To see the other types of publications on this topic, follow the link: Nanostructures à fort confinement.

Journal articles on the topic 'Nanostructures à fort confinement'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nanostructures à fort confinement.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hasapis, Th C., S. N. Girard, Euripides Hatzikraniotis, Konstantinos M. Paraskevopoulos, and M. G. Kanatzidis. "On the Study of PbTe-Based Nanocomposite Thermoelectric Materials." Journal of Nano Research 17 (February 2012): 165–74. http://dx.doi.org/10.4028/www.scientific.net/jnanor.17.165.

Full text
Abstract:
We Report on the Structural and Vibrational Properties of the X = 0.11 and X = 0.33 Compositions of a New Class of Nanostructured Thermoelectric System (PbTe)1-X(PbSnS2)x by Means of X-Ray Diffraction, Scanning and Transmission Electron Microscopy and Infrared Reflectivity. both Compositions Are Phase Separated, where Pbsns2 Self-Segregates from Pbte to Form Features with Dimensions Ranging from Tens of Micrometers to Tens of Nanometers. Effective Medium Approximation Was Used in Order to Determine the Volume Fraction and the Dielectric Function of the Nanoscale Pbsns2 Embedded in Pbte. by Com
APA, Harvard, Vancouver, ISO, and other styles
2

Balasubramanian, Prabhu, Jerrold A. Floro, Jennifer L. Gray, and Robert Hull. "Nano-scale Chemistry of Complex Self-Assembled Nanostructures in Epitaxial SiGe Films." MRS Proceedings 1551 (2013): 75–80. http://dx.doi.org/10.1557/opl.2013.1019.

Full text
Abstract:
ABSTRACTHeteroepitaxy of SiGe alloys on Si (001) under certain growth conditions has previously been shown to cause self-assembly of nanostructures called Quantum Dot Molecules, QDMs, where pyramidal pits and 3D islands cooperatively form. QDMs have potential applications to nanologic device architectures such as Quantum Cellular Automata that relies on localization of charges inside islands to create bi-stable logic states. In order to determine the applicability of QDMs to such structures it is necessary to understand the nano-scale chemistry of QDMs because the chemistry affects local bandg
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Ji, Zhihong Huang, Wenchang Lang, Xianghong Wang, and Shiben Li. "Surface-Induced Nanostructures and Phase Diagrams of ABC Linear Triblock Copolymers under Spherical Confinement: A Self-Consistent Field Theory Simulation." Polymers 10, no. 11 (2018): 1276. http://dx.doi.org/10.3390/polym10111276.

Full text
Abstract:
We investigate the nanostructures and phase diagrams of ABC linear triblock copolymers confined in spherical cavities by using real-space self-consistent field theory. Various 3D morphologies, such as spherical concentric lamellae, dumbbell-like cylinder, and rotational structures, are identified in the phase diagrams, which are constructed on the basis of the diameters of spherical cavities and the interaction between the polymers and preferential surfaces. We designate specific monomer-monomer interactions and block compositions, with which the polymers spontaneously form a cylindrical morph
APA, Harvard, Vancouver, ISO, and other styles
4

Sathyamoorthy, R., P. Sudhagar, S. Chandramohan, and U. Pal. "Size Effect on the Physical Properties of CdS Thin Films Prepared by Integrated Physical-Chemical Approach." Journal of Nanoscience and Nanotechnology 8, no. 12 (2008): 6481–86. http://dx.doi.org/10.1166/jnn.2008.18411.

Full text
Abstract:
Using an integrated physical-chemical approach, nanocrystalline cadmium sulfide (CdS) thin films were prepared by evaporating chemically synthesized CdS nanorods. Both the CdS nanorods and nanocrystalline thin films exhibited hexagonal wurtzite structure. Chemically synthesized CdS nanorods of about 7 nm average diameter were flexible, frequently folded to have elliptical cage linked chain structures and aggregate to form nanorod bundles. The bandgap energy of the nanocrystalline CdS films suffered a blue shift of about 0.07 eV due to intermediate quantum confinement of charge carriers. The re
APA, Harvard, Vancouver, ISO, and other styles
5

Deng, Jie, Jing Li, Zhe Xiao, Shuang Song, and Luming Li. "Studies on Possible Ion-Confinement in Nanopore for Enhanced Supercapacitor Performance in 4V EMIBF4 Ionic Liquids." Nanomaterials 9, no. 12 (2019): 1664. http://dx.doi.org/10.3390/nano9121664.

Full text
Abstract:
Supercapacitors have the rapid charge/discharge kinetics and long stability in comparison with various batteries yet undergo low energy density. Theoretically, square dependence of energy density upon voltage reveals a fruitful but challenging engineering tenet to address this long-standing problem by keeping a large voltage window in the compositionally/structurally fine-tuned electrode/electrolyte systems. Inspired by this, a facile salt-templating enables hierarchically porous biochars for supercapacitors filled by the high-voltage ionic liquids (ILs). Resultant nanostructures possess a coh
APA, Harvard, Vancouver, ISO, and other styles
6

Ait Abdelouhab, Z., D. Djouadi, A. Chelouche, L. Hammiche, and T. Touam. "Structural and morphological characterizations of pure and Ce-doped ZnO nanorods hydrothermally synthesized with different caustic bases." Materials Science-Poland 38, no. 2 (2020): 228–35. http://dx.doi.org/10.2478/msp-2020-0038.

Full text
Abstract:
AbstractThis investigation concerns the synthesis as well as structural and morphological characterizations of pure and Ce-doped ZnO nanorods. The samples were synthesized by simple low-temperature hydrothermal process using respectively NaOH and KOH as caustic bases. The as-synthesized nanorods were characterized in terms of their morphological, structural, compositional and vibrational properties. The sizes of the rods were found to be 1.5 μm to 2 μm in length and 250 nm to 300 nm in diameter. The presence of Ce ions in ZnO (NaOH) favored the agglomeration of the rods to form flower-like nan
APA, Harvard, Vancouver, ISO, and other styles
7

Atwater, Harry A., Stefan Maier, Albert Polman, Jennifer A. Dionne, and Luke Sweatlock. "The New “p–n Junction”: Plasmonics Enables Photonic Access to the Nanoworld." MRS Bulletin 30, no. 5 (2005): 385–89. http://dx.doi.org/10.1557/mrs2005.277.

Full text
Abstract:
AbstractSince the development of the light microscope in the 16th century, optical device size and performance have been limited by diffraction. Optoelectronic devices of today are much bigger than the smallest electronic devices for this reason. Achieving control of light—material interactions for photonic device applications at the nanoscale requires structures that guide electromagnetic energy with subwavelength-scale mode confinement. By converting the optical mode into nonradiating surface plasmons, electromagnetic energy can be guided in structures with lateral dimensions of less than 10
APA, Harvard, Vancouver, ISO, and other styles
8

Vu, Xuan Hong, Yann Malecot, Laurent Daudeville, and Eric Buzaud. "Comportement du béton sous fort confinement." European Journal of Environmental and Civil Engineering 12, no. 4 (2008): 429–57. http://dx.doi.org/10.1080/19648189.2008.9693022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gawełczyk, M. "Excitons in Asymmetric Nanostructures: Confinement Regime." Acta Physica Polonica A 134, no. 4 (2018): 930–33. http://dx.doi.org/10.12693/aphyspola.134.930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pashchenko, A. G. "Quantum Confinements of Particles in Nanostructure with a Complex Form Energy Profile." Telecommunications and Radio Engineering 68, no. 7 (2009): 621–26. http://dx.doi.org/10.1615/telecomradeng.v68.i7.80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bruynseraede, Y., M. Baert, M. J. Van Bael, et al. "Quantization and confinement effects in superconducting nanostructures." Nanostructured Materials 9, no. 1-8 (1997): 463–66. http://dx.doi.org/10.1016/s0965-9773(97)00101-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Savaidis, S. P., and N. A. Stathopoulos. "Optical confinement in nonlinear low index nanostructures." Journal of Modern Optics 54, no. 18 (2007): 2699–722. http://dx.doi.org/10.1080/09500340701197366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Barbagiovanni, E. G., D. J. Lockwood, P. J. Simpson, and L. V. Goncharova. "Quantum confinement in Si and Ge nanostructures." Journal of Applied Physics 111, no. 3 (2012): 034307. http://dx.doi.org/10.1063/1.3680884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kumar, Rajesh, and A. K. Shukla. "Temperature dependent phonon confinement in silicon nanostructures." Physics Letters A 373, no. 1 (2008): 133–35. http://dx.doi.org/10.1016/j.physleta.2008.10.090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ayad, Marina A., Salah S. A. Obayya, and Mohamed A. Swillam. "Modelling of quantum confinement in optical nanostructures." Journal of Optics 18, no. 1 (2015): 015201. http://dx.doi.org/10.1088/2040-8978/18/1/015201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Veuillen, J.-Y., P. Mallet, L. Magaud, and S. Pons. "Electron confinement effects on Ni-based nanostructures." Journal of Physics: Condensed Matter 15, no. 34 (2003): S2547—S2574. http://dx.doi.org/10.1088/0953-8984/15/34/306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Cupo, Andrew, and Vincent Meunier. "Quantum confinement in black phosphorus-based nanostructures." Journal of Physics: Condensed Matter 29, no. 28 (2017): 283001. http://dx.doi.org/10.1088/1361-648x/aa748c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Moshchalkov, V. V., M. Baert, V. V. Metlushko, et al. "Quantization and confinement effects in superconducting nanostructures." Superlattices and Microstructures 19, no. 3 (1996): 183–90. http://dx.doi.org/10.1006/spmi.1996.0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

McDonald, Calum, Chengsheng Ni, Paul Maguire, et al. "Nanostructured Perovskite Solar Cells." Nanomaterials 9, no. 10 (2019): 1481. http://dx.doi.org/10.3390/nano9101481.

Full text
Abstract:
Over the past decade, lead halide perovskites have emerged as one of the leading photovoltaic materials due to their long carrier lifetimes, high absorption coefficients, high tolerance to defects, and facile processing methods. With a bandgap of ~1.6 eV, lead halide perovskite solar cells have achieved power conversion efficiencies in excess of 25%. Despite this, poor material stability along with lead contamination remains a significant barrier to commercialization. Recently, low-dimensional perovskites, where at least one of the structural dimensions is measured on the nanoscale, have demon
APA, Harvard, Vancouver, ISO, and other styles
20

Kuntová, Z., M. C. Tringides, S. M. Binz, M. Hupalo, and Z. Chvoj. "Controlling nucleation rates in nanostructures with electron confinement." Surface Science 604, no. 5-6 (2010): 519–22. http://dx.doi.org/10.1016/j.susc.2009.12.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Movlarooy, Tayebeh. "Study of quantum confinement effects in ZnO nanostructures." Materials Research Express 5, no. 3 (2018): 035032. http://dx.doi.org/10.1088/2053-1591/aab389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vu, Xuan Hong, Yann Malecot, Laurent Daudeville, and Eric Buzaud. "Comportement du béton sous fort confinement. Effet du rapport eau/ciment." Revue européenne de génie civil 12, no. 4 (2008): 429–57. http://dx.doi.org/10.3166/ejece.12.429-457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

OANH, NGUYEN THI VAN, and NGUYEN AI VIET. "SIMPLE QUANTUM CONFINEMENT THEORY FOR EXCITON IN INDIRECT GAP NANOSTRUCTURES." International Journal of Modern Physics B 14, no. 15 (2000): 1559–66. http://dx.doi.org/10.1142/s0217979200001564.

Full text
Abstract:
We propose in this work a simple quantum confinement theory for excitons based on the effective mass approximation, for investigation of optical properties of indirect gap nanostructures. We show that using this simple model, we can get the analytic solutions and reobtain the main tight-binding approximation numerical results of Hill et al.1 for silicon nanostructures: blue shift of band gap and increase overlap between the states at the band edges when the nanostructures size in decreased.
APA, Harvard, Vancouver, ISO, and other styles
24

