To see the other types of publications on this topic, follow the link: Nanostructured materials Nanotechnology.

Dissertations / Theses on the topic 'Nanostructured materials Nanotechnology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Nanostructured materials Nanotechnology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kariuki, Nancy N. "Nanostructured materials for electroanalytical applications." Diss., Online access via UMI:, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Uyar, Ali Emre. "Science, finance and risk in nanotechnology." Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1459908371&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yiu, Wing-ching James. "Synthesis of one-dimensional tungsten oxide nano-structures by thermal evaporation." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B32047770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mavundla, Sipho Enos. "One-Dimensional nanostructured polymeric materials for solar cell applications." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1088_1305888911.

Full text
Abstract:

This work entails the preparation of various polyanilines with different morphologies and their application in photovoltaic solar cells. Zinc oxide (ZnO) with one-dimensional and flower-like morphology was also prepared by microwave irradiation and used as electron acceptors in photovoltaics devices. The morphological, structural, spectroscopic and electrochemical characteristics of these materials were determined by scanning electron microscopy (SEM), X-Ray diffraction (XRD), Raman, Fourier-transformed infrared spectroscopy (FTIR), ultraviolet and visible spectroscopy (UV-Vis), photoluminescence(PL), thermal gravimetric analysis (TGA) and cyclic voltammetry (CV) experiments. Devices fabricated from these materials were characterized under simulated AM 1.5 at 800 mW.

APA, Harvard, Vancouver, ISO, and other styles
5

Srivastava, Devesh. "Fabrication of nanostructures and nanostructure based interfaces for biosensor application." Diss., Connect to online resource - MSU authorized users, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Ling. "Structural and optical properties of nanomaterials produced using template technique /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202004%20LI.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Frederick, Armstrong. "Processing and characterisation of nano-enhanced composites this thesis issubmitted in fulfilment of the degree of Master of Engineering by research, February 2008 /." Click here to access this resource online, 2008. http://hdl.handle.net/10292/804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Patel, Alpa C. Wei Yen. "Bioapplicable, nanostructured and nanocomposite materials for catalytic and biosensor applications /." Philadelphia, Pa. : Drexel University, 2006. http://hdl.handle.net/1860/1124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moore, Daniel Frankel. "Novel ZnS Nanostructures: Synthesis, Growth Mechanism, and Applications." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-10262006-121555/.

Full text
Abstract:
Thesis (Ph. D.)--Materials Science and Engineering, Georgia Institute of Technology, 2007.
Wang, Zhong, Committee Chair ; Snyder, Robert, Committee Member ; Wong, C.P., Committee Member ; Summers, Christopher, Committee Member ; Nie, Shuming, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
10

Ng, See How. "Nanostructured materials for electrodes in lithium-ion batteries." Access electronically, 2007. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20080313.142752/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Liu, Yong. "Novel nanostructured electrodes." Department of Chemistry - Faculty of Science, 2007. http://ro.uow.edu.au/theses/14.

Full text
Abstract:
Nanotechnology provides an effective and direct way to create novel properties and phenomena through the reduction in material sizes without changing the materials’ chemical composition. A number of routes to the preparation of novel nanostructured electrodes were investigated in this thesis. These involve the formation of nanoporous opaline electrodes, three dimensional nanofibrous networks and the synthesis of flexible nanoelectrodes based on highly dense ordered aligned carbon nanotubes and conducting polymers. Excellent improvements with the use of nanostructures in a wide range of application areas such as methanol oxidation, photoelectrochemical cells, enzyme biosensors, cell culturing and energy storage are presented in this research work.Nanoporous opaline structures including inverse opals and opals were prepared by either electrodepositing Pt or sputter coating ITO onto self-assembled polystyrene (PS) synthetic opals, followed by the removal of the PS opal templates. A highly ordered dense nanoporous structure with the porous structure on the top (so-called Pt inverse opal) or with the porous structure on the bottom (so-called ITO opal) was consequently obtained after the removal of PS templates. The improvement in electrochemical area with the use of nanostructures was observed during electrochemical characterisation. The resultant nanostructured Pt inverse opal electrodes were employed in electro-oxidation of methanol. Compared with the Pt film electrode, the nanostructured Pt inverse opal electrode showed a higher catalytic performance and good stability with a 100 mV negative shift of the potential of methanol oxidation. The mesoporous ITO opal electrode was used as the substrate for the electrodeposition of polyterthiophene and the resultant structure was subsequently utilized in photoelectrochemical cells. An excellent power-conversion efficiency of 0.109% and an outstanding short circuit current density of 1470 μA•cm-2 for polyterthiophene deposited at room temperature were obtained; dramatically improved from the previous published work.Nanofibrous electrodes were fabricated from biomaterials (such as DNA and poly(styrene-β-isobutylene-β-styrene) (SIBS)) and single-walled carbon nanotubes (SWNTs) using the electrospinning technique. Initial studies quantitatively determined the influence of solution properties (such as the solution ionic conductivity, surface tension and viscosity) and process parameters (e.g. tip-to-collector distance, applied potential and the feed rate) on the electrospinning results. Results showed that good electrospun fibrous networks could be obtained from the solution with comparatively high conductivity and viscosity with low surface tension. It was also found that the average diameter of the electrospun fibers decreased with decreased feed rates, increased tip-to-collector distance and increase in the potential employed. With the addition of SWNT, both biomaterial nanofiber electrodes exhibited enhanced electrochemical properties. The resulting DNA based electrospun fiber electrode showed a broad linearity range and high sensitivity in enzyme biosensors. The SIBS/SWNT nanofibrous electrode demonstrated excellent biocompatibility and suitability for the growth of L-929 cells.Flexible, light and highly conductive nanostructured electrodes were prepared from aligned carbon nanotubes (ACNTs) and conducting polymers by coating with Pt coated poly(vinylidene fluoride) (PVDF) or poly(3,4-ethylenedioxythiophene) (PEDOT)/PVDF. Pt nanoparticles were subsequently electrodeposited on the ACNT/Pt/PVDF structure. The utilization of the nanostructured ACNT/conducting polymer electrodes in anodic methanol oxidation and as anodic materials in Lithium-ion batteries was demonstrated. Pt nanoparticles coated ACNT/Pt/PVDF electrode exhibited an outstanding electrochemical capacity (133 Fg-1) and amazing electrochemical surface area (143 m2g-1 for Pt nanoparticles). The Pt nanoparticles-ACNT/Pt/PVDF electrode also showed a 2.5 times higher steady current density for methanol oxidation when compared with the ACNT/Pt/PVDF electrode. A stable current density over a long period (more than 12 hours) was obtained. A 50% improvement in capacity during Lithium-ion battery tests when compared with a SWNT paper was obtained with the ACNT/PEDOT/PVDF electrode.Nanostructured flexible and conductive electrodes were also obtained from ACNTs and biomaterials (such as SIBS and poly(lactide-co-glycolide)). SWNTs or Pt were introduced to improve the conductivity. A significant improvement in electrochemical properties with the addition of Pt or SWNT was obtained. The biocompatibility of ACNTs, SWNTs and Pt was confirmed during cell culturing experiments.
APA, Harvard, Vancouver, ISO, and other styles
12

Maye, Mathew M. "Design, synthesis, and assembly of functional nanoarchitectures." Online access via UMI:, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mothoa, Sello Simon. "Synthesis and characterizations of nanostructured MnO2 electrodes for supercapacitors applications." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5315_1307681987.

Full text
Abstract:

The objective of this research was to develop highly efficient and yet effective MnO2 electrode materials for supercapacitors applications. Most attention had focussed on MnO2 as a candidate for pseudo-capacitor, due to the low cost of the raw material and the fact that manganese is more environmental friendly than any other transition metal oxide system. The surface area and pore distribution of MnO2 can be controlled by adjusting the reaction time. The MnO2 synthesised under optimum conditions display high capacitance, and exhibit good cycle profile. This work investigates the ways in which different morphological structures and pore sizes can affect the effective capacitance. Various -MnO2 were successfully synthesised under low temperature conditions of 70 oC and hydrothermal conditions at 120 oC. The reaction time was varied from 1 to 6 hours to optimise the conditions. KMnO4 was reduced by MnCl.H2O under low temperature, whereas MnSO4.4H2O, (NH4)2S2O8 and (NH4)2SO4 were co-precipitated under hydrothermal conditions in a taflon autoclave to synthesise various -MnO2 nano-structures.

APA, Harvard, Vancouver, ISO, and other styles
14

Bhaskarabhatla, Ajay Sivaram. "Nanotechnology enterprise in the United States : structure and location." Thesis, Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-04092006-162228/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gu, Hongwei. "Synthesis & application of biofunctional nanostructures /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202004%20GU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Nkosi, Mlungisi Moses. "Preparation and physico-chemical properties of nickel nanostructured materials deposited in etched ion-track membrane." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6214_1182749152.

Full text
Abstract:

The development of finely dispersed powders and superfine-grained materials intended for application in various areas of science and engineering is one of the challenges facing modern nanotechnology. Thus, specific fundamental and applied research was required in order to consolidate advancement made in preparing nano- and submicron crystalline composite materials.


Useful templates for electrochemical deposition of nanowires include porous alumina films formed by anodic oxidation of aluminium, nuclear track-etched porous membranes, nanochannel array-glass and mesoporous channel hosts. The properties of the nanowires are directly related to the properties of the nanoporous templates such as, the relative pore orientations in the assembly, the pore size distribution, and the surface roughness of the pores. The template synthesis method, based on the use of porous polymeric and inorganic matrixes, is now actively used for synthesis of such composite materials. The method allows the chemical and/or electrochemical synthesis of nano- and microstructured tubes and wires consisting of conducting polymers, metals and semiconductors.


In this study various technological challenges relating to template synthesis and development of nickel nano- and microstructures on adequately strong and durable substrates were investigated. The two methods used were the electrochemical and chemical deposition. &ldquo
Hard nickel&rdquo
bath solution was used for optimal nickel deposition. This optimization included investigating variables such as the template structure, type of electrolyte and form of electrolytic deposition. Scanning Electron Microscopy was used to investigate the structures of template matrixes and the resultant materials. The cyclic voltammetry method was applied for the analysis of electrochemical properties and hydrogen evaluation reaction of nano- and microstructured nickel based electrodes. The activity of composite nano- and microstructured materials in various configurations resulting from pore filling of template matrices by nickel was explored. Studies of the physical structure and chemical properties of the nanostructured materials included investigating the necessary parameters of template matrices. The optimum conditions of synthesis, which allowed development of materials with the highest catalytic activity, were determined. 
The effect of the template structure on microcrystallinity of the catalyst particles was established using the XRD method. Different new types of non-commercial asymmetric ion track membranes has been tested for nanostructure preparation. The catalytic activity of the new developed nanomaterials is higher as compared to materials using commercial templates. The procedures to modify the newly developed nickel catalyst with Pt, Pd and Pt-Pd alloy have been developed. The Pt and Pt-Pd alloy containing catalyst showed the best performance in water electrolysis. In this work, the promising role for specific application of the new materials in hydrogen economy has been demonstrated.

APA, Harvard, Vancouver, ISO, and other styles
17

Wen, Xiaogang. "Organized one dimensional nanomaterials : from preparations to applications /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202005%20WEN.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yiu, Wing-ching James, and 姚穎貞. "Synthesis of one-dimensional tungsten oxide nano-structures by thermalevaporation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B32047770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wei, Diming. "The beauty of DNA architecture : the design and applications in DNA nanotechnology /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CBME%202009%20WEI.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yeh, Wei-Ming. "Pattern collapse in lithographic nanostructures: quantifying photoresist nanostructure behavior and novel methods for collapse mitigation." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47696.

Full text
Abstract:
The Microelectronics industry has continuously pushed the limit of critical dimensions to sub-20 nm. One of the challenges is pattern collapse, caused by unbalanced capillary forces during the final rinse and drying process. The use of surfactants offers a convenient method to reduce capillary forces but causes another deformation issue. This thesis work focuses on alternative approaches that are compatible with lithographic processes to mitigate pattern collapse. First, an e-beam lithography pattern with a series of varying line and space widths has been specifically designed in order to quantitatively study pattern collapse behavior. This pattern generates increasing stress in the pairs of resist lines as one moves across the pattern array and eventually a sufficiently small space value (critical space, S1c) is reached in each array such that the stress applied to the resist exceeds the critical stress (σc) required for pattern bending and subsequently feature deformation and collapse occurrs. The patterns we designed allow us to qualitatively and quantitatively study pattern collapse and obtain consistent, reproducible results. In the first part of the thesis work, a quick surface crosslink (called a reactive rinse) that involves the strengthening of the resist using crosslinking via carbodiimide chemistry while the resist structures are still in their wet state, has been developed and demonstrated. This technique provides efficient and significant improvement on the pattern collapse issue. In the second part of the thesis work, a triethoxysilane compound, vinyl ether silane (VE), has been successfully synthesized. It can be used to modify the silicon or silicon nitride substrates and form a covalent bond with the resist film instead of manipulating the surface energies using common HMDS. Compared to traditional Hexamethyldisilazane (HMDS) vapor primed surfaces, the implementation of the VE adhesion promoter resulted in a significant improvement in the adhesion and resistance to adhesion based pattern collapse failure in small sub-60 nm resist features. In the third part of the thesis work, the effect of drying rates and drying methods has been systematically studied. SEM analysis and critical stress results showed that fast drying appear to reduce the resist collapse. The line pair orientations in each pattern array with respect to the wafer radius reveal an apparent effect of fluid flow and centrifugal forces on collapse. Finally, a comprehensive pattern collapse model that incorporates adhesion based pattern failure and elastoplastic deformation-based failure, and dimensionally dependent resist modulus properties has been developed. This model provides such an excellent prediction of the experimental data and supports the idea that this level of combined adhesion-failure and elastoplastic-failure based pattern collapse modeling, where one explicitly considers the dimensionally dependent mechanical properties of the resist can be quantitatively predictive and useful for understanding the pattern collapse behavior of polymeric nanostructures.
APA, Harvard, Vancouver, ISO, and other styles
21

Zhu, Jinhao. "Uniquimer 3D, a software system for structural DNA nanotechnology design, analysis and evaluation /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?CSED%202008%20ZHU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

VijayaRamachandran, Karthikeyan. "Computing with nanoscale devices -- looking at alternate models /." Full text open access at:, 2005. http://content.ohsu.edu/u?/etd,213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kirby, Karen. "From carbon to copper studies of novel nanomaterials /." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4650.

Full text
Abstract:
Thesis (Ph. D.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on February 15, 2008) Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
24

Gao, Jinhao. "Multifunctional magnetic nanoparticles : design, synthesis, and applications /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202008%20GAO.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mitra, Debbie. "Novel synthesis of branched nucleic acids : towards applications in chemical biology and nanotechnology." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111880.

Full text
Abstract:
This thesis presents the development of novel methodologies in the template mediated chemical synthesis of lariat and branched nucleic acids. The synthetic branched DNA and RNA may be applicable as probes in the elucidation of the splicing mechanism or as potential therapeutic agents. Furthermore, this body of work describes the novel synthesis of Ru(II) branched DNA as building blocks in the supramolecular assembly of nano-motifs. In general, insight into the utilization of nucleic acids as biological molecules and as nanomaterials is presented at the interface of chemistry and biology.
Chapter 2 delineates the regioselective template directed synthesis of Y-RNA via chemical ligation at the branch point of a 5'-phosphate to a 2'-hydroxyl. The branched molecules resemble lariats as they possess the analogous branched architecture. The oligonucleotide components are synthesized from commercially available phosphoramidite building blocks through automated solid-phase synthesis. A unique template directed method in the synthesis of DNA and RNA lariats is proposed in Chapter 3. The regioselective chemical ligation affords wild-type DNA and RNA formed through assembly of a single oligonucleotide strand. A parallel DNA:RNA hybrid association was observed in the preorganized assembly and extensively characterized. Characterization of the Y-RNA and lariat nucleic acids were carried out through techniques such as thermal denaturation analysis, polyacrylamide gel electrophoresis, enzymatic degradation with the RNA lariat debranching enzyme, alkaline treatment as well as MALDI-TOF mass spectrometry.
The second part of the thesis exploits DNA as a nanomaterial in the convergent solid-phase synthesis of Ru(II)-DNA conjugates as branched building blocks in the assembly of nanostructures. Chapter 4 describes the synthesis of Ru branched DNA, utilizing cis-[(bpy)2Ru(imidazole) 2]2+ moiety as the vertex tethered to parallel DNA covalently through flexible hexamethylene linkers. Complete physical characterization and preliminary hybridization studies are conducted. The Ru-DNA conjugates presented were found to be unstable to the protocols required for synthesis of mixed sequence derivatives. The stability and scope of synthesis of these molecules are further discussed.
As an alternative, Ru-DNA branched complexes of mixed sequences, exhibiting greater stability, were synthesized. The transition metal building blocks of Chapter 5 employ a more rigid branch point, linking two parallel DNA strands through a one methylene spacer to the cis-[Ru(bpy)2 (4,4'-bis(hydroxymethyl)-2,2'-bipyridine)][PF6]2 vertex. Physical characterization and the intrinsic luminescent properties of the transition metal complex were confirmed in both the Ru-branched DNA and hybrized forms. A comparative study of the self-assembly behavior of the Ru-DNA conjugates to that of unmetallated branched DNA was also conducted. Interestingly, results indicate a metal-mediated assembly of almost exclusive formation of one discrete Ru-DNA dimeric cyclic nanostructure, where as unmetallated DNA building blocks produced an array of products. Complete confirmation of these products is presented through PAGE and enzymatic digestions. Finally the synthesis of novel Delta and Λ Ru-branched DNA diastereomers is presented as potential building blocks in the creation of chiral metallo-supramolecular constructs.
APA, Harvard, Vancouver, ISO, and other styles
26

Chen, Rong. "Synthesis, characterization and biological applications of inorganic nanomaterials." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36840907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mamedov, Emil. "Manufacture and stabilisation of highly concentrated emulsions using polyhedral oligomeric silsesquiozane nanomolecules." Thesis, Cape Peninsula University of Technology, 2015. http://hdl.handle.net/20.500.11838/2335.

Full text
Abstract:
Thesis (MTech (Chemistry))--Cape Peninsula University of Technology, 2016.
The subject of this current study concerns highly concentrated emulsions of the explosive grade. A distinguishing characteristic of these systems is a high internal to external phase volume ratio. The volume fraction of the aqueous phase of such an emulsion generally far exceeds the close packing limit. Continuous phase of the system is a supersaturated aqueous solution of ammonium nitrate inorganic salt. In combination with high internal phase concentration, this inevitably leads to the destabilisation of the system. The thermodynamic instability of such systems is attributed to two major factors: 1) crystallisation of dispersed phase and 2) coalescence of the individual droplets within the bulk. This poses a significant problem since destabilisation of the bulk emulsion in turn leads to partial or complete loss of sensitivity to detonation of the final product of which highly concentrated emulsion is the base. Since the invention of such types of bulk explosives, a considerable and on-going effort has targeted the improvement of the stability of these systems, with a scope primarily focused on the use of various surfactant agents with different properties as well as stabilising mixtures containing numerous surfactants. In recent years, a new approach has been explored: the stabilisation of highly concentrated emulsions with the use of solid fumed silica nanoparticles. This is a promising new field of study, already being implemented by manufacturers and actively developing. The focus of this present study is to investigate and lay the ground work for further research in the principally new approach towards the stabilisation of highly concentrated emulsions with the use of the polyhedral oligomeric silsesquiozane nanomolecules. These are unique compounds possessing hybrid inorganic-organic structures and properties, and carrying a range of advantages over currently implemented surfactants. As opposed to silica nanoparticles, these compounds are not solid particles but can be regarded as molecular silica. This investigation will focus on the general possibility of implementation of such compounds as stabiliser agents for emulsions in general, and highly concentrated emulsions of the explosive grade in particular, and the resultant effects on the stability. Effects on stability will be investigated both when used solely and in combination with common surfactants. In addition, stability both on shelf and under stress will be investigated within the framework of the study.
APA, Harvard, Vancouver, ISO, and other styles
28

MANGADLAO, JOEY DACULA. "Multifunctional Materials from Nanostructured Graphene and Derivatives." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1448279230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tian, Zhiting. "Nanoscale heat transfer in argon-like solids via molecular dynamics simuations." Diss., Online access via UMI:, 2009.

Find full text
Abstract:
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2009..
Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
30

Searle, Andrew. "Application of nanostructured emitters for high efficiency lighting." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:81731b64-c40b-4c76-9c90-dae7c956e29f.

Full text
Abstract:
This is the first study comparing morphologies of CNT films on Kanthal wire, with their field emission properties, and as such offers ways to design better cylindrical emitter devices. A low turn-on field was achieved (0.35 V/µm), the field emission results have been explained using a simple model, and a fluorescent lamp was fabricated. Whilst previous work has been done on the link between “as grown” CNT films and their respective field emission properties on flat substrates, very little work has been done on linking morphology to emission performance on wire substrates, where the morphology can be very different. Microscopic structures such as towers, ridges and clumps consisting of many aligned or entangled CNTs were grown using an aerosol chemical vapour deposition (a-CVD) technique. Hydrogen added to the carrier gas resulted in a decrease in defect density in the growth of undoped CNTs, and an increase in defect density in the growth of nitrogen doped CNTs (N-CNTs) and boron doped CNTs (BCNTs). In-situ transmission electron microscopy (TEM) studies show that damage to CNT tips results in a significantly higher turn-on field compared to undamaged tips. This can be recovered by making the CNT emit current for several minutes which makes the tip recrystallize due to heat caused by the Nottingham effect. The field emission properties of the “as grown” CNT films are dominated by protruding CNTs found at the edges of ridge and tower microscopic structures. The field emission properties are also related to the dimensions of these structures with the longest ridges (hence those with the longest protruding CNTs) resulting in the lowest turn-on electric field. The ridge and tower structures act to accommodate protruding CNTs at their edges and their physical dimensions (mainly width) act to separate these emitters so that screening is minimised. This work shows that efficient emitters can be fabricated effectively from simple a-CVD techniques and microscopic structures act to improve, not degrade, field emission properties.
APA, Harvard, Vancouver, ISO, and other styles
31

Izadi, Sina. "Al/Ti Nanostructured Multilayers: from Mechanical, Tribological, to Corrosion Properties." Scholar Commons, 2016. https://scholarcommons.usf.edu/etd/6265.

Full text
Abstract:
Nanostructured metallic multilayers (NMMs) are well-known for their high strength in smaller bilayer thicknesses. Six Al/Ti (NMM) with different individual layer thickness were tested for their mechanical hardness using a nanoindentation tool. Individual layer thicknesses were chosen carefully to cover the whole confined layer slip (CLS) model. Nano-hardness had a reverse relation with the square root of individual layer thickness and reached a steady state at ~ 5 nm bilayer thickness. Decreasing the layer bilayer thickness from ~ 104 nm to ~ 5 nm, improved the mechanical hardness up to ~ 101%. Residual stresses were measured using grazing incident X-ray diffraction (GIXRD). Effect of residual stress on atomic structure and dislocation propagation was then investigated by comparing the amount and type of stresses in both aluminum and titanium phases. Based on the gathered data from GIXRD scans tensile stress in Ti phases, and compressive stress in Al would increase the overall coherency of structure. Wear rate in coatings is highly dependent on design and architect of the structure. NMM coatings are known to have much better wear resistance compare to their monolithic constituent phases by introducing a reciprocal architect. In current study wear rate of two Al/Ti NMMs with individual layer thicknesses of ~ 2.5 nm and ~ 30 nm were examined under normal loads of 30 µN, 60 µN, and 93 µN. Wears strokes were performed in various cycles of 1, 2, 3, 4 5 and 10. Wear rates were then calculated by comparing the 3D imaging of sample topology before and after tests. Nano-hardness of samples was measured pre and post each cycle of wear using a nanoindentation tool. The microstructure of samples below the worn surface was then characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), focus ion beam (FIB) and an optical profilometer. Orientation mapping was performed to analyze the microstructure of layers beneath the nano indents. TEM imaging from the cross section of worn samples indicated severely plastically deformed layer (SPDL) below the worn surface. Shear bands and twins are visible after wear and below the worn surface. Decreasing the layer thickness from 30 nm to 2.5 nm resulted in ~ 5 time’s better wear resistance. Nanowear caused surface hardening which consequently increased nano hardness up to ~ 30% in the sample with 2.5 nm individual layer thickness. Increasing the interfaces density of NMMs will significantly improve the corrosion resistance of coating. Reciprocal layers and consequently interfaces will block the path of aggressive content toward the substrate. Corrosion rate evolution of Al/Ti multilayers was investigated through DC corrosion potentiodynamic test. Results seem to be very promising and demonstrate up to 30 times better corrosion resistance compared to conventional sputtered monolithic aluminum. Corrosion started in the form of pitting and then transformed to the localized galvanic corrosion. Decreasing the bilayer thickness from ~ 10.4 nm to ~ 5 nm will decrease the corrosion current density (icorr) of ~ 5.42 × 10-7 (A/cm2) to ~ 6.11 × 10-10 (A/cm2). No sign of corrosion has been seen in the sample with ~ 2.5 nm individual layer thickness. Further AFM and TEM analysis from surface and cross section of NMMs indicate that a more coherent layer by layer structure improves the corrosion rate. Interfaces have a significant role in blocking the pores and imperfections inside coating.
APA, Harvard, Vancouver, ISO, and other styles
32

Giatti, Brandon. "Optical Properties of Nanostructured Dielectric Coatings." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1940.

Full text
Abstract:
Solar cells have extrinsic losses from a variety of sources which can be minimized by optimization of the design and fabrication processes. Reflection from the front surface is one such loss mechanism and has been managed in the past with the usage of planar antireflection coatings. While effective, these coatings are each limited to a single wavelength of light and do not account for varying incident angles of the incoming light source. Three-dimensional nanostructures have shown the ability to inhibit reflection for differing wavelengths and angles of incidence. Nanocones were modeled and show a broadband, multi-angled reflectance decrease due to an effective grading of the index. Finite element models were created to simulate incident light on a zinc oxide nanocone textured silicon substrate. Zinc oxide is advantageous for its ease of production, benign nature, and refractive index matching to the air source region and silicon substrate. Reflectance plots were computed as functions of incident angle and wavelength of light and compared with planar and quintic refractive index profile models. The quintic profile model exhibits nearly optimum reflection minimization and is thus used as a benchmark. Physical quantities, including height, width, density, and orientation were varied in order to minimize the reflectance. A quasi-random nanocone unit cell was modeled to better mimic laboratory results. The model was comprised of 10 nanocones with differing structure and simulated a larger substrate by usage of periodic boundary conditions. The simulated reflectance shows approximately a 50 percent decrease when compared with a planar model. When a seed layer is added, simulating a layer of non-textured zinc oxide, on which the nanocones are grown, the reflectance shows a fourfold decrease when compared with planar models. At angles of incidence higher than 75 degrees, the nanocone model outperformed the quintic model.
APA, Harvard, Vancouver, ISO, and other styles
33

Buchine, Brent Alan. "Acoustics in nanotechnology: manipulation, device application and modeling." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/26542.

Full text
Abstract:
Thesis (Ph.D)--Materials Science and Engineering, Georgia Institute of Technology, 2008.
Committee Chair: Wang, Zhong Lin; Committee Member: Degertekin, F. Levent; Committee Member: Liu, Meilin; Committee Member: Snyder, Robert L.; Committee Member: Tannenbaum, Rina. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
34

Bhagyaraj, Sneha. "Green synthesis, characterization and applications of cdse based core-shell quantum dots and silver nanocomposites." Thesis, Cape Peninsula University of Technology, 2015. http://hdl.handle.net/20.500.11838/2318.

Full text
Abstract:
Thesis (DTech (Chemistry))--Cape Peninsula University of Technology, 2015.
Researchers around the world are now focusing on inculcating green chemistry principles in all level of research especially in nanotechnology to make these processes environmental friendly. Nanoparticles synthesized using green chemistry principles has several advantages such as simplicity, cost effectiveness, compatibility for biomedical and pharmaceutical applications and large scale production for commercial purpose. Based on this background, this thesis present the design, synthesis, characterization and applications of various CdSe based core-shell and core-multi shell quantum dots (QDs), quantum dots-polymer nanocomposites, silver nanoparticles (Ag-NPs) and silver nanocomposites via completely green methods. Various QDs like CdSe/CdS/ZnS and CdSe/ZnS, and there polymer nanocomposites were successfully synthesized and characterized. The high quality of the as-synthesized nanoparticles was confirmed using absorption and photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Detailed optical and morphological characterization showed that the CdSe/CdS/ZnS core-multi shell QDs were small, monodispersed with high fluorescent intensity and narrow emission width. The CdSe/CdS/ZnS core multi-shell QDs were dispersed in epoxy polymer matrix to obtain fluorescent epoxy nanocomposite. The brillouin spectroscopy analysis revealed that the presence of QDs inside polymer composite reduces the acoustic frequency of the polymer. Highly fluorescent CdSe/ZnS core-shell QDs was also synthesized and dispersed in PMMA polymer matrix to prepare bright yellow emitting nanocomposite film. The as-synthesized QDs also undergone surface exchange to convert the organically soluble nanomaterial to water soluble. After the ligand exchange, the morphology and above all the fluorescence property of the quantum dots remained intact. In another approach, HDA-capped CdSe nanoparticles were synthesized in the absence of an inert gas followed by dispersion in polymer polycaprolactone to produce orange light emitting electrospun polymer nanocomposite nanofibre.
APA, Harvard, Vancouver, ISO, and other styles
35

Park, Min Sik. "Synthesis and characterization of nanostructured electrode materials for rechargeable lithium ion batteries." Institute for Superconducting and Electronic Materials - Faculty of Engineering, 2008. http://ro.uow.edu.au/theses/98.

Full text
Abstract:
State-of-the-art rechargeable lithium-ion battery technology has now paved the way for advanced energy storage systems to take their place in a variety of portable electronics. High cell voltage, good cycle life, and an attractive combination of energy and power generation are on the verge of being guaranteed for high-power and large-scale applications, such as plug-in hybrid vehicles. This investigation examines the circumstances attending the development of the rechargeable lithium-ion battery, to seek a better understanding of the factors affecting its electrochemical performance. The major objective of this work is to determine the advantages and drawbacks of tin dioxide (SnO2) nanostructured materials as alternative anode materials and to suggest promising structural modifications in order to improve their electrochemical properties. Another important objective is to identify the correlation between electrochemical performance and particle size minimization in the lithium iron phosphate (LiFePO4) system, a promising cathode material, and to give further evidence supporting the incomplete room-temperature reaction mechanism. The selection and assembly of nanostructured materials have been considered as central issues in the development of alternative anode materials that possess higher capacity and better cyclic retention compared to commercial graphite. SnO2 has shown high capacity and a relatively low reaction potential with Li+, and is thus under consideration as a possible candidate for high-power and high-energy applications. We have synthesized various types of SnO2 nanostructured materials, such as nanopowders, nanowires, and nanotubes in this work, and their electrochemical properties have been carefully compared in order to demonstrate the effects of their morphological differences on the electrochemical performance, based on thermodynamic and kinetic considerations. By incorporating structural modifications into the SnO2 nanostructured materials, we have formed Carbon encapsulated SnO2 nanopowders and nanowires by simple decomposition of malic acid (C4H6O5) at low temperature, which effectively improved specific capacity and cyclic performance. Combining surfactant mediated synthesis and the sol–gel vacuum suction method, SnO2–mesoporous organo-silica nano-array (MOSN) nanocomposites were prepared for controlling the large volume variation of SnO2 during cycling, where the MOSN could act as a mechanical buffer, resulting in a strong enhancement of cyclic retention.On the other hand, the reaction mechanism and phase transition of LiFePO4 at room temperature have not been fully understood yet. In pursuit of extending our understanding, we have prepared LiFePO4/C nanocomposites with different particle sizes and characterized their fundamental crystal structure, which is directly related to the electrochemical behavior. Considering the fact that the room temperature phase diagram is essential to understand the facile electrode reaction of LixFePO4 (0 < x < 1), here, we have suggested experimental evidence for isolation of an intermediate solid solution phase at around x = 0.93 at room temperature, which strongly supports the incomplete miscibility gap model. More interestingly, the impacts of air exposure on the LiFePO4/C nanocomposites have been systematically investigated as a function of temperature. We found that Li+ could be spontaneously extracted from the host structure, even at room temperature under air atmosphere. This finding also can explain the room temperature phase transition of LiFePO4 and provide the reason for the undesirable Li+ loss that is induced by external factors at room temperature.
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Jue. "Resource Spillover from Academia to High Tech Industry: Evidence from New Nanotechnology-Based Firms in the U.S." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19778.

Full text
Abstract:
Thesis (Ph.D)--Public Policy, Georgia Institute of Technology, 2008.
Committee Chair: Shapira, Philip; Committee Member: Hicks, Diana; Committee Member: Porter, Alan; Committee Member: Rogers, Juan; Committee Member: Schmoch, Ulrich.
APA, Harvard, Vancouver, ISO, and other styles
37

Hayden, Steven C. "Novel applications of nanotechnology in medicine and green energy." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51927.

Full text
Abstract:
The development of techniques for colloidal nanoparticle synthesis has allowed scientists to fabricate materials that can manipulate light on a scale that is small even compared to the wavelength of the light itself. This ability has led to the development of myriad and diverse applications of nanostructures in wide-ranging fields. This thesis focuses on the investigation and exploitation of nanoscale material properties in the fields of medicine and energy. The unique optical properties of nanoparticles arise from their size and their high surface area to volume ratios compared to bulk materials. As a result of this relationship, the surface characteristics of nanoparticles generally dominate their properties, whereas in bulk materials the surface atoms have very little bearing on the properties of the composite. Chapter 1 gives an introduction to nanoparticles and their optical properties, including a discussion of the plasmon resonance and the properties imbued upon nanoparticles possesing such a resonance as well as the applicability of these properties that will be explored in the subsequent chapters. Chapter 2 presents a study of the interaction of cationic, hydrophobic gold nanoparticles as probes to elucidate specific regions of interest on cell surfaces. The high imaging contrast of gold nanoparticles in electron microscopy allows for visual, macroscopic observation of the aggregation patterns formed by these nanoparticles on cell surfaces. Plasmon resonant coupling between proximal nanoparticles is exploited in order to monitor nanoprobe binding and localization over time with the use of extinction spectroscopy. The role of surface proteins in the nanoparticle-cell surface interaction is elucidated, generating composite data with relevance in pharmaceutical development and pharmacokinetics. Additionally, bacteria strain-dependent toxicity is observed and subsequently investigated for smaller gold nanoparticle probes, demonstrating a potential use for nanoparticles as strain-specific antibiotics. The development of affordable, effective antibiotic technology is one of the major scientific challenges of our time; infections from pathogen-infested drinking water alone account for millions of deaths each year worldwide. In Chapter 3, we investigate the use of titanium dioxide as an inexpensive method to harness solar energy to split water into reactive species and thereby decontamitate solutions of E. coli. Though titanium dioxide is an excellent catalyst for water splitting, it requires UV irradiation, which is fairly lacking in the solar emission spectrum. Further, recuperation of titanium dioxide nanoparticles from solution is non-trivial, and its immobilization into a film greatly limits its surface area and charge carrier efficiency, thereby limiting its activity. We treat both the poor visible light absorption capability as well as the surface area limitation in this study. CdS semiconductor nanocrystals are used to extend the absorption edge of TiO₂ further into the visible light region of the spectrum by providing for lower-energy photon absorption and charge injection into titanium dioxide. TiO₂ is also electrochemically anodized to generate TiO₂ nanotube arrays, which have greatly increased surface area as well as more efficient charge transfer properties compared to thin films of TiO₂ nanoparticles. The utility of nanoparticles in increasing the light absorption of other systems continues as a theme in the work presented in the next two chapters. Chapter 4 ex- amines the plasmonic enhancement of the solar energy conversion in a biomimetic system. In this endeavor, we enhance the photocurrent generated by a light-transducing, proton-pumping protein, bacteriorhodopsin, in a 3-dimensional wet electrochemical cell. First, we increase the overall charge carrier separation with the use of a proton- selective membrane in order to minimize ionic depolarization in the cell. We then use plasmonic nanoparticles to exploit an irregularity in the bacteriorhodopsin photocycle known as the blue light effect. This effect shortens the timescale of the photocyle by more than 99% via blue photon absorption, but it has a very low natural occurrence. Plasmonic nanoparticles tuned to the blue wavelength region increase the flux of blue photons on a local level and thereby increase the overall photocurrent generation. We first examine the importance of nanoparticle field strength to photocurrent enhancement using silver nanospheres with different capping shell thicknesses. We then consider the trade-off between (1) using a nanoparticle with a plasmon resonance tuned perfectly to the blue wavelength region and (2) using a nanoparticle with a stronger field intensity but weaker energetic presence in the blue. By minimizing ionic depolarization, minimizing shielding of the plasmon electromagnetic field, and maximizing the field strength while maintaining the plasmon frequency at the proper wavelength, we demonstrate an enhancement of 5,000-fold in the photocurrent production by bacteriorhodopsin. Chapter 5 explores a variation on the theme of Chapter 4 with an application in cancer therapeutics. Here, a photodynamic cancer drug, protoporphyrin IX (PpIX), is incorporated into complexes with silver nanospheres, gold nanospheres, and gold nanorods. Each of these nanoparticles displays a plasmon resonance in a different region of the spectrum, with consequent different overlap with the absorption or emission of the drug. Photodynamic therapeutic potential is measured in situ and in vivo, and the drug activity is shown to be strongest when drug absorption overlaps with plasmon resonance. Absorption by electronic excitations in the particle crystal lattice is shown to function as a competitive light filter and decrease drug activity. Additionally, the method of attachment of the drug to the nanoparticle is examined. Maximum enhancement of drug activity is shown to require the drug to remain bound close to the nanoparticle surface, where the electromagnetic field strength is highest. This plasmonic enhancement effect on drug activity is shown to outstrip the increase in drug activity seen when using the nanoparticle solely as a delivery platform. In Chapter 6, some synthetic techniques are presented for various nanomaterials. Included are syntheses for gold, silver, and semiconductor nanoparticles of a variety of shapes and sizes as well as for TiO₂ nanotube arrays. The relationship of the ratio of capping agent to metal salt is explored for gold nanospheres, and a method for facile tuning of the longitudinal plasmon resonance displayed by gold nanorods is presented. Synthetic techniques are also presented for the nanoparticles whose applications are explored in the preceding chapters.
APA, Harvard, Vancouver, ISO, and other styles
38

Joshi, Mandar Vijay. "Defect-tolerance and testing for configurable nano-crossbars." Diss., Rolla, Mo. : University of Missouri--Rolla i.e. [Missouri University of Science and Technology], 2008. http://scholarsmine.mst.edu/thesis/pdf/Joshi_09007dcc804bce1c.pdf.

Full text
Abstract:
Thesis (M.S.)--Missouri University of Science and Technology, 2008.
Degree granted by Missouri University of Science and Technology, formerly known as University of Missouri--Rolla. Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 2, 2008) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, Rong, and 陳嶸. "Synthesis, characterization and biological applications of inorganic nanomaterials." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B36840907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Waghela, Krunal R. "Fabrication of a memory device using polyaniline nanofibers and gold nanoparticles." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2010. http://scholarsmine.mst.edu/thesis/pdf/Waghela_09007dcc8072f881.pdf.

Full text
Abstract:
Thesis (M.S.)--Missouri University of Science and Technology, 2010.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed January 6, 2010) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
41

Goetz, Lee Ann. "Preparation and analysis of crosslinked lignocellulosic fibers and cellulose nanowhiskers with poly(methyl-vinyl ether co maleic acid) â " polyethylene glycol to create novel water absorbing materials." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45893.

Full text
Abstract:
The search for cellulosic based products as a viable alternative for petroleum-based products was the impetus for covalently crosslinking lignocellulosic fibers and nanocellulose whiskers with poly(methyl vinyl ether) co maleic acid (PMVEMA) - polyethylene glycol (PEG). The lignocellulosics used were ECF bleached softwood (pine) and ECF bleached birch kraft pulp. This thesis also tests the hypothesis that water absorption and retention can be improved by grafting PMVEMA-PEG to the surface of ECF bleached kraft pulp hardwood and softwood fibers via microwave initiated crosslinking. The crosslinking of the PMVEMA to hardwood and softwood kraft ECF bleached pulp fibers resulted in enhanced water absorbing pulp fibers where the PMVEMA is grafted onto the surface of the fibers. The crosslinking was initiated both thermally and via microwave irradiation and the water absorption and water retention was measured as the percent of grafted PMVEMA. This was the first application of microwave crosslinking of pulp fibers with the goal of creating water absorbing pulp fibers. Ultimately, the water absorption values ranged from 28.70 g water per g dry crosslinked pulp fiber (g/g) to 230.10 g/g and the water retention values ranged from 26% to 71% of the water retained that was absorbed by the crosslinked pulp fibers. The microwave initiated crosslinked fibers had comparable results to the thermally crosslinked fibers with a decreased reaction time, from 6.50 min (thermal) to 1 min 45 sec (microwave). Cellulose nanowhiskers, crystalline rods of cellulose, have been investigated due to their unique properties, such as nanoscale dimensions, low density, high surface area, mechanical strength, and surface morphology and available surface chemistry. Prior to this study, the crosslinking of cellulose whiskers with the matrix via solution casting of liquid suspensions of whiskers and matrix had not been explored. The hypothesis to be investigated was that incorporating cellulosic whiskers with the PMVEMA-PEG matrix and crosslinking the whiskers with the matrix would yield films that demonstrate unique properties when compared to prior work of crosslinking of PMVEMA-PEG to macroscopic ECF bleached kraft pulp fibers. Solution cast composites of cellulose nanowhiskers-PMVEMA-PEG were crosslinked at 135 °C for 6.5 min and analyzed for crosslinking, thermal stability, strength and mechanical properties, whisker dispersion, and water absorption and uptake rates. The whisker-composites demonstrated unique properties upon crosslinking the whiskers with PMVEMA-PEG, especially the elongation at break and tensile strength upon conditioning of the final materials at various relative humidities. In addition, the whiskers improved the thermal stability of the PMVEMA-PEG matrix. This is significant as methods of improving processing thermal stability are key to developing new materials that utilize cellulose whiskers, PMVEMA, and PEG. This thesis addresses the hypothesis that cellulose nanowhiskers that are crosslinked with a matrix can create new whisker-matrix composites that behave differently after crosslinking.
APA, Harvard, Vancouver, ISO, and other styles
42

Franke, Danielle. "Novel surfactants for the production of functional nanostructured materials via the ionic self-assembly (ISA) route = Neuartige Tenside für die Synthese funktioneller nanostrukturierter Materialien durch ionische Selbsorganisation." Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2006/692/.

Full text
Abstract:
In recent years, the aim of supramolecular syntheses is not only the creation of particular structures but also the introduction of specific functions in these supramolecules. The present work describes the use of the ionic self-assembly (ISA) route to generate nanostructured materials with integrated functionality. Since the ISA strategy has proved to be a facile method for the production of liquid-crystalline materials, we investigated the phase behaviour, physical properties and function of a variety of ISA materials comprising a perylene derivative as the employed oligoelectrolyte. Functionality was introduced into the materials through the use of functional surfactants.

In order to meet the requirements to produce functional ISA materials through the use of functional surfactants, we designed and synthesized pyrrole-derived monomers as surfactant building blocks. Owing to the presence of the pyrrole moiety, these surfactants are not only polymerizable but are also potentially conductive when polymerized. We adopted single-tailed and double-tailed N-substituted pyrrole monomers as target molecules. Since routine characterization analysis of the double-tailed pyrrole-containing surfactant indicated very interesting, complex phase behaviour, a comprehensive investigation of its interfacial properties and mesophase behavior was conducted. The synthesized pyrrole-derived surfactants were then employed in the synthesis of ISA complexes. The self-assembled materials were characterized and subsequently polymerized by both chemical and electrochemical methods. The changes in the structure and properties of the materials caused by the in-situ polymerization were addressed.

In the second part of this work, the motif investigated was a property rather than a function. Since chiral superstructures have obtained much attention during the last few years, we investigated the possibility of chiral ISA materials through the use of chiral surfactants. Thus, the work involved synthesis of novel chiral surfactants and their incorporation in ISA materials with the aim of obtaining ionically self-assembled chiral superstructures.

The results and insights presented here suggest that the presented synthesis strategy can be easily extended to incorporate any kind of charged tectonic unit with desired optical, electrical, or magnetic properties into supramolecular assemblies for practical applications.
Supramolekulare Chemie zielt auf den Aufbau großer Moleküle und neuer Materialien aus kleineren Einheiten. Durch supramolekulare Wechselwirkungen d.h. nicht-kovalente Bindungen, können definierte Ordnungen von Molekülverbänden in Größen von mehreren 100 Mikrometern hergestellt werden. Diese Wechselwirkungen und die daraus resultierenden Anordnungen von Molekülen bestimmen die für Anwendungen relevanten makroskopischen Materialeigenschaften.

Es gibt viele verschiedene Wechselwirkungen, die in der Supramolekularen Chemie angewendet werden können. Eine davon ist die ionische Wechselwirkung, die in dieser Arbeit als Triebkraft für die Herstellung supramolekularer Materialien verwendet wird. Diese Strategie wurde vor kurzem ISA (Ionic-Self-Assembly, d.h. Ionische Selbsorganisation) genannt.

Die vorliegende Arbeit beschäftigt sich mit der Herstellung funktioneller Nanomaterialen durch die Anwendung der ISA-Strategie. Da sich die ISA-Strategie als einfache Methode für die Produktion von Flüssigkristallen herausstellte, untersuchten wir die Eigenschaften vieler ISA-Materialen, die einen Farbstoffbaustein integriert haben. Die Funktion der Materialien wurde hierbei durch die Verwendung funktioneller Tenside geschaffen. Um die Anforderungen für die Produktion funktioneller ISA-Materialen durch die Nutzung funktioneller Tenside sicherzustellen, wurden Pyrrol-Monomere als Tenside hergestellt. Durch die Pyrrol-Einheiten sind die Tenside polymerisierbar und zeigen danach Potential für Leitfähigkeit.

Es wurden Pyrrol-Tenside sowohl mit Einzel- als auch mit Doppelketten synthetisiert. Da die Standardcharakterisierung des Doppelketten-Tensids ein interessantes Phasenverhalten zeigte, wurden umfassende Untersuchungen der Grenzflächeneigenschaften und des mesophasen Verhaltens durchgeführt. Beide Tenside wurden dann in der Produktion von ISA-Materialien verwendet. Die hergestellten Materialen wurden charakterisiert und konnten durch die Pyrrol-Einheit sowohl chemisch als auch elektrochemisch polymerisiert werden. Die aus dieser Polymerisierung resultierenden Änderungen der Eigenschaften, Struktur und Function der Materialen wurden ebenfalls untersucht.

Der zweite Teil dieser Arbeit klärt Nutzungsmöglichkeiten chiraler Tenside für die Herstellung chiraler ISA-Strukturen. Obwohl Chiralität keine eigentliche Funktion sondern eine Eigenschaft ist, haben chirale Strukturen in den letzten Jahren viel Aufmerksamkeit bekommen. Deshalb wurden, mit dem Ziel chirale ISA-Strukturen zu erhalten, neue chirale Tenside hergestellt und diese als Bausteine in ISA-Materialien benutzt.

Die mit dieser Arbeit gewonnenen Ergebnisse und neuen Einsichten zeigen, dass die ISA-Strategie leicht erweitert werden kann, um jede Art von Bausteine zu integrieren. Dadurch können nanostukturierte Materialien mit gewünschten spezifischen optischen, elektrischen oder elektromagnetischen Eigenschaften für praktische Anwendungen geschaffen werden.
APA, Harvard, Vancouver, ISO, and other styles
43

Casciato, Michael John. "The design, synthesis, and optimization of nanomaterials fabricated in supercritical carbon dioxide." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49059.

Full text
Abstract:
This thesis presents investigations into the design and synthesis of nanomaterials in supercritical carbon dioxide (sc-CO₂) as well as novel experimental design methodologies. First, the process-structure-property relationships are studied for the deposition of materials from organometallic precursors in sc-CO₂. The materials that were investigated in these studies were: (1) the semiconductor material copper zinc tin sulfide (Cu₂ZnSnS₄, or CZTS), which has application in solar energy capture; (2) zinc sulfide nanoparticles deposited onto carbon nanotubes, which have application in optoelectronics; and (3) silver nanoparticles deposited on silicon and glass wafer surfaces, which find application as biosensors via surface enhanced Raman spectroscopy. Next, two novel experimental design methodologies were implemented. The first is termed layers of experiment with adaptive combined design (LoE/ACD), which efficiently optimizes a process that is expensive and time consuming to study by zooming in on the process optimum through successive layers. The mean silver nanoparticle size was optimized as a function of temperature in the sc-CO₂ system using the LoE/ACD approach. The second experimental design methodology is called initial experimental design (IED). The IED methodology was developed to choose the first round of experiments for a system that is expensive to study (in terms of time and money), poorly understood, and possesses a related, non-identical system that is well-studied. The IED approach was used to optimize the mean iridium nanoparticle size as a function of temperature given expert opinion, prior data, and an engineering model for silver nanoparticles synthesized in sc-CO₂.
APA, Harvard, Vancouver, ISO, and other styles
44

Milliren, Eric Carlton. "Nanocomposites a study of theoretical micromechanical behavior using finite element analysis /." Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/milliren/MillirenE0509.pdf.

Full text
Abstract:
Current research in nanotechnology has produced an increasing number of possibilities for advanced materials. Among those materials with potential advanced mechanical properties are fiber-reinforced composite laminates that utilize nanoscale fiber diameters. Through a combination of studying classic micromechanical models and modern computer-aided finite element analysis (FEA), the advantages for utilizing these nanofibers in advanced structural applications, such as space mirror backings, was investigated. The approach for modeling these composite structures was that of a Representative Volume Element (RVE). Using the program ABAQUS/CAE, a RVE was created with the goals of accurately comparing to the shear lag theory, effectively incorporating "interphase" zones that bond the constituents, and demonstrating effects of down-scaling fiber diameter. In this thesis, the progression of the ABAQUS model is thoroughly covered as it developed into a verified model correlating with the shear lag theory. The model produced was capable of utilizing interphase if desired, and was capable of off-axis loading scenarios. A MathCAD program was written in order to employ the published theoretical techniques, which were then compared to the FEA results for verification. The FEA model was found to work well in conjunction with the theory explored using MathCAD, after which the nanofiber FEA model showed some clear advantages over a conventional-sized model, specifically an increase in strength of the composite RVE. Finally, it was determined that the interfacial bonding strength plays a large role in the structure of the interphase zone, and thus the overall strength of the composite.
APA, Harvard, Vancouver, ISO, and other styles
45

Njoki, Peter Njunge. "Metal and alloy nanoparticles synthesis, properties and applications /." Diss., Online access via UMI:, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Radlinger, Christine Marie. "Investigation into Effects of Instability and Reactivity of Hydride-Passivated Silicon Nanoparticles on Interband Photoluminescence." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3619.

Full text
Abstract:
While silicon has long been utilized for its electronic properties, its use as an optical material has largely been limited due to the poor efficiency of interband transitions. However, discovery of visible photoluminescence (PL) from nanocrystalline silicon in 1990 triggered many ensuing research efforts to optimize PL from nanocrystalline silicon for optical applications. Currently, use of photoluminescent silicon nanoparticles (Si NPs) is commercially limited by: 1) the instability of the energy and intensity of the PL, and 2) the low quantum yield of interband PL from Si NPs. Herein, red-emitting, hydrogen-passivated silicon nanoparticles (H-Si NPs) were synthesized by thermally-induced disproportionation of a HSiCl3-derived (HSiO1.5)n polymer. The H-Si NPs produced by this method were then subjected to various chemical and physical environments to assess the long-term stability of the optical properties as a function of changing surface composition. This dissertation is intended to elucidate correlations between the reported PL instability and the observed changes in the Si NP surface chemistry over time and as a function of environment. First, the stability of the H-Si NP surface at slightly elevated temperatures towards reactivity with a simple alkane was probed. The H-Si NPs were observed by FT-IR spectroscopy to undergo partial hydrosilylation upon heating in refluxing hexane, in addition to varying degrees of surface oxidation. The unexpected reactivity of the Si surface in n-hexane supports the unstable nature of the H-Si NP surface, and furthermore implicates the presence of highly-reactive Si radicals on the surfaces of the Si NPs. We propose that reaction of alkene impurities with the Si surface radicals is largely responsible for the observed surface alkylation. However, we also present an alternate mechanism by which Si surface radicals could react with alkanes to result in alkylation of the surface. Next, the energy and intensity stability of the interband PL from H-Si NPs in the presence of a radical trap was probed. Upon addition of (2,2,6,6,-tetramethyl-piperidin-1-yl)oxyl (TEMPO), the energy and intensity of the interband transition was observed to change over time, dependent on the reaction conditions. First, when the reaction occurred at 4ºC with minimal light exposure, the interband transition exhibited a gradual hypsochromic shift to between 595 nm and 655 nm, versus the λmax of the original low energy emission peak at 700 nm, depending on the amount of TEMPO in the sample. Second, when the reaction proceeded at room temperature with frequent exposure to 360 nm irradiation, the original interband transition at 660 nm was quenched while a new peak at 575 nm developed. Based on all the data collected and analyzed, we assign the 595 -- 655 nm transition as due to interband exciton recombination from Si NPs with reduced diameters relative to the original Si NPs. We furthermore assign the 575 nm transition as due to an oxide-related defect state resulting from rapid oxidation of photo-excited Si NPs.
APA, Harvard, Vancouver, ISO, and other styles
47

Chiu, Sheng-Kuei. "Photoluminescent Silicon Nanoparticles: Fluorescent Cellular Imaging Applications and Photoluminescence (PL) Behavior Study." PDXScholar, 2015. http://pdxscholar.library.pdx.edu/open_access_etds/2455.

Full text
Abstract:
Molecular fluorophores and semiconductor quantum dots (QDs) have been used as cellular imaging agents for biomedical research, but each class has challenges associated with their use, including poor photostability or toxicity. Silicon is a semiconductor material that is inexpensive and relatively environmental benign in comparison to heavy metal-containing quantum dots. Thus, red-emitting silicon nanoparticles (Si NPs) are desirable to prepare for cellular imaging application to be used in place of more toxic QDs. However, Si NPs currently suffer poorly understood photoinstability, and furthermore, the origin of the PL remains under debate. This dissertation first describes the use of diatomaceous earth as a new precursor for the synthesis of photoluminescent Si NPs. Second, the stabilization of red PL from Si NPs in aqueous solution via micellar encapsulation is reported. Thirdly, red to blue PL conversion of decane-terminated Si NPs in alcohol dispersions is described and the origins (i.e., color centers) of the emission events were studied with a comprehensive characterization suite including FT-IR, UV-vis, photoluminescence excitation, and time-resolved photoluminescence spectroscopies in order to determine size or chemical changes underlying the PL color change. In this study, the red and blue PL was determined to result from intrinsic and surface states, respectively. Lastly, we determined that the blue emission band assigned to a surface state can be introduced by base addition in originally red-emitting silicon nanoparticles, and that red PL can be restored by subsequent acid addition. This experimentally demonstrates blue PL is surface state related and can overcome the intrinsic state related excitonic recombination pathway in red PL event. Based on all the data collected and analyzed, we present a simple energy level diagram detailing the multiple origins of Si NP PL, which are related to both size and surface chemistry.
APA, Harvard, Vancouver, ISO, and other styles
48

Etok, S. E. "Structural characterisation and in vitro behaviour of apatite coatings and powders." Thesis, Faculty of Medicine and Biosciences, 2009. http://hdl.handle.net/1826/3973.

Full text
Abstract:
Hydroxyapatite (HAP) coatings are used in orthopaedic surgery for bone regeneration. Current methods of phase quantification of HAP coatings suffer from drawbacks. A novel methodology of quantitative phase analysis of HAP coatings has been devised and validated. This method, based on whole pattern fitting with a fundamental parameters approach, incorporates amorphous calcium phosphate (ACP) and apatite phases into structural refinements. A comparison of the structural and chemical properties of plasma sprayed (PS) and novel electrodeposited (ED) HAP coatings has been conducted. ED coatings contained less ACP and more preferred orientation than the PS coatings, although the stoichiometry was similar. In vitro investigations of PS and ED coatings in simulated body fluid and foetal calf serum revealed that both are bioactive. A carbonated apatite layer produced on the ED coatings was -0.7μm thick with a stoichiometry and chemical constituents similar to that of natural bone apatite. PS coatings produced a nanocrystalline carbonated apatite layer (-4μm). For the first time it has been possible to model crystalline HAP and nanocrystalline apatite as independent phases and obtain accurate lattice parameters for each. A positive linear correlation has been made between microstrain and the solubility of HAP and carbonated apatites. Dissolution studies have shown that the behaviour of HAP and carbonated apatite is dominated by crystallite size at low undersaturation and by crystallite size and microstrain at high undersaturation for crystallites between -30OA- 1000A. Metastable equilibrium occurred for crystallites <_400A at low undersaturation. Carbonate content did not affect the solubility or dissolution behaviour. A novel technology for coating polymeric tape with HAP for potential use in anterior cruciate ligament reconstruction has been devised. Mechanical tests have demonstrated that no adverse properties are induced by the coating technology. Cell culture studies have shown that the HAP layer is capable of enhanced attachment, proliferation and differentiation of osteoblast cells compared to uncoated tape.
APA, Harvard, Vancouver, ISO, and other styles
49

Kang, Dun-Yen. "Single-walled metal oxide nanotubes and nanotube membranes for molecular separations." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44715.

Full text
Abstract:
Synthetic single-walled metal oxide (aluminosilicate) nanotubes (SWNTs) are emerging materials for a number of applications involving molecular transport and adsorption due to their unique pore structure, high surface reactivity, and controllable dimensions. In this thesis, I discuss the potential for employing SWNTs in next generation separation platforms based upon recent progress on synthesis, interior modification, molecular diffusion properties, transport modeling and composite membrane preparation of metal oxide SWNTs. First, I describe the structure, synthesis, and characterization of the SWNTs. Thereafter, chemical modification of the nanotube interior is described as a means for tuning the nanotube properties for molecular separations. Interior functionalization of SWNTs (e.g. carbon nanotubes and metal oxide nanotubes) is a long-standing challenge in nanomaterials science. After controlled dehydration and dehydroxylation of the SWNTs, I then demonstrate that the SWNT inner surface can be functionalized with various organic groups of practical interest via solid-liquid heterogeneous reactions. Finally, I describe a mass transport modeling and measurements for composite membranes composed of SWNTs as fillers. This work demonstrates the use of SWNTs for novel scalable separation units from both a nanoscale and a macroscale point of view.
APA, Harvard, Vancouver, ISO, and other styles
50

Gwanzura, Zvikomborero Takunda. "Fabrication of a gold nanorod metal organic framework sensor for epidermal growth factor ; a biomarker for kidney disease." Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2778.

Full text
Abstract:
Thesis (Master of Applied Sciences in Chemistry)--Cape Peninsula University of Technology, 2018.
Biosensors have been on the forefront to provide clinical diagnosis tools for various diseases. Proper selection of biomarkers as well as chemical electrode modification is key in the fabrication of electrochemical biosensors. Hence, electrode modified with nanomaterials devices to improve electroanalytical applications. These nanomaterials were functionalized to improve conductivity, accelerate signal transduction and amplify biorecognition events. Thus, resulting in novel sensing platforms that are highly sensitive and selective towards the target analyte. In this study, gold nanorods (Au NRs) capped with CTAB, zeolitic imidazole framework were synthesised using the seed mediated and hydrothermal method respectively. Composites of gold nanorods with cysteine, ZIF-8 or both were also synthesised. All synthesised materials were characterized using ultraviolet–visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-Ray diffraction (XRD) and cyclic voltammetry (CV) techniques. The obtained results confirmed the synthesis of the nanomaterials and composites. Identification of the ideal platform for fabrication of a transducer with the best electrochemical response was determined by studying the combinations of the synthesised nanomaterials and composites. The studied parameters were surface coverage, conductivity, rate of electron transfer constant. Cysteine-Au NRs composites platforms, had exceptional properties hence its synthesis optimisation of was undertaken. The effect of CTAB, reaction time, volume and concentration ratio of Au:Cysteine, temperature and pH on the composite properties were assessed. However, this composite’s electrochemical properties decreased when bioconjugated with the antibodies. Hence, the choice of Au NRs CTAB functionalised ZIF-8 (CTABAu/ZIF-8) as the transducer for biosensor applications due to a more favourable biocompatibility. Biosensor fabrication was done by drop coating glassy carbon electrode with the CTABAu/ZIF-8 forming a transducer followed by immobilisation of the antibody (Ab) using a covalent attachment method with glutaraldehyde (GA) as a cross linker. The target analyte, epidermal growth factor (EGF) was interacted with the Ab binding sites via electrostatic forces. All the fabrication steps were optimized for biosensor components, immobilization technique (drop coating and immersion), concentration and incubation time of linker and bioreceptor, as well as the synthesis of the CTABAu-ZIF-8 composites where in situ and ex situ techniques were compared together with the effect of the concentration ratio of Au: ZIF-8. There was also an analysis of optimum pH. Optimum conditions were found to be immersion in 3 % GA and 2 μg/ml Ab, with incubation times of 8, 10 and 5 minutes for GA, Ab and EGF respectively at a pH of 6. The following electroanalytical techniques: cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV) were utilised for EGF detection. The DPV showed better reproducibility, higher currents and better resolution hence; it was the method of choice. The technique’s optimisation involved assessments of the effect of step potential, starting potential and pulse amplitude. The optimum response for pulse amplitude, step potential and starting potential were 60 mV, 20 mV and 0.5 V respectively. The biosensor analytical parameters were linear towards EGF in the concentration range from 2 to 100 nM with a detection limit of 0.58 nM. Reproducibility and repeatability tests were acceptable, and the biosensor had a stability over 80 % within 15 days. There was no interference observed in the presence of glucose and creatine. The EGF biosensor was successfully applied in urine and saliva analysis, obtaining 67.5 and 3.12 nM respectively. This biosensor’s positive outcome strongly suggests its potential as a diagnosis tool for early detection of kidney disease as it was able to detect EGF concentration within physiological levels of EGF in normal kidney function.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography