Journal articles on the topic 'Nanostructures à fort confinement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanostructures à fort confinement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hasapis, Th C., S. N. Girard, Euripides Hatzikraniotis, Konstantinos M. Paraskevopoulos, and M. G. Kanatzidis. "On the Study of PbTe-Based Nanocomposite Thermoelectric Materials." Journal of Nano Research 17 (February 2012): 165–74. http://dx.doi.org/10.4028/www.scientific.net/jnanor.17.165.
Full textBalasubramanian, Prabhu, Jerrold A. Floro, Jennifer L. Gray, and Robert Hull. "Nano-scale Chemistry of Complex Self-Assembled Nanostructures in Epitaxial SiGe Films." MRS Proceedings 1551 (2013): 75–80. http://dx.doi.org/10.1557/opl.2013.1019.
Full textWu, Ji, Zhihong Huang, Wenchang Lang, Xianghong Wang, and Shiben Li. "Surface-Induced Nanostructures and Phase Diagrams of ABC Linear Triblock Copolymers under Spherical Confinement: A Self-Consistent Field Theory Simulation." Polymers 10, no. 11 (2018): 1276. http://dx.doi.org/10.3390/polym10111276.
Full textSathyamoorthy, R., P. Sudhagar, S. Chandramohan, and U. Pal. "Size Effect on the Physical Properties of CdS Thin Films Prepared by Integrated Physical-Chemical Approach." Journal of Nanoscience and Nanotechnology 8, no. 12 (2008): 6481–86. http://dx.doi.org/10.1166/jnn.2008.18411.
Full textDeng, Jie, Jing Li, Zhe Xiao, Shuang Song, and Luming Li. "Studies on Possible Ion-Confinement in Nanopore for Enhanced Supercapacitor Performance in 4V EMIBF4 Ionic Liquids." Nanomaterials 9, no. 12 (2019): 1664. http://dx.doi.org/10.3390/nano9121664.
Full textAit Abdelouhab, Z., D. Djouadi, A. Chelouche, L. Hammiche, and T. Touam. "Structural and morphological characterizations of pure and Ce-doped ZnO nanorods hydrothermally synthesized with different caustic bases." Materials Science-Poland 38, no. 2 (2020): 228–35. http://dx.doi.org/10.2478/msp-2020-0038.
Full textAtwater, Harry A., Stefan Maier, Albert Polman, Jennifer A. Dionne, and Luke Sweatlock. "The New “p–n Junction”: Plasmonics Enables Photonic Access to the Nanoworld." MRS Bulletin 30, no. 5 (2005): 385–89. http://dx.doi.org/10.1557/mrs2005.277.
Full textVu, Xuan Hong, Yann Malecot, Laurent Daudeville, and Eric Buzaud. "Comportement du béton sous fort confinement." European Journal of Environmental and Civil Engineering 12, no. 4 (2008): 429–57. http://dx.doi.org/10.1080/19648189.2008.9693022.
Full textGawełczyk, M. "Excitons in Asymmetric Nanostructures: Confinement Regime." Acta Physica Polonica A 134, no. 4 (2018): 930–33. http://dx.doi.org/10.12693/aphyspola.134.930.
Full textPashchenko, A. G. "Quantum Confinements of Particles in Nanostructure with a Complex Form Energy Profile." Telecommunications and Radio Engineering 68, no. 7 (2009): 621–26. http://dx.doi.org/10.1615/telecomradeng.v68.i7.80.
Full textBruynseraede, Y., M. Baert, M. J. Van Bael, et al. "Quantization and confinement effects in superconducting nanostructures." Nanostructured Materials 9, no. 1-8 (1997): 463–66. http://dx.doi.org/10.1016/s0965-9773(97)00101-3.
Full textSavaidis, S. P., and N. A. Stathopoulos. "Optical confinement in nonlinear low index nanostructures." Journal of Modern Optics 54, no. 18 (2007): 2699–722. http://dx.doi.org/10.1080/09500340701197366.
Full textBarbagiovanni, E. G., D. J. Lockwood, P. J. Simpson, and L. V. Goncharova. "Quantum confinement in Si and Ge nanostructures." Journal of Applied Physics 111, no. 3 (2012): 034307. http://dx.doi.org/10.1063/1.3680884.
Full textKumar, Rajesh, and A. K. Shukla. "Temperature dependent phonon confinement in silicon nanostructures." Physics Letters A 373, no. 1 (2008): 133–35. http://dx.doi.org/10.1016/j.physleta.2008.10.090.
Full textAyad, Marina A., Salah S. A. Obayya, and Mohamed A. Swillam. "Modelling of quantum confinement in optical nanostructures." Journal of Optics 18, no. 1 (2015): 015201. http://dx.doi.org/10.1088/2040-8978/18/1/015201.
Full textVeuillen, J.-Y., P. Mallet, L. Magaud, and S. Pons. "Electron confinement effects on Ni-based nanostructures." Journal of Physics: Condensed Matter 15, no. 34 (2003): S2547—S2574. http://dx.doi.org/10.1088/0953-8984/15/34/306.
Full textCupo, Andrew, and Vincent Meunier. "Quantum confinement in black phosphorus-based nanostructures." Journal of Physics: Condensed Matter 29, no. 28 (2017): 283001. http://dx.doi.org/10.1088/1361-648x/aa748c.
Full textMoshchalkov, V. V., M. Baert, V. V. Metlushko, et al. "Quantization and confinement effects in superconducting nanostructures." Superlattices and Microstructures 19, no. 3 (1996): 183–90. http://dx.doi.org/10.1006/spmi.1996.0021.
Full textMcDonald, Calum, Chengsheng Ni, Paul Maguire, et al. "Nanostructured Perovskite Solar Cells." Nanomaterials 9, no. 10 (2019): 1481. http://dx.doi.org/10.3390/nano9101481.
Full textKuntová, Z., M. C. Tringides, S. M. Binz, M. Hupalo, and Z. Chvoj. "Controlling nucleation rates in nanostructures with electron confinement." Surface Science 604, no. 5-6 (2010): 519–22. http://dx.doi.org/10.1016/j.susc.2009.12.015.
Full textMovlarooy, Tayebeh. "Study of quantum confinement effects in ZnO nanostructures." Materials Research Express 5, no. 3 (2018): 035032. http://dx.doi.org/10.1088/2053-1591/aab389.
Full textVu, Xuan Hong, Yann Malecot, Laurent Daudeville, and Eric Buzaud. "Comportement du béton sous fort confinement. Effet du rapport eau/ciment." Revue européenne de génie civil 12, no. 4 (2008): 429–57. http://dx.doi.org/10.3166/ejece.12.429-457.
Full textOANH, NGUYEN THI VAN, and NGUYEN AI VIET. "SIMPLE QUANTUM CONFINEMENT THEORY FOR EXCITON IN INDIRECT GAP NANOSTRUCTURES." International Journal of Modern Physics B 14, no. 15 (2000): 1559–66. http://dx.doi.org/10.1142/s0217979200001564.
Full textCocoletzi, Gregorio H., and W. Luis Mochán. "Excitons: from excitations at surfaces to confinement in nanostructures." Surface Science Reports 57, no. 1-2 (2005): 1–58. http://dx.doi.org/10.1016/j.surfrep.2004.12.001.
Full textCipriano, Luis A., Giovanni Di Liberto, Sergio Tosoni, and Gianfranco Pacchioni. "Quantum confinement in group III–V semiconductor 2D nanostructures." Nanoscale 12, no. 33 (2020): 17494–501. http://dx.doi.org/10.1039/d0nr03577g.
Full textStornaiuolo, D., S. Gariglio, N. J. G. Couto, et al. "In-plane electronic confinement in superconducting LaAlO3/SrTiO3 nanostructures." Applied Physics Letters 101, no. 22 (2012): 222601. http://dx.doi.org/10.1063/1.4768936.
Full textOka, Hirofumi, Oleg O. Brovko, Marco Corbetta, Valeri S. Stepanyuk, Dirk Sander, and Jürgen Kirschner. "Spin-polarized quantum confinement in nanostructures: Scanning tunneling microscopy." Reviews of Modern Physics 86, no. 4 (2014): 1127–68. http://dx.doi.org/10.1103/revmodphys.86.1127.
Full textLuscombe, James H., and Marshall Luban. "Lateral confinement in quantum nanostructures: Self‐consistent screening potentials." Applied Physics Letters 57, no. 1 (1990): 61–63. http://dx.doi.org/10.1063/1.103578.
Full textKanemitsu, Y., S. Nihonyanagi, Y. Fukunishi, and T. Kushida. "Quantum Confinement of Localized Excitons in Amorphous Silicon Nanostructures." physica status solidi (a) 190, no. 3 (2002): 769–73. http://dx.doi.org/10.1002/1521-396x(200204)190:3<769::aid-pssa769>3.0.co;2-k.
Full textKumar, V., K. Saxena, and A. K. Shukla. "Size‐dependent photoluminescence in silicon nanostructures: quantum confinement effect." Micro & Nano Letters 8, no. 6 (2013): 311–14. http://dx.doi.org/10.1049/mnl.2012.0910.
Full textWehrspohn, R. B., J. N. Chazalviel, F. Ozanam, and I. Solomon. "Spatial versus quantum confinement in porous amorphous silicon nanostructures." European Physical Journal B 8, no. 2 (1999): 179–93. http://dx.doi.org/10.1007/s100510050681.
Full textZabara, Mahsa, Linda Hong, and Stefan Salentinig. "Design and Characterization of Bio-inspired Antimicrobial Nanomaterials." CHIMIA International Journal for Chemistry 74, no. 9 (2020): 674–80. http://dx.doi.org/10.2533/chimia.2020.674.
Full textGoldoni, G., F. Rossi, A. Orlandi, M. Rontani, F. Manghi, and E. Molinari. "Enhancement of Coulomb interactions in semiconductor nanostructures by dielectric confinement." Physica E: Low-dimensional Systems and Nanostructures 6, no. 1-4 (2000): 482–85. http://dx.doi.org/10.1016/s1386-9477(99)00218-0.
Full textGuo, Dong, Fei Zeng, and Brahim Dkhil. "Ferroelectric Polymer Nanostructures: Fabrication, Structural Characteristics and Performance Under Confinement." Journal of Nanoscience and Nanotechnology 14, no. 2 (2014): 2086–100. http://dx.doi.org/10.1166/jnn.2014.9272.
Full textWei-Qi, Huang, and Liu Shi-Rong. "Quantum confinement analysis of nanostructures in oxidation of SiGe alloys." Chinese Physics 13, no. 7 (2004): 1163–66. http://dx.doi.org/10.1088/1009-1963/13/7/035.
Full textDong, Kaichen, Yang Deng, Xi Wang, Kyle B. Tom, Zheng You, and Jie Yao. "Subwavelength light confinement and enhancement enabled by dissipative dielectric nanostructures." Optics Letters 43, no. 8 (2018): 1826. http://dx.doi.org/10.1364/ol.43.001826.
Full textBarbagiovanni, Eric G., David J. Lockwood, Peter J. Simpson, and Lyudmila V. Goncharova. "Quantum confinement in Si and Ge nanostructures: Theory and experiment." Applied Physics Reviews 1, no. 1 (2014): 011302. http://dx.doi.org/10.1063/1.4835095.
Full textRodina, A. V., and Al L. Efros. "Effect of dielectric confinement on optical properties of colloidal nanostructures." Journal of Experimental and Theoretical Physics 122, no. 3 (2016): 554–66. http://dx.doi.org/10.1134/s1063776116030183.
Full textZacharias, M., J. Heitmann, M. Schmidt, and P. Streitenberger. "Confinement effects in crystallization and Er doping of Si nanostructures." Physica E: Low-dimensional Systems and Nanostructures 11, no. 2-3 (2001): 245–51. http://dx.doi.org/10.1016/s1386-9477(01)00212-0.
Full textChilcote, Michael, Megan Harberts, Bodo Fuhrmann, et al. "Spin-wave confinement and coupling in organic-based magnetic nanostructures." APL Materials 7, no. 11 (2019): 111108. http://dx.doi.org/10.1063/1.5119077.
Full textLuscombe, James H., Ann M. Bouchard, and Marshall Luban. "Electron confinement in quantum nanostructures: Self-consistent Poisson-Schrödinger theory." Physical Review B 46, no. 16 (1992): 10262–68. http://dx.doi.org/10.1103/physrevb.46.10262.
Full textGentile, M. J., S. Núñez-Sánchez, and W. L. Barnes. "Optical Field-Enhancement and Subwavelength Field-Confinement Using Excitonic Nanostructures." Nano Letters 14, no. 5 (2014): 2339–44. http://dx.doi.org/10.1021/nl404712t.
Full textCalzia, V., G. Malloci, G. Bongiovanni, and A. Mattoni. "Electronic Properties and Quantum Confinement in Bi2S3 Ribbon-Like Nanostructures." Journal of Physical Chemistry C 117, no. 42 (2013): 21923–29. http://dx.doi.org/10.1021/jp405740b.
Full textGhanta, Ujjwal, Mallar Ray, Susmita Biswas, et al. "Effect of phonon confinement on photoluminescence from colloidal silicon nanostructures." Journal of Luminescence 201 (September 2018): 338–44. http://dx.doi.org/10.1016/j.jlumin.2018.04.052.
Full textSun, Wenzhao, Zhiyuan Gu, Shumin Xiao, and Qinghai Song. "Three-dimensional light confinement in a PT-symmetric nanocavity." RSC Advances 6, no. 7 (2016): 5792–96. http://dx.doi.org/10.1039/c5ra27384f.
Full textDeb, Sujata, P. K. Kalita, and P. Datta. "Opto-Electronic Properties of Green Synthesized ZnS Nanostructures." International Journal of Nanoscience 17, no. 04 (2018): 1760032. http://dx.doi.org/10.1142/s0219581x17600328.
Full textKim, Jongseob, and Ki-Ha Hong. "Retarded dopant diffusion by moderated dopant–dopant interactions in Si nanowires." Physical Chemistry Chemical Physics 17, no. 3 (2015): 1575–79. http://dx.doi.org/10.1039/c4cp04513k.
Full textYan, Nan, Xuejie Liu, Yan Zhang, Nan Sun, Wei Jiang, and Yutian Zhu. "Confined co-assembly of AB/BC diblock copolymer blends under 3D soft confinement." Soft Matter 14, no. 23 (2018): 4679–86. http://dx.doi.org/10.1039/c8sm00486b.
Full textTripathi, S., R. Brajpuriya, A. Sharma, et al. "Thickness Dependent Structural, Electronic, and Optical Properties of Ge Nanostructures." Journal of Nanoscience and Nanotechnology 8, no. 6 (2008): 2955–63. http://dx.doi.org/10.1166/jnn.2008.151.
Full textQuan, Jun, Ying Tian, and Le Xi Shao. "Study on the Spread of the Energy Gap in Nanostructure System." Advanced Materials Research 194-196 (February 2011): 436–41. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.436.
Full text