Contents
Academic literature on the topic 'Nanostructures – Oxydation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanostructures – Oxydation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Nanostructures – Oxydation"
Floresyona, Dita. "Synthèse des nanostructures métalliques et de polymères dans des mésophases hexagonales pour des applications en piles à combustible et le traitement de l'eau." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS206/document.
Full textSoft hexagonal mesophases, which consist of quaternary systems (surfactants, brine, oil, and co-surfactant) are used as templates for the synthesis of different nanomaterials such as metal nanostructures, conjugated polymer nanostructures, and metal-polymer nanocomposites. Unlike hard templates, which need a harsh chemical reagent to extract nanomaterials after the synthesis, in soft template hexagonal mesophases, the extraction process of nanomaterials is simple, only by washing with ethanol or 2-propanol. Another interesting property of this class of template lies on its ability to be swollen by controlling the ratio of oil to water.This thesis is divided into three parts: 1) Radiolytic synthesis of metal nanostructures in the aqueous phase of hexagonal mesophases and their application in fuel cells (ethanol oxidation), 2) Synthesis of conjugated polymer nanostructures in the oil phase of hexagonal mesophases for photocatalytic degradation of pollutants, 3) Combined synthesis in the oil and water phases of hexagonal mesophases of metal-polymer nanocomposites.Several metal nanostructures such as PdPt nanoballs with controlled composition and porosity, AuPd and AuPt core shell, bimetallic PtNi and trimetallic AuPdPt porous nanoballs were synthesized by radiolysis in the aqueous phase of hexagonal mesophases. PdPt nanoballs with controlled porosity and composition were used as electrocatalysts for ethanol oxidation. