi.org/10.1166/jnn.2008.138.
Full textTerashima, Kazuo, Takaaki Tomai, Daisuke Ishihara, Yoshiki Shimizu, Takeshi Sasaki, Naoto Koshizaki, and Takeki Sakurai. "Microplasma Synthesis of Carbon Nanostructured Materials." Advances in Science and Technology 48 (October 2006): 9–16. http://dx.doi.org/10.4028/www.scientific.net/ast.48.9.
Full textDissertations / Theses on the topic "Nanostructured materials"
Finnemore, Alexander. "On biomimetic nanostructured materials." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610543.
Full textSmith, Steven P. "Lanthanide-containing Nanostructured Materials." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145459.
Full textWang, Lingyan. "Design and fabrication of functional nanomaterials with tunable electrical, optical, and magnetic properties." Diss., Online access via UMI:, 2007.
Find full textAkinyeye, Richard Odunayo. "Nanostructured polypyrrole impedimetric sensors for anthropogenic organic pollutants." Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5301_1248150815.
Full textThe main aim of this study was to develop a novel strategy for harnessing the properties of electroconductive polymers in sensor technology by using polymeric nanostructured blends in the preparation of high performance sensor devices.
Wiley, Benjamin J. "Synthesis of silver nanostructures with controlled shapes and properties /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9923.
Full textKariuki, Nancy N. "Nanostructured materials for electroanalytical applications." Diss., Online access via UMI:, 2005.
Find full textAssfour, Bassem. "Hydrogen Storage In Nanostructured Materials." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-65858.
Full textKubo, Shiori. "Nanostructured carbohydrate-derived carbonaceous materials." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5315/.
Full textNanoporöse kohlenstoffbasierte Materialien sind in der Industrie als Adsorbentien und Katalysatorträger weit verbreitet und gewinnen im aufstrebenden Bereich der Energiespeicherung/erzeugung und für Trennverfahren an wachsender Bedeutung. In der vorliegenden Arbeit wird gezeigt, dass die Kombination aus hydrothermaler Karbonisierung von Zuckern (HTC) mit Templatierungsstrategien einen effizienten Weg zu nanostrukturierten kohlenstoffbasierten Materialien darstellt. HTC ist ein in Wasser und bei niedrigen Temperaturen (130 - 200 °C) durchgeführter Karbonisierungsprozess, bei dem Zucker und deren Derivate einen einfachen Zugang zu hochfunktionalisierten Materialien erlauben. Obwohl diese sauerstoffhaltige Funktionalitäten auf der Oberfläche besitzen, an welche andere chemische Gruppen gebunden werden könnten, was die Verwendung für Trennverfahren und in der verzögerten Wirkstofffreisetzung ermöglichen sollte, ist die mittels HTC hergestellte Kohle für solche Anwendungen nicht porös genug. Das Ziel dieser Arbeit ist es daher, Methoden zu entwickeln, um wohldefinierte Poren in solchen Materialien zu erzeugen. Hierbei führte unter anderem der Einsatz von anorganischen formgebenden mesoporösen Silikapartikeln und makroporösen Aluminiumoxid-Membranen zum Erfolg. Durch Zugabe einer Kohlenstoffquelle (z. B. 2-Furfural), HTC und anschließender Entfernung des Templats konnten poröse kohlenstoffbasierte Partikel und röhrenförmige Nanostrukturen hergestellt werden. Gleichzeitig konnte durch eine zusätzliche Nachbehandlung bei hoher Temperatur (350-750 °C) auch noch die Oberflächenfunktionalität hin zu aromatischen Systemen verschoben werden. Analog zur Formgebung durch anorganische Template konnte mit sog. Soft-Templaten, z. B. PEO-PPO-PEO Blockcopolymeren, eine funktionelle poröse Struktur induziert werden. Hierbei machte man sich die Ausbildung geordneter Mizellen mit der Kohlenstoffquelle D-Fructose zu Nutze. Das erhaltene Material wies hochgeordnete Mikroporen mit einem Durchmesser von ca. 0,9 nm auf. Dieser konnte desweiteren durch Zugabe von Quell-Additiven (z. B. Trimethylbenzol) auf 4 nm in den mesoporösen Bereich vergrößert werden. Zusammenfassend lässt sich sagen, dass beide untersuchten Synthesewege nanostrukturierte kohlenstoffbasierte Materialien mit vielfältiger Oberflächenchemie liefern, und das mittels einer bei relativ niedriger Temperatur in Wasser ablaufenden Reaktion und einer billigen, nachhaltigen Kohlenstoffquelle. Die so hergestellten Produkte eröffnen vielseitige Anwendungsmöglichkeiten, z. B. zur Molekültrennung in der Flüssigchromatographie, in der Energiespeicherung als Anodenmaterial in Li-Ionen Akkus oder Superkondensatoren, oder als Trägermaterial für die gezielte Pharmakotherapie.
Clavel, Guylhaine. "Magnetic impurities in nanostructured materials." Doctoral thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/3210.
Full textOs resultados apresentados aqui foram alcançados no âmbito do programa de doutoramento intitulado “Impurezas Magnéticas em Materiais Nanoestruturados”. O objectivo do estudo foi a síntese e caracterização de óxido contendo impurezas magnéticas. Durante este trabalho, sínteses de sol-gel não-aquoso têm sido desenvolvidos para a síntese de óxidos dopados com metais de transição (ZnO e ZrO2). A dopagem uniforme é particularmente importante no estudo de semicondutores magnéticos diluídos (DMSs) e o ponto principal deste estudo foi verificar o estado de oxidação e a estrutura local do dopante e para excluir a existência de uma fase secundária como a origem do ferromagnetismo. Para alargar o âmbito da investigação e explorar plenamente o conceito de "impurezas magnéticas em materiais nanoestruturados" estudamos as propriedades de nanopartículas magnéticas dispersas em uma matriz de óxido. As nanopartículas (ferrita de cobalto) foram depositadas como um filme e cobertas com um óxido metálico semicondutor ou dielétrico (ZnO, TiO2). Estes hetero-sistemas podem ser considerados como a dispersão de impurezas magnéticas em um óxido. As caracterizações exigidas por estes nanomateriais têm sido conduzidas na Universidade de Aveiro e Universidade de Montpellier, devido ao equipamento complementar.
The results presented here have been achieved under the PhD program entitled “Magnetic Impurities in Nanostructured Materials”. This study had as purpose the synthesis and characterization of oxidic semiconductor containing magnetic impurities. During this work we have developed non-aqueous sol-gel routes, leading to well controlled oxide nanomaterials, to the synthesis of transition-metal doped oxides (ZnO and ZrO2). Homogeneous doping is particularly important in the comprehensive study of diluted magnetic semiconductors (DMSs), and the main point of this study was to ascertain the oxidation state and local structure of the dopant, as well as to exclude the existence of secondary phase as the origin of ferromagnetism. To enlarge the field of research and fully explore the concept of “magnetic impurities in nanostructured materials” we have studied the magnetic properties of nanoparticles embedded in an oxide matrix. The nanoparticles (cobalt ferrite) were deposited as a film and coated by a semiconducting or dielectric metal oxide (ZnO, TiO2). These hetero-systems can be regarded as dispersion of magnetic impurities in oxides. The characterizations needed by these nanomaterials were performed at the University of Aveiro and University of Montpellier because of complementary available equipments.
Li, Guangru. "Nanostructured materials for optoelectronic devices." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/263671.
Full textBooks on the topic "Nanostructured materials"
Shalaev, Vladimir M., and Martin Moskovits, eds. Nanostructured Materials. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0679.
Full textChow, Gan-Moog, and Nina Ivanovna Noskova, eds. Nanostructured Materials. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5002-6.
Full textThangadurai, T. Daniel, N. Manjubaashini, Sabu Thomas, and Hanna J. Maria. Nanostructured Materials. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26145-0.
Full textKnauth, Philippe, and Joop Schoonman, eds. Nanostructured Materials. Boston: Kluwer Academic Publishers, 2004. http://dx.doi.org/10.1007/b113934.
Full textHofmann, Heinrich, Zakia Rahman, and Ulrich Schubert, eds. Nanostructured Materials. Vienna: Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6740-3.
Full textHeinrich, Hofmann, Rahman Zakia, Schubert U, and European Cooperation in the Fields of Scientific and Technical Research (Organization). COST 523., eds. Nanostructured materials. Wien: Springer-Verlag, 2002.
Find full textValiev, Ruslan Z., Alexander P. Zhilyaev, and Terence G. Langdon. Bulk Nanostructured Materials. Hoboken, NJ: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118742679.
Full textUeyama, Norikazu, and Akira Harada, eds. Macromolecular Nanostructured Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08439-7.
Full text1942-, Ueyama Norikazu, and Harada A, eds. Macromolecular nanostructured materials. Tokyo: Kodansha, 2004.
Find full textBook chapters on the topic "Nanostructured materials"
Provenzano, Virgil. "Nanostructured Materials." In Impact of Electron and Scanning Probe Microscopy on Materials Research, 41–61. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4451-3_3.
Full textGleiter, H. "Nanostructured Materials." In Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, 3–35. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1765-4_1.
Full textBriscoe, Joe, and Steve Dunn. "Nanostructured Materials." In SpringerBriefs in Materials, 19–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09632-2_3.
Full textSolov’yov, Ilia A., Andrey V. Korol, and Andrey V. Solov’yov. "Nanostructured Materials." In Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer, 199–254. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56087-8_6.
Full textSoldatov, Alexander V., and Kirill A. Lomachenko. "Nanostructured Materials." In X-Ray Absorption and X-Ray Emission Spectroscopy, 809–27. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118844243.ch27.
Full textCharra, Fabrice, Susana Gota-Goldmann, and Hans Warlimont. "Nanostructured Materials." In Springer Handbook of Materials Data, 1041–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69743-7_28.
Full textHempelmann, Rolf, and Harald Natter. "Nanostructured Materials." In Electrodeposition from Ionic Liquids, 253–320. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527682706.ch8.
Full textSiegel, R. W. "Nanostructured Materials." In Advanced Topics in Materials Science and Engineering, 273–88. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2842-5_17.
Full textHuot, Jacques. "Nanostructured Materials." In SpringerBriefs in Applied Sciences and Technology, 3–6. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35107-0_2.
Full textYoda, Minami, Jean-Luc Garden, Olivier Bourgeois, Aeraj Haque, Aloke Kumar, Hans Deyhle, Simone Hieber, et al. "Nanostructured Materials." In Encyclopedia of Nanotechnology, 1766. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100564.
Full textConference papers on the topic "Nanostructured materials"
Cao, Yang, Qin Chen, Daniel Qi Tan, and Patricia C. Irwin. "Nanostructured dielectric materials." In 2010 10th IEEE International Conference on Solid Dielectrics (ICSD). IEEE, 2010. http://dx.doi.org/10.1109/icsd.2010.5568104.
Full textHeremans, Joseph. "Nanostructured Thermoelectric Materials." In Solar Energy: New Materials and Nanostructured Devices for High Efficiency. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/solar.2008.swb3.
Full textGonzález, J. M. "Nanostructured Magnetic Materials." In INDUSTRIAL APPLICATIONS OF THE MOSSBAUER EFFECT: International Symposium on the Industrial Applications of the Mossbauer Effect. AIP, 2005. http://dx.doi.org/10.1063/1.1923649.
Full textArnold, John M. "Nanostructured gain materials." In International Symposium on Optical Science and Technology, edited by Akhlesh Lakhtakia, Graeme Dewar, and Martin W. McCall. SPIE, 2002. http://dx.doi.org/10.1117/12.472983.
Full textYu, Shuangcheng, Yichi Zhang, Chen Wang, Won-kyu Lee, Biqin Dong, Teri W. Odom, Cheng Sun, and Wei Chen. "Characterization and Design of Functional Quasi-Random Nanostructured Materials Using Spectral Density Function." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60118.
Full textNazar, L. F., D. C. Souza, O. Crosnier, and H. Huang. "NANOSTRUCTURED ENERGY STORAGE MATERIALS." In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0006.
Full textHudelist, F., A. J. Waddie, J. M. Nowosielski, R. Buczynski, and M. R. Taghizadeh. "Nanostructured graded index materials." In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5191958.
Full textKolesov, V., N. Petrova, A. Fionov, I. Dotsenko, and G. Yurkov. "Metal-Polymeric Nanostructured Materials." In 2006 16th International Crimean Microwave and Telecommunication Technology. IEEE, 2006. http://dx.doi.org/10.1109/crmico.2006.256154.
Full textSwaminathan, Srinivasan, M. Ravi Shankar, Balkrishna C. Rao, Travis L. Brown, Srinivasan Chandrasekar, W. Dale Compton, Alexander H. King, and Kevin P. Trumble. "Nanostructured Materials by Machining." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81242.
Full textRadha Shanmugam, Nandhinee, Sriram Muthukumar, and Shalini Prasad. "Zinc Oxide Nanostructures as Electrochemical Biosensors on Flexible Substrates." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-9085.
Full textReports on the topic "Nanostructured materials"
Svejda, Steven A. Nanostructured Materials. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada436355.
Full textMabry, Joseph M. Nanostructured Materials. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada566320.
Full textDr. Frank. Quantitative Characterization of Nanostructured Materials. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/984663.
Full textWendell E Rhine, PI, Wenting Dong, and PM Greg Caggiano. Aerogel Derived Nanostructured Thermoelectric Materials. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/990203.
Full textLieber, Charles M. Nanostructured Functional and Multifunctional Materials. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada423704.
Full textParsons, Gregory. Nanostructured Materials for Renewable Alternative Energy. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1121733.
Full textFox, G. A., T. F. Baumann, L. J. Hope-Weeks, and A. L. Vance. Chemistry and Processing of Nanostructured Materials. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/15005302.
Full textMirkin, Chad A., and SonBinh T. Nguyen. Nanostructured Materials for 3-D Powerstructures. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada409244.
Full textLiu, Di-Jia, and Luping Yu. Nanostructured polymeric materials for hydrogen storage. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1171719.
Full textPeter K. Dorhout and Ellen R. Fisher. Nanostructured Assemblies of Thermoelectric Composite Materials. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/924135.
Full text