Cocoletzi, Gregorio H., and W. Luis Mochán. "Excitons: from excitations at surfaces to confinement in nanostructures." Surface Science Reports 57, no. 1-2 (2005): 1–58. http://dx.doi.org/10.1016/j.surfrep.2004.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cipriano, Luis A., Giovanni Di Liberto, Sergio Tosoni, and Gianfranco Pacchioni. "Quantum confinement in group III–V semiconductor 2D nanostructures." Nanoscale 12, no. 33 (2020): 17494–501. http://dx.doi.org/10.1039/d0nr03577g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Stornaiuolo, D., S. Gariglio, N. J. G. Couto, et al. "In-plane electronic confinement in superconducting LaAlO3/SrTiO3 nanostructures." Applied Physics Letters 101, no. 22 (2012): 222601. http://dx.doi.org/10.1063/1.4768936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Oka, Hirofumi, Oleg O. Brovko, Marco Corbetta, Valeri S. Stepanyuk, Dirk Sander, and Jürgen Kirschner. "Spin-polarized quantum confinement in nanostructures: Scanning tunneling microscopy." Reviews of Modern Physics 86, no. 4 (2014): 1127–68. http://dx.doi.org/10.1103/revmodphys.86.1127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Luscombe, James H., and Marshall Luban. "Lateral confinement in quantum nanostructures: Self‐consistent screening potentials." Applied Physics Letters 57, no. 1 (1990): 61–63. http://dx.doi.org/10.1063/1.103578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kanemitsu, Y., S. Nihonyanagi, Y. Fukunishi, and T. Kushida. "Quantum Confinement of Localized Excitons in Amorphous Silicon Nanostructures." physica status solidi (a) 190, no. 3 (2002): 769–73. http://dx.doi.org/10.1002/1521-396x(200204)190:3<769::aid-pssa769>3.0.co;2-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kumar, V., K. Saxena, and A. K. Shukla. "Size‐dependent photoluminescence in silicon nanostructures: quantum confinement effect." Micro & Nano Letters 8, no. 6 (2013): 311–14. http://dx.doi.org/10.1049/mnl.2012.0910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wehrspohn, R. B., J. N. Chazalviel, F. Ozanam, and I. Solomon. "Spatial versus quantum confinement in porous amorphous silicon nanostructures." European Physical Journal B 8, no. 2 (1999): 179–93. http://dx.doi.org/10.1007/s100510050681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zabara, Mahsa, Linda Hong, and Stefan Salentinig. "Design and Characterization of Bio-inspired Antimicrobial Nanomaterials." CHIMIA International Journal for Chemistry 74, no. 9 (2020): 674–80. http://dx.doi.org/10.2533/chimia.2020.674.

Full text
Abstract:
Colloidal structures are crucial components in biological systems and provide a vivid and seemingly infinite source of inspiration for the design of functional bio-inspired materials. They form multi-dimensional confinements and shape living matter, and transport and protect bioactive molecules in harsh biological environments such as the stomach. Recently, colloidal nanostructures based on natural antimicrobial peptides have emerged as promising alternatives to conventional antibiotics. This contribution summarizes the recent progress in the understanding and design of these bio-inspired anti
APA, Harvard, Vancouver, ISO, and other styles
33

Goldoni, G., F. Rossi, A. Orlandi, M. Rontani, F. Manghi, and E. Molinari. "Enhancement of Coulomb interactions in semiconductor nanostructures by dielectric confinement." Physica E: Low-dimensional Systems and Nanostructures 6, no. 1-4 (2000): 482–85. http://dx.doi.org/10.1016/s1386-9477(99)00218-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Guo, Dong, Fei Zeng, and Brahim Dkhil. "Ferroelectric Polymer Nanostructures: Fabrication, Structural Characteristics and Performance Under Confinement." Journal of Nanoscience and Nanotechnology 14, no. 2 (2014): 2086–100. http://dx.doi.org/10.1166/jnn.2014.9272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wei-Qi, Huang, and Liu Shi-Rong. "Quantum confinement analysis of nanostructures in oxidation of SiGe alloys." Chinese Physics 13, no. 7 (2004): 1163–66. http://dx.doi.org/10.1088/1009-1963/13/7/035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Dong, Kaichen, Yang Deng, Xi Wang, Kyle B. Tom, Zheng You, and Jie Yao. "Subwavelength light confinement and enhancement enabled by dissipative dielectric nanostructures." Optics Letters 43, no. 8 (2018): 1826. http://dx.doi.org/10.1364/ol.43.001826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Barbagiovanni, Eric G., David J. Lockwood, Peter J. Simpson, and Lyudmila V. Goncharova. "Quantum confinement in Si and Ge nanostructures: Theory and experiment." Applied Physics Reviews 1, no. 1 (2014): 011302. http://dx.doi.org/10.1063/1.4835095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Rodina, A. V., and Al L. Efros. "Effect of dielectric confinement on optical properties of colloidal nanostructures." Journal of Experimental and Theoretical Physics 122, no. 3 (2016): 554–66. http://dx.doi.org/10.1134/s1063776116030183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zacharias, M., J. Heitmann, M. Schmidt, and P. Streitenberger. "Confinement effects in crystallization and Er doping of Si nanostructures." Physica E: Low-dimensional Systems and Nanostructures 11, no. 2-3 (2001): 245–51. http://dx.doi.org/10.1016/s1386-9477(01)00212-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chilcote, Michael, Megan Harberts, Bodo Fuhrmann, et al. "Spin-wave confinement and coupling in organic-based magnetic nanostructures." APL Materials 7, no. 11 (2019): 111108. http://dx.doi.org/10.1063/1.5119077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Luscombe, James H., Ann M. Bouchard, and Marshall Luban. "Electron confinement in quantum nanostructures: Self-consistent Poisson-Schrödinger theory." Physical Review B 46, no. 16 (1992): 10262–68. http://dx.doi.org/10.1103/physrevb.46.10262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gentile, M. J., S. Núñez-Sánchez, and W. L. Barnes. "Optical Field-Enhancement and Subwavelength Field-Confinement Using Excitonic Nanostructures." Nano Letters 14, no. 5 (2014): 2339–44. http://dx.doi.org/10.1021/nl404712t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Calzia, V., G. Malloci, G. Bongiovanni, and A. Mattoni. "Electronic Properties and Quantum Confinement in Bi2S3 Ribbon-Like Nanostructures." Journal of Physical Chemistry C 117, no. 42 (2013): 21923–29. http://dx.doi.org/10.1021/jp405740b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ghanta, Ujjwal, Mallar Ray, Susmita Biswas, et al. "Effect of phonon confinement on photoluminescence from colloidal silicon nanostructures." Journal of Luminescence 201 (September 2018): 338–44. http://dx.doi.org/10.1016/j.jlumin.2018.04.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sun, Wenzhao, Zhiyuan Gu, Shumin Xiao, and Qinghai Song. "Three-dimensional light confinement in a PT-symmetric nanocavity." RSC Advances 6, no. 7 (2016): 5792–96. http://dx.doi.org/10.1039/c5ra27384f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Deb, Sujata, P. K. Kalita, and P. Datta. "Opto-Electronic Properties of Green Synthesized ZnS Nanostructures." International Journal of Nanoscience 17, no. 04 (2018): 1760032. http://dx.doi.org/10.1142/s0219581x17600328.

Full text
Abstract:
ZnS nanostructures are synthesized by a wet chemical route using starch as green capping agent under nitrogen environment. The as-prepared nanostructures are characterized structurally, optically and electrically. X-ray diffraction (XRD) spectra confirm that the zinc sulfide (ZnS) nanoparticles have cubic phase (zinc blende). UV–Vis spectrum of the sample clearly shows that the absorption peak exhibits blue shift compared to their bulk counterpart, which confirms the quantum confinement effect of the nanostructures. Its photoluminescence (PL) spectrum shows near band gap emission at 392[Formul
APA, Harvard, Vancouver, ISO, and other styles
47

Kim, Jongseob, and Ki-Ha Hong. "Retarded dopant diffusion by moderated dopant–dopant interactions in Si nanowires." Physical Chemistry Chemical Physics 17, no. 3 (2015): 1575–79. http://dx.doi.org/10.1039/c4cp04513k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yan, Nan, Xuejie Liu, Yan Zhang, Nan Sun, Wei Jiang, and Yutian Zhu. "Confined co-assembly of AB/BC diblock copolymer blends under 3D soft confinement." Soft Matter 14, no. 23 (2018): 4679–86. http://dx.doi.org/10.1039/c8sm00486b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Tripathi, S., R. Brajpuriya, A. Sharma, et al. "Thickness Dependent Structural, Electronic, and Optical Properties of Ge Nanostructures." Journal of Nanoscience and Nanotechnology 8, no. 6 (2008): 2955–63. http://dx.doi.org/10.1166/jnn.2008.151.

Full text
Abstract:
In the present paper, we have investigated structural, optical as well as electronic properties of electron beam evaporated Ge thin films having layer thicknesses ranging from ultra-thin (5 nm) to thick (200 nm). The Raman spectra show that all peaks are shifted towards lower wave number as compared to their bulk counterparts and are considered as a signature of nanostructure formation and quantum confinement effect. The Raman line exhibits transformation from nanocrystalline to microcrystalline phase with a reduction in blue shift of peak position with increase in Ge film thickness (&gt;5 nm)
APA, Harvard, Vancouver, ISO, and other styles
50

Quan, Jun, Ying Tian, and Le Xi Shao. "Study on the Spread of the Energy Gap in Nanostructure System." Advanced Materials Research 194-196 (February 2011): 436–41. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.436.

Full text
Abstract:
We present a discussion of the size-, potential-dependence of the confinement energy in the nanostructure, as well the blue shift due to quantum confinement effect. In this case, we solve the Schrödinger equation by employing two simple models with one-dimensional periodic crystal potential. Results show that the confinement energy increases abruptly as the size of nanostructures decreases. Importantly, the confinement energy no longer strictly follows the size-dependent inverse square formula given by Brus. Furthermore, the band gap and blue shift depend on the crystal potential in the nanost
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!