To see the other types of publications on this topic, follow the link: Nanostructured materials. Polymer melting.

Dissertations / Theses on the topic 'Nanostructured materials. Polymer melting'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Nanostructured materials. Polymer melting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Tang, Shijun. "Characterization, Properties and Applications of Novel Nanostructured Hydrogels." Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5605/.

Full text
Abstract:
The characterization, properties and applications of the novel nanostructured microgel (nanoparticle network and microgel crystal) composed of poly-N-isopropylacrylanmide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid(AA) have been investigated. For the novel nanostructured hydrogels with the two levels of structure: the primary network inside each individual particle and the secondary network of the crosslinked nanoparticles, the new shear modulus, drug release law from hydrogel with heterogeneous structure have been studied. The successful method for calculating the volume fraction related the phase transition of colloid have been obtained. The kinetics of crystallization in an aqueous dispersion of PNIPAM particles has been explored using UV-visible transmission spectroscopy. This dissertation also includes the initial research on the melting behavior of colloidal crystals composed of PNIPAM microgels. Many new findings in this study area have never been reported before. The theoretical model for the columnar crystal growth from the top to bottom of PNIPAM microgel has been built, which explains the growth mechanism of the novel columnar hydrogel colloidal crystals. Since the unique structure of the novel nanostructured hydrogels, their properties are different with the conventional hydrogels and the hard-sphere-like system. The studies and results in this dissertation have the important significant for theoretical study and valuable application of these novel nanostructured hydrogels.
APA, Harvard, Vancouver, ISO, and other styles
2

Farghaly, Ahmed A. "Fabrication of Multifunctional Nanostructured Porous Materials." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4189.

Full text
Abstract:
Nanostructured porous materials generally, and nanoporous noble metals specifically, have received considerable attention due to their superior chemical and physical properties over nanoparticles and bulk counterparts. This dissertation work aims to develop well-established strategies for the preparation of multifunctional nanostructured porous materials based on the combination of inorganic-chemistry, organic-chemistry and electrochemistry. The preparation strategies involved one or more of the following processes: sol-gel synthesis, co-electrodeposition, metal ions reduction, electropolymerization and dealloying or chemical etching. The study did not stop at the preparation limits but extended to investigate the reaction mechanism behind the formation of these multifunctional nanoporous structures in order to determine the different factors controlling the nanoporous structures formation. First, gold-silica nanocomposites were prepared and used as a building blocks for the fabrication of high surface area gold coral electrodes. Well-controlled surface area enhancement, film thickness and morphology were achieved. An enhancement in the electrode’s surface area up to 57 times relative to the geometric area was achieved. A critical sol-gel monomer concentration was also noted at which the deposited silica around the gold coral was able to stabilize the gold corals and below which the deposited coral structures are not stable. Second, free-standing and transferable strata-like 3D porous polypyrrole nanostructures were obtained from chemical etching of the electrodeposited polypyrrole-silica nanocomposite films. A new reaction mechanism was developed and a new structural directing factor has been discovered for the first time. Finally, silver-rich platinum alloys were prepared and dealloyed in acidic medium to produce 3D bicontinuous nanoporous platinum nanorods and films with a nanoporous gold-like structure. The 3D-BC-NP-Pt displayed high surface area, typical electrochemical sensing properties in an aqueous medium, and exceptional electrochemical sensing capability in a complex biofouling environment containing fibrinogen. The 3D-BC-NP-Pt displayed high catalytic activity toward the methanol electro-oxidation that is 30 times higher that of planar platinum and high volumetric capacitance of 400 F/cm3. These findings will pave the way toward the development of high performance and reliable electrodes for catalysis, sensing, high power outputs fuel cells, battery-like supercapacitors and miniaturized device applications.
APA, Harvard, Vancouver, ISO, and other styles
3

GUO, QINGYUN. "GIANT MOLECULE BASED NANOSTRUCTURED MATERIALS: FROM STRUCTURE TO FUNCTIONALITY." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1603757858889563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Jing. "Electrical conducting polymer nanocomposites containing graphite nanoplatelets and carbon nanotubes /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20LI.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cheung, Man Kuen. "Investigating the tribological performance of different polymer and polymer nanocomposites using nanoscratch and wear techniques /." access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?mphil-ap-b19887772a.pdf.

Full text
Abstract:
Thesis (M.Phil.)--City University of Hong Kong, 2005.
"Submitted to Department of Physics and Materials Science in partial fulfillment of the requirements for the degree of Master of Philosophy" Includes bibliographical references (leaves 82-95)
APA, Harvard, Vancouver, ISO, and other styles
6

Gandhi, Sahil Sandesh. "NANOSTRUCTURED OPTICAL MATERIALS BASED ON LIQUID CRYSTAL AND POLYMER COMPOSITES." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent151074495757849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuryak, Chris A. (Chris Adam). "Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79270.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 65).
Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and is easily scalable. With the majority of the unused energy in the United States being wasted in the form of heat and the recent mandates to reduce greenhouse gas emissions, thermoelectric devices could play an important role in our energy future by recovering this wasted heat and increasing the efficiency of energy production. However, low conversion efficiencies and the high cost of crystalline thermoelectric materials have restricted their implementation into modem society. To combat these issues, composite materials that use conductive polymers have been under investigation due to their low cost, manufacturability, and malleability. These new composite materials could lead to cheaper thermoelectric devices and even introduce the technology to new application areas. Unfortunately, polymer composites have been plagued by low operating efficiencies due to their low Seebeck coefficient. In this research, we show an enhanced Seebeck coefficient at the interface of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) spin coated onto silicon substrates. The maximum Seebeck coefficient achieved was 473 uV/K with a PEDOT:PSS thickness of 7.75 nm. Furthermore, the power factor of this interface was optimized with a 15.25 nm PEDOT:PSS thickness to a value of 1.24 uV/K2-cm, which is an order of magnitude larger than PEDOT:PSS itself. The effect of PEDOT:PSS thickness and silicon thickness on the thermoelectric properties is also discussed. Continuing research into this area will attempt to enhance the power factor even further by investigating better sample preparation techniques that avoid silicon surface oxidation, as well as creating a flexible composite material of PEDOT:PSS with silicon nanowires..
by Chris A. Kuryak.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
8

Brown, Elvie Escorro. "Bacterial cellulose/thermoplastic polymer nanocomposites." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Spring2007/e_brown_050207.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ratnagiri, Ramabhadra 1972. "Investigation of mixing in the melting regime during polymer compounding." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9131.

Full text
Abstract:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, February 2000.
Includes bibliographical references (leaves 124-126).
Morphology evolution in the melting regime during compounding of immiscible polymer blends. where most of the size scale reduction occurs. is studied. Starting from an initial solid pellet mixture of two components. the progression to the final two-phase viscoelastic melt involves an intermediate stage where either one or both the components are melting or softening. Our focus is identifying and quantifying the factors that determine morphologies in the melting regime. We identify blend systems that exhibit a transformation in morphology from a minor-component continuous phase with dispersed major component domains to that with the major component being the continuous matrix phase. as a function of mixing time. This phenomenon of phase inversion during compounding is demonstrated to occur even in blends with a higher melting point minor component. A low solid modulus and a low melt viscosity are shown to favor the formation of the continuous phase by the minor component. Polycaprolactone/polyethylene. polystyrene/polyethylene. polycarbonate/ polyethylene, poly(ethylene-co-cyclohexane dimethylene terephthalate)/ polyethylene. and polybutylene/polycaprolactone blends were studied. These model blends were chosen based on the melt viscosity ratio and the relative softening temperatures of the two components. These two parameters were used to develop a two-dimensional framework for summarizing the compounding behavior of blends. For compounding runs with a small amount of the minor component (-1 Owt. % ) at a constant mixer temperature, phase inversion was observed for blend viscosity ratios less than 0.2. irrespective of the relative transition temperatures of the two components. Using a temperature ramping program resulted in the low melting component forming the continuous phase initially. Selective dissolution studies were used to quantify the amount of minor component present in the continuous phase at different mixing times. A polystyrene/polyethylene blend with a melt viscosity ratio of -0.001. was used to study the effect of batch size on the time required to form a continuous phase of the compounding of batch sizes ranging from 12g to 240g. Upon a five-fold increase in batch size the time to phase inversion increased by a factor of 3. This increase was explained by a combination of reduced heat conduction and reduced mechanical energy input to the batch. To enable studies at different batch sizes in the same mixing bowl, a novel mixing blade with modular elements was designed and constructed. This design was used for both radial and axial scaleup studies. The effect of changing the blade configuration on the time to phase inversion was explained using a specific relative stagger parameter, which is a measure of the effectiveness of stress transfer to the batch. Flow visualization using a glass window and blend sampling was used to develop a detailed description of the deformation steps leading to phase inversion in a model low viscosity ratio blend. Intermediate morphologies of flattened pellets, stacks of pellets, fibers and clusters were identified. Based on these observations a micro-structural model was developed to predict the time to phase inversion. The model incorporates a simplified flow-field approximation and calculates the strain in the major component. A strain-based criterion was proposed which in conjunction with the model yielded an explicit expression for the time to phase inversion. Model predictions of the dependence of time to phase inversion on nominal maximum-shear-rate in the mixer, volume fraction of the minor component and blend viscosity ratio were shown to be in excellent agreement with experimental results.
by Ramabhadra Ratnagiri.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
10

Tang, Youhong. "Microrheological study on polyethylene/thermotropic liquid crystalline polymer/layered silicates nanocomposites /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CENG%202007%20TANG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Bing Li Christopher Yuren. "Exploiting polymer single crystals to assemble and functionalize nanomaterials /." Philadelphia, Pa. : Drexel University, 2009. http://hdl.handle.net/1860/3182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

張顯基 and Hin-kei Cheung. "Study on the strength of polymer melt." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31215087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Cheung, Hin-kei. "Study on the strength of polymer melt /." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19471415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sahu, Laxmi Kumari D'Souza Nandika Anne. "Bulk and interfacial effects on density in polymer nanocomposites." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bhardwaj, Rahul. "Modification of polylactide bioplastic using hyperbranched polymer based nanostructures." Diss., Connect to online resource - MSU authorized users, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Basnayaka, Punya A. "Development of Nanostructured Graphene/Conducting Polymer Composite Materials for Supercapacitor Applications." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4864.

Full text
Abstract:
The developments in mobile/portable electronics and alternative energy vehicles prompted engineers and researchers to develop electrochemical energy storage devices called supercapacitors, as the third generation type capacitors. Most of the research and development on supercapacitors focus on electrode materials, electrolytes and hybridization. Some attempts have been directed towards increasing the energy density by employing electroactive materials, such as metal oxides and conducting polymers (CPs). However, the high cost and toxicity of applicable metal oxides and poor long term stability of CPs paved the way to alternative electrode materials. The electroactive materials with carbon particles in composites have been used substantially to improve the stability of supercapacitors. Furthermore, the use of carbon particles and CPs could significantly reduce the cost of supercapacitor electrodes compared to metal oxides. Recent developments in carbon allotropes, such as carbon nanotubes (CNTs) and especially graphene (G), have found applications in supercapacitors because of their enhanced double layer capacitance due to the large surface area, electrochemical stability, and excellent mechanical and thermal properties. The main objective of the research presented in this dissertation is to increase the energy density of supercapacitors by the development of nanocomposite materials composed of graphene and different CPs, such as: (a) polyaniline derivatives (polyaniline (PANI), methoxy (-OCH3) aniline (POA) and methyl (-CH3) aniline (POT), (b) poly(3-4 ethylenedioxythiophene) (PEDOT) and (c) polypyrrole (PPy). The research was carried out in two phases, namely, (i) the development and performance evaluation of G-CP (graphene in conducting polymers) electrodes for supercapacitors, and (ii) the fabrication and testing of the coin cell supercapacitors with G-CP electrodes. In the first phase, the synthesis of different morphological structures of CPs as well as their composites with graphene was carried out, and the synthesized nanostructures were characterized by different physical, chemical and thermal characterization techniques, such as Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), UV-visible spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, BET surface area pore size distribution analysis and Thermogravimetric Analysis (TGA). The electrochemical properties of G-CP nanocomposite-based supercapacitors were investigated using Cyclic Voltammetry (CV), galvanostatic charge-discharge and Electrochemical Impedance Spectroscopy (EIS) techniques in different electrolytes, such as acidic (2M H2SO4 and HCl), organic ( 0.2 M LiClO4) and ionic liquid (1M BMIM-PF6) electrolytes. A comparative study was carried out to investigate the capacitive properties of G-PANI derivatives for supercapacitor applications. The methyl substituted polyaniline with graphene as a nanocomposite (G-POT) exhibited a better capacitance (425 F/g) than the G-PANI or the G-POA nanocomposite due to the electron donating group of G-POT. The relaxation time constants of 0.6, 2.5, and 5s for the G-POT, G-PANI and G-POA nanocomposite-based supercapacitors were calculated from the complex model by using the experimental EIS data. The specific capacitances of two-electrode system supercapacitor cells were estimated as 425, 400, 380, 305 and 267 F/g for G-POT, G-PANI, G-POA, G-PEDOT and G-PPy, respectively. The improvements in specific capacitance were observed due to the increased surface area with mesoporous nanocomposite structures (5~10 nm pore size distribution) and the pseudocapacitance effect due to the redox properties of the CPs. Further, the operating voltage of G-CP supercapacitors was increased to 3.5 V by employing an ionic liquid electrolyte, compared to 1.5 V operating voltage when aqueous electrolytes were used. On top of the gain in the operating voltage, the graphene nano-filler of the nanocomposite prevented the degradation of the CPs in the long term charging and discharging processes. In the second phase, after studying the material's chemistry and capacitive properties in three-electrode and two-electrode configuration-based basic electrochemical test cells, coin cell type supercapacitors were fabricated using G-CP nanocomposite electrodes to validate the tested G-CPs as devices. The fabrication process was optimized for the applied force and the number of spacers in crimping the two electrodes together. The pseudocapacitance and double layer capacitance values were extracted by fitting experimental EIS data to a proposed equivalent circuit, and the pseudocapacitive effect was found to be higher with G-PANI derivative nanocomposites than with the other studied G-CP nanocomposites due to the multiple redox states of G-PANI derivatives. The increased specific capacitance, voltage and small relaxation time constants of the G-CPs paved the way for the fabrication of safe, stable and high energy density supercapacitors.
APA, Harvard, Vancouver, ISO, and other styles
17

Bhardwaj, Mohit. "Water vapor diffusion through glass fiber reinforced polymer nanocomposites." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4193.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2005.
Title from document title page. Document formatted into pages; contains x, 133 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 116-118).
APA, Harvard, Vancouver, ISO, and other styles
18

Yiu, Stephen Cheuk Bun. "Crystallization, structure and mechanical characteristics of polymer-silicate nanocomposites." access abstract and table of contents access full-text, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/dissert.pl?msc-ap-b21175329a.pdf.

Full text
Abstract:
Thesis (M.Sc.)--City University of Hong Kong, 2005.
At head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Sept. 4, 2006) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
19

Kwok, Yee Shan. "Crystallization, structure and mechanical characteristics of polymer-silicate nanocomposites." access abstract and table of contents access full-text, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/dissert.pl?msc-ap-b21174386a.pdf.

Full text
Abstract:
Thesis (M.Sc.)--City University of Hong Kong, 2005.
At head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Sept. 1, 2006) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Shu Jun. "Applications of graphene for transparent conductors and polymer nanocomposites /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?MECH%202009%20WANGS.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Du, Ying. "Fabrication and characterization of particulate polymer nanocomposites /." View online ; access limited to URI, 2007. http://0-digitalcommons.uri.edu.helin.uri.edu/dissertations/AAI3284823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dong, Ou. "Polymer nanostructure fabrication and application in biosensors /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CBME%202009%20DONG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Chen, Xinyue. "Building Nanostructured Polystyrene Latex Beads Covered with Polyoxometalate Clusters." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1427816891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Murima, Douglas. "Novel barrier coatings based on nanoclay-polymer composites." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96994.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2015.
ENGLISH ABSTRACT: The investigation of the barrier properties of highly filled polymer-clay hybrid latex films is described. Montmorillonite (MMT) clay contents ranging from 10–30 wt.% were effectively incorporated into polystyrene-butyl acrylate (PSBA) random copolymers, via miniemulsion polymerization. The optical properties of the films were evaluated using UV-Vis spectroscopy. Compared to the neat films, the PSBA nanocomposites retained remarkable visual properties. The light transmittance for PSBA films with styrene/n-butyl acrylate (S/BA) comonomer contents of 40:60 and 50:50 (mol.%) only decreased from 70% in the neat films to 50% in the nanocomposite films containing 30 wt.% clay. The best optical properties were observed in the films with S/BA comonomer contents of 30:70 (mol.%), the light transmittance only decreased from 85% (neat film) to 60% in the nanocomposite films containing 30 wt.% clay. The improved optical properties for the PSBA-30:70 films (compared to the PSBA-40:60 and PSBA-50:50 counterparts) were attributed to an increase in the low UV-absorbing butyl acrylate component of the copolymer, which at the same time has a low Tg that probably facilitated dispersion of the rigid MMT platelets in the matrix. In this study, the overall water vapour transport behaviour was governed by the MMT clay presence and less affected by the copolymer composition variation. The lower diffusion coefficients in the polymer clay nanocomposites (PCNs) were a result of the impermeable clay platelets which forced the water vapour molecules to follow longer and more tortuous paths to diffuse through the nanocomposite films. The irregular shape in the PSBA-40:60 and PSBA-30:70 neat latex particles was lost in the hybrid particles and well defined, dumb-bell shaped particles were observed. This was because of the faceting effect of the rigid MMT clay platelets. The MMT clay platelets were predominantly adhered to the surface of the PSBA latex particles because MMT clay particles have a larger size than the effective size of the copolymer particles. The stable overall transport coefficients in the PSBA-30:70-MMT films were attributed to the morphological organization of clay platelets in the matrix. The storage modulus of the materials decreased with an increase in clay content. This was attributed to the dual role played by the organoclay, firstly as nanofiller and reinforcing agent leading to the increase in storage modulus, and secondly as a plasticizer leading to a decrease of storage modulus.
AFRIKAANSE OPSOMMING: Die versperringseienskappe van hoogsgevulde polimeer-klei saamgestelde latekslae is beskryf. „n 10–30 wt % Montmorilloniet (MMT) klei inhoud is inkorporeer in polistireenbutielakrilaat (PSBA) onreëlmatige kopolimere, via miniemulsie polimerisasie. Die optiese eienskappe van die lae is bepaal m.b.v. UV-Vis spektroskopie. In vergelyking met die lae sonder klei (sogenaamde „neat films‟), het die PSBA nanosamestellings interressante visuele eienskappe getoon. Die ligtransmissie van die PSBA lae met „n stireeen/n-butielakrilaat (S/BA) komonomeerinhoud van 40:60 en 50:50 (mol %) het slegs afgeneem vanaf 70% in die „neat films‟ tot 50% in the nanosaamgestelde lae wat 30% klei bevat het. Die beste optiese eienskappe is waargeneem vir die lae wat „n 30:70 (mol %) S/BA komonomeerinhoud bevat het; die transmissie het slegs afgeneem vanaf 85% in die „neat films‟ to 60% in the nanosaamgestelde lae wat 30% klei bevat het. Die verbeterde optiese eienskappe van die PSBA-30:70 films (in vergelyking met die -40:60 and -50:50 films) is toegeskryf aan „n toename in die lae UV-absorberende butielakrilaat komponent van die kopolimeer. Terselfdetyd het laasgenoemde „n lae Tg-waarde, wat dispersie van die onbuigbare MMT kleiplaatjies in die matriks gefasiliteer het. In hierdie studie is die algehele waterdampvervoer deur die teenwoordigheid van die MMT klei beheer; dit is minder geaffekteer deur variasie in die samestelling van die kopolimeer. Die lae diffusiekoëffisiënte in die polimeer-klei nanosamestellings is as gevolg van die ondeurdringbare kleiplaatjies, wat die waterdampmolekules dwing om langs langer en meer gekronkelde paaie te diffundeer deur die nanosaamgestelde lae. Die onreëlmatige vorm wat gesien is in die PSBA-40:60 and PSBA-30:70 latekspartikels (sonder klei) het geleidelik verdwyn in die saamgestelde partikels, en goed-gedefineerde partikels met die vorm van handgewigte is waargeneem (in TEM beelde). Die rede hiervoor is die sogenaamde „faceting‟ effek, wat deur die onbuigbare MMT kleiplaatjies veroorsaak is. Die MMT kleiplaatjies sit hoofsaaklik aan die oppervlaktes van die PSBA latekspartikels. Die rede hiervoor is dat die MMT kleipartikels groter is as die effektiewe grootte van die kopolimeerpartikels. Die stabiele vervoerkoëffisiënte in die PSBA-30:70-MMT films is aan die unieke morfologiese eienskappe toegeskryf. Die bergingsmodulus van die materiale het monotonies afgeneem met „n toename in klei-inhoud. Dit is toegeskryf aan die tweedelige rol wat die organoklei speel – eerstens as 'n nanovuller en versterkingsmiddel, wat „n toename in bergingsmodulus tot gevolg het, en tweedens as „n plastiseerder, wat „n afname in bergingsmodulus tot gevolg het.
APA, Harvard, Vancouver, ISO, and other styles
25

Liu, Jia. "Polymer-layered silicate nanocomposites : synthesis, structure and properties /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?MECH%202004%20LIU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wang, Huan. "Synthesis, purification and applications of carbon nanomaterials and their polymer nanocomposites /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?CBME%202008%20WANG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lu, Jiongxin. "High dielectric constant polymer nanocomposites for embedded capacitor applications." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26666.

Full text
Abstract:
Thesis (Ph.D)--Materials Science and Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Wong, C. P.; Committee Member: Jacob, Karl; Committee Member: Liu, M. L.; Committee Member: Tannenbaum, Rina; Committee Member: Wang, Z. L.. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
28

Washburn, Seth M. "Novel polymer nanofilms from a topochemical deposition/polymerization process." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 310 p, 2007. http://proquest.umi.com/pqdweb?did=1257806401&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mortazavi, Bohayra, and Bohayra Mortazavi. "Multiscale modeling of thermal and mechanical properties of nanostructured materials and polymer nanocomposites." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00961249.

Full text
Abstract:
Nanostructured materials are gaining an ongoing demand because of their exceptional chemical and physical properties. Due to complexities and costs of experimental studies at nanoscale, computer simulations are getting more attractive asexperimental alternatives. In this PhD work, we tried to use combination of atomistic simulations and continuum modeling for the evaluation of thermal conductivity and elastic stiffness of nanostructured materials. We used molecular dynamics simulations to probe and investigate the thermal and mechanical response of materials at nanoscale. The finite element and micromechanics methods that are on the basis of continuum mechanics theories were used to evaluate the bulk properties of materials. The predicted properties are then compared with existing experimental results.
APA, Harvard, Vancouver, ISO, and other styles
30

Mortazavi, Bohayra. "Multiscale modeling of thermal and mechanical properties of nanostructured materials and polymer nanocomposites." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAD007/document.

Full text
Abstract:
Les matériaux nanostructurés suscitent un intérêt qui va croissant en raison de leurs propriétés chimiques et physiquesexceptionnelles. A cause de la complexité et du coût des développements expérimentaux à l’échelle nano, la simulationnumérique devient une alternative de plus en plus populaire aux études expérimentales. Dans ce travail de thèse, nous avons essayé de combiner des simulations à l’échelle atomique avec de la modélisation en milieu continu pour évaluer la conductivité thermique et la réponse élastique de matériaux nanostructurés. Nous avons utilisé des simulations de dynamique moléculaire pour calculer la réponse mécanique et thermique des matériaux sur des volumes à l’échelle nano. Des méthodes de micromécanique et la méthode des éléments finis, qui utilisent la mécanique des milieux continus, ont permis d’évaluer les propriétés mécaniques des matériaux à l'échelle macroscopique. Les résultats obtenus par ces simulations numériques ont été ensuite comparés avec ceux issus de l’expérience
Nanostructured materials are gaining an ongoing demand because of their exceptional chemical and physical properties. Due to complexities and costs of experimental studies at nanoscale, computer simulations are getting more attractive asexperimental alternatives. In this PhD work, we tried to use combination of atomistic simulations and continuum modeling for the evaluation of thermal conductivity and elastic stiffness of nanostructured materials. We used molecular dynamics simulations to probe and investigate the thermal and mechanical response of materials at nanoscale. The finite element and micromechanics methods that are on the basis of continuum mechanics theories were used to evaluate the bulk properties of materials. The predicted properties are then compared with existing experimental results
APA, Harvard, Vancouver, ISO, and other styles
31

September, Caelin Gee. "Preparation and characterisation of inorganic nanostructured support materials for polymer electrolyte fuel cells." Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/20125.

Full text
Abstract:
Polymer electrolyte fuel cells (PEFCs) have been identified as a safe, clean and reliable alternative energy conversion technology to conventional, fossil fuel based, ones. However, the hindrance to worldwide commercialisation of this technology lies in the poor durability and high costs associated with the current carbon supported platinum (Pt/C) catalysts. Carbon support corrosion and Pt dissolution/aggregation on the catalyst layer within the fuel cell have been confirmed as the major contributors to the degradation of the Pt/C (Shao, et al., 2007). Attention needs to be paid to the improvement of catalyst components to produce an electrocatalyst with better degradation resistance and low Pt loading in order to overcome these two major commercialisation barriers. The physico-chemical and electronic interaction between the Pt catalyst and the support material play a crucial role in the catalytic activity and stability of the electrocatalysts (Wang, et al., 2011). A comprehensive understanding of the effects of catalyst support material and morphology on the mechanism and kinetics of the oxygen reduction reaction (ORR) needs to be developed. This study investigated alternative, novel catalyst support materials and structures for the catalyst layer as opposed to carbon for PEFC applications. This material consisted of TiB2 electrospun nanofibers, powder and crushed electrospun nanofibers. Methods used to reliably and accurately deposit Pt onto these materials were identified, developed and analysed. These methods include platinum deposited onto TiB2 powder, electrospun crushed nanofibers and nanofiber mats via DC magnetron sputter deposition and thermally induced chemical deposition (TICD). The synthesised catalysts were physically characterised using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Inductively Coupled Plasma Optical emission spectrometry (ICP-OES). Platinum effectively deposited on the TiB2 support structures via these deposition techniques within two standard deviations of the desired Pt loadings.
APA, Harvard, Vancouver, ISO, and other styles
32

MANGADLAO, JOEY DACULA. "Multifunctional Materials from Nanostructured Graphene and Derivatives." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1448279230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ranade, Ajit. "Barrier and Long Term Creep Properties of Polymer Nanocomposites." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc5563/.

Full text
Abstract:
The barrier properties and long term strength retention of polymers are of significant importance in a number of applications. Enhanced lifetime food packaging, substrates for OLED based flexible displays and long duration scientific balloons are among them. Higher material requirements in these applications drive the need for an accurate measurement system. Therefore, a new system was engineered with enhanced sensitivity and accuracy. Permeability of polymers is affected by permeant solubility and diffusion. One effort to decrease diffusion rates is via increasing the transport path length. We explore this through dispersion of layered silicates into polymers. Layered silicates with effective aspect ratio of 1000:1 have shown promise in improving the barrier and mechanical properties of polymers. The surface of these inorganic silicates was modified with surfactants to improve the interaction with organic polymers. The micro and nanoscale dispersion of the layered silicates was probed using optical and transmission microscopy as well as x-ray diffraction. Thermal transitions were analyzed using differential scanning calorimetry. Mechanical and permeability measurements were correlated to the dispersion and increased density. The essential structure-property relationships were established by comparing semicrystalline and amorphous polymers. Semicrystalline polymers selected were nylon-6 and polyethylene terephthalate. The amorphous polymer was polyethylene terphthalate-glycol. Densification due to the layered silicate in both semicrystalline and amorphous polymers was associated with significant impact on barrier and long term creep behavior. The inferences were confirmed by investigating a semi-crystalline polymer - polyethylene - above and below the glass transition. The results show that the layered silicate influences the amorphous segments in polymers and barrier properties are affected by synergistic influences of densification and uniform dispersion of the layered silicates.
APA, Harvard, Vancouver, ISO, and other styles
34

Geng, Yan. "Preparation and characterization of graphite nanoplatelet, graphene and graphene-polymer nanocomposites /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?MECH%202009%20GENG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Minerly, Kathleen. "Polymer nanomaterials for applications in sound and pressure sensing." Diss., Online access via UMI:, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jalani, Nikhil H. "Development of nanocomposite polymer electrolyte membranes for higher temperature PEM fuel cells." Link to electronic dissertation, 2006. https://www.wpi.edu/ETD-db/ETD-catalog/view%5Fetd?URN=etd-032706-165027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, Wenju. "Amperometric biosensors based on carbon nanotubes with different polymer coatings." HKBU Institutional Repository, 2011. http://repository.hkbu.edu.hk/etd_ra/1220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Olea, Mejía Oscar Fernando Brostow Witold. "Micro and nano composites composed of a polymer matrix and a metal disperse phase." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-5135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Xue, Siqi. "Organic-modifier-free pathways for the preparation of polymer-metal oxide nanocomposites." Diss., Connect to online resource - MSU authorized users, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Forest, Charlène. "Preparation of nano-cellular foams from nanostructured polymer materials by means of CO2 foaming process." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10250.

Full text
Abstract:
Cette étude porte sur l'élaboration de matériaux polymères nano-cellulaires via un procédé batch de moussage au CO2. Pour obtenir de tels matériaux, le moussage est provoqué dans des matériaux polymères nano-structurés afin de favoriser la nucléation hétérogène et d'obtenir des taux de nucléation et des densités de cellules élevées. Le moussage de terpolymères ABS et de PMMAs nanostructurés a été étudié, dans le but de produire des mousses nano-cellulaires avec une faible densité (inférieure à 0.3 g.cm-3) et une taille moyenne de cellules inférieure à 100 nm, correspondant aux morphologies de mousses requises pour obtenir des matériaux super isolants thermiquement. Le phénomène de nucléation, et donc la densité de cellules, sont apparus comme dépendant directement de la concentration et de la morphologie des agents nucléants, qui correspondent dans cette étude à des phases polymères immiscibles dispersées. L'élaboration de matériaux nano cellulaires a nécessité la compréhension des mécanismes de croissances de cellules, du rôle du CO2 en tant qu'agent gonflant et plastifiant ainsi que l'optimisation du procédé de moussage. Plus précisément, l'influence du comportement viscoélastique des matériaux polymères ainsi que celle des forces de surface sur la formation de cellules a également été étudié. Il a été montré que la formation de mousse se produisait dans un milieu viscoélastique, avec un comportement variant entre celui d'un solide et d'un liquide viscoélastique, et ce en fonction de la température et de la masses molaire des polymères
This work focuses on the fabrication of nano-cellular polymer materials by means of a CO2 batch foaming process. To produce such materials, the foaming has to be induced in nano-structured polymer materials in order to favour heterogeneous nucleation and thus to obtain high nucleation rate and high cell density. The foaming of ABS terpolymers and nanostructured PMMAs was investigated, with the aim of producing nano-cellular foams with low density (lower than 0.3 g.cm-3) and an average cell size of 100 nm, which corresponds to required foam morphologies for super thermal insulating applications. It has been shown that nucleation, and thus cell density, directly depends on the content and morphology of nucleating agents, corresponding to dispersed polymer immiscible phases. The production of nano-cellular materials required the understanding of cell growth mechanisms, the role of CO2 as blowing agent and plasticiser and process optimisation. Specifically, the influence of viscoelastic behaviour of polymer materials and surface forces on cell formation was also investigated. It was found that the foaming occurred in viscoelastic media, with transitional behaviour between solid and liquid, depending on foaming temperature and molar mass of polymers
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, Mingyang. "Improved durability and thermal stability of glass fiber reinforced composites using clay-polymer nanocomposites /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?MECH%202009%20LIU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mbanjwa, Khangelani Methuli. "A study of the morphology-property relationships of polymer-layered silicate nanocomposites." Thesis, Cape Peninsula University of Technology, 2007. http://hdl.handle.net/20.500.11838/2615.

Full text
Abstract:
Thesis (MTech (Chemistry))--Cape Peninsula University of Technology, 2007.
The continuous development of new materials and the improvement of existing ones ensure a balance between technological growth and environmental sustainability. With the above trade-offs, the quality of life for humankind is continually being improved. Polymeric materials are some of our most valued commodities in our everyday lives. They continue to be developed and improved in a variety of ways; one of which is to improve their properties by preparing nanocomposites. Polymer-based nanocomposites (PNCs) is a way of getting novel properties and enhancing existing one in polymer matrices, by incorporating additives on a nano-scale. The most significant advantage of PNCs is the potential to design and tailor properties for a specific application, since the control of the structure can be done at the molecular level. Therefore, a fundamental understanding of the relationships between the structure and the properties of PNCs is of utmost importance. Amongst the most studied and researched PNC materials, polymer-layered silicate nanocomposites (PLSNs) have recently enjoyed attention from academia and industry. In the current study structure-property relationships of PLSNs were investigated. Polystyrene (PS) was chosen as the base polymer due to its wide use in many articles such as in packaging. It was also a material of choice based on its poor mechanical properties in its natural state (unfilled), so as to contribute in its property improvement. Montmorillonite (MMT) was a layered silicate (clay) of choice, as much research has been done on it, and it is available worldwide, as a main component in Bentonite (a natural material). Clays are composed of sheet-like, layered particles, which, when in a suitable environment, can delaminate into single, nano-sized sheets. The sheets are held together by van der Waals forces and between the sheets are exchangeable cations. The clays are hydrophilic in nature and cannot readily delaminate in a hydrophobic polymer matrix due to the differences in surface energies. A MMT surface was functionalized to be hydrophobic by conducting an ion exchange reaction with alkyl ammonium surface active agents (surfactants). Polymerizable surfactants (surfmers) were used to enhance the interfacial interaction between the PS matrix and MMT silicate layers. The organically modified clays (organoclays) were used in synthesizing polystyrene-layered silicate nanocomposites (PS-LSN) by an in-situ intercalative polymerization method. The polymerization of the nanocomposites was conducted in bulk. The morphologies of the nanocomposites were characterized using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (Ope). The study was further expanded to the investigation of the effects of the nanocomposite structure, type of organic modifier, and amount of clay loading on the properties of the materials. The properties were studied by dynamic mechanical analysis (DMA), thermomechanical analysis (TMA) and dielectric analysis (DEA). The properties were dependent on the interfacial processes between the clay layers and the polymer matrix. The changes in properties compared to the PS homopolymer showed time and temperature dependent effects, as determined by DEA. Even though the dynamics of the interfacial interactions are still not fully understood, the nanocomposites showed improvements in properties compared to the homopolymers.
APA, Harvard, Vancouver, ISO, and other styles
43

Sahu, Laxmi Kumari. "Bulk and Interfacial Effects on Density in Polymer Nanocomposites." Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3619/.

Full text
Abstract:
The barrier properties of polymers are a significant factor in determining the shelf or device lifetime in polymer packaging. Nanocomposites developed from the dispersion of nanometer thick platelets into a host polymer matrix have shown much promise. The magnitude of the benefit on permeability has been different depending on the polymer investigated or the degree of dispersion of the platelet in the polymer. In this dissertation, the effect of density changes in the bulk and at the polymer-platelet interface on permeability of polymer nanocomposites is investigated. Nanocomposites of nylon, PET, and PEN were processed by extrusion. Montmorillonite layered silicate (MLS) in a range of concentrations from 1 to 5% was blended with all three resins. Dispersion of the MLS in the matrix was investigated by using one or a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Variation in bulk density via crystallization was analyzed using differential scanning calorimetry (DSC) and polarized optical microscopy. Interfacial densification was investigated using force modulation atomic force microscopy (AFM) and ellipsometry. Mechanical properties are reported. Permeability of all films was measured in an in-house built permeability measurement system. The effect of polymer orientation and induced defects on permeability was investigated using biaxially stretched, small and large cycle fatigue samples of PET and nylon nanocomposites. The effect of annealing in nylon and nanocomposites was also investigated. The measured permeability was compared to predicted permeability by considering the MLS as an ideal dispersion and the matrix as a system with concentration dependent crystallinity.
APA, Harvard, Vancouver, ISO, and other styles
44

Ravindran, Naveenkamal. "Durability of E-glass fiber reinforced vinyl ester polymer composites with nanoclay in an alkaline environment." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4209.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2005.
Title from document title page. Document formatted into pages; contains vii, 54 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 51-52).
APA, Harvard, Vancouver, ISO, and other styles
45

Zhang, Wei. "Controllable growth of porous structures from co-continuous polymer blend." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39608.

Full text
Abstract:
Due to their large internal surface area, microporous materials have been widely used in applications where high surface activity is desired. Example applications are extracellular scaffolds for tissue engineering, porous substrates for catalytic reaction, and permeable media for membrane filtration, etc. To realize these potential applications, various techniques such as TIPS (thermal induced phase separation), particle leaching, and SFF (solid freeform fabrication) were proposed and investigated. Despite of being able to generate microporous for specific applications, these available fabrication techniques have limitations on controlling the inner porous structure and the outer geometry in a cost-effective manner. To address these technical challenges, a systematic study focusing on the generation of microporous structures using co-continuous polymer blend was conducted. Under this topic, five subtopics were explored: 1) generation of gradient porous structures; 2) geometrical confining effect in compression molding of co-continuous polymer blend; 3) microporous composite with high nanoparticle loading; 4) micropatterning of porous structure; 5) simulation strategy for kinetics of co-continuous polymer blend phase coarsening process.
APA, Harvard, Vancouver, ISO, and other styles
46

Gunawidjaja, Ray. "Organic/inorganic nanostructured materials towards synergistic mechanical and optical properties /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29733.

Full text
Abstract:
Thesis (Ph.D)--Industrial and Systems Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Tsukruk, Vladimir; Committee Member: Bucknall, David; Committee Member: Kalaitzidou, Kyriaki; Committee Member: Shofner, Meisha; Committee Member: Tannenbaum, Rina. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Xiefei. "Studies on Single Wall Carbon Nanotube and Polymer Composite Films and Fibers." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7610.

Full text
Abstract:
Single wall carbon nanotubes (SWNT) have been extensively studied over the last decade due to their excellent comprehensive properties for a variety of applications. This study is focused on the applications of SWNTs as reinforcement for polymer matrices. Due to van der Waal interactions, SWNTs form bundles of about 30 nm diameters. In order to take full advantage of the SWNT mechanical properties, SWNT must exfoliate or at least disperse in small diameter bundle size. Optical microscopy and SEM only give qualitative information of dispersion. Quantitative characterization through TEM or AFM can be time consuming in order to get statistical result. In this study, simple method is developed to quantitatively estimate the size of SWNT bundle in dispersion based on the geometry controlled electrical percolation behavior. The SWNTs can be dispersed /exfoliated via PVP wrapped SWNT aqueous dispersion assisted by surfactants such as sodium dodycel sulfate. PVA / SWNT composite films prepared through PVP wrapped SWNTs exhibit improved mechanical properties as well as the evidence of load transfer from the polymer matrix to the SWNT as monitored by the Raman spectroscopy. SWNT can also be well dispersed into PVA/DMSO/H2O solution. Gel spinning of PVA/SWNT composite fiber has been successfully carried out with improved mechanical properties. Functionalized tubes can be used to enhance SWNT dispersion and exfoliation. Oxidation in strong acids is one method used for functionalizing nanotubes. SWNTs have been functionalized in nitric acid. The structure and properties of films (buckypaper) processed from nitric acid functionalized tubes have been studied exhibiting high tensile strength and high electrical conductivity. Nitric acid treatment results in selective degradation of the small diameter tubes.
APA, Harvard, Vancouver, ISO, and other styles
48

Dasari, Aravind. "On toughening and wear/scratch damage in polymer nanocomposites." University of Sydney, 2007. http://hdl.handle.net/2123/1911.

Full text
Abstract:
Doctor of Philosophy
The drastic improvements in stiffness and strength even with the addition of small percentage of clay to a polymer are commonly traded-off with significant reductions in fracture toughness. It is believed that the presence of a stiff nano-filler will restrict the mobility of the surrounding matrix chains, and thus limit its ability to undergo plastic deformation, thereby decreasing their fracture toughness. To understand the role of rigid nano-fillers, like clay and their constraint effect on the surrounding polymer matrix, the effects of preferentially organized polyamide 6 lamellae in the vicinity of organoclay layers on the toughening processes are studied and compared with polyamide 6 filled with an elastomeric additive (POE-g-MA). It is suggested that to impart high toughness to polymer/organoclay nanocomposites, full debonding at the polymer-organoclay interface is necessary so that shear yielding of large volumes of matrix material can be enhanced. However, due to the strong tethering junctions between the individual organoclay layers and the matrix, full-scale debonding at the polymer-organoclay interface is rarely observed under stress conditions indicating that the constraint on the polymer adjacent to the clay is not relieved. Therefore, this has led to the development of ternary nanocomposites by adding a soft elastomeric dispersed phase to polymer/clay systems to obtain well-balanced mechanical properties. Polyamide 66/SEBS-g-MA/organoclay nanocomposites are prepared with four different blending protocols to understand the effect of blending protocol on the microstructure, mechanical properties and fracture mechanisms of the ternary nanocomposites so as to obtain new insights for producing better toughened polymer nanocomposites. In general, it is found that the level of enhancement of fracture toughness of ternary nanocomposites depends on: (i) the location and extent of dispersion of organoclay and (ii) the internal cavitation of rubber particles leading to effective relief of crack-tip tri-axial constraint and thus activating the matrix plastic deformation. Based on the wear/scratch damage studies on different polymer nanocomposite systems, it is suggested that elastic modulus and toughness of polymer nanocomposites are not the predominant factors controlling the material removal or friction coefficient and cannot be the sole indicators to compare and rank candidate materials. It is also found that nano-fillers by themselves, even if uniformly dispersed with good interfacial interaction with the matrix, do not irrevocably improve the wear (and friction) properties. Although it is important to consider these factors, it is necessary to thoroughly understand all microstructural parameters and their response to wear/scratch damage. Other important factors that should be considered are the formation of a uniform and stable transfer film on the counterface slider and the role of excessive organic surfactants or other modifiers added to disperse nanoparticles in a polymer matrix. It is also emphasized that the mechanisms of removal of materials during the wearing/scratching process should be studied meticulously with the use of high resolution microscopic and other analytical tools as this knowledge is critical to understand the surface integrity of polymer nanocomposites.
APA, Harvard, Vancouver, ISO, and other styles
49

Johnson, Justin Ryan. "Scalable techniques for the formation of polymer-nanoplatelet hybrid membranes and characterization thereof." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/42814.

Full text
Abstract:
Polymer-nanoplatelet hybrid membranes show promise as the next generation of membranes, but in order to make these realizable, methods to produce these materials on a large scale are necessary. Some authors have successfully produced these types of gas separation membranes. Typically these reports have utilized melt blending and in situ polymerization. Few, however, have utilized solution blending for creating membranes via phase inversion (asymmetric membranes). And to date, there have not been any reports regarding the fabrication of asymmetric membranes containing nanoplatelet filler materials. In this work we have developed a solution-based procedure for the formation of hybrid polymer-nanoplatelet dopes for dense film and asymmetric hollow fiber membrane formation. Dense film membrane studies were used to prove the effectiveness of our exfoliation and dispersion process developed for this work. Permeation measurements showed the hybrid membranes have desirable transport properties that are on par with mathematical model predictions. Additionally, TEM characterization provided strong evidence supporting the efficacy of our preparation procedures to produce an exfoliated system of nanoplatelets. We also showed that these procedures are applicable to different polymer systems (cellulose acetate and Torlon) of commercial relevance. Demonstrating the successful production of dense films set the stage for asymmetric hollow fiber membrane formation. We report the first production of asymmetric hollow fiber membranes containing nanoplatelet fillers; indicating that the process can be applied in a realistic membrane formation platform. These accomplishments serve as the groundwork for future nanocomposite formation.
APA, Harvard, Vancouver, ISO, and other styles
50

Chiou, Nan-Rong. "Aligned and oriented polyaniline nanofibers fabrication and applications /." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1148485692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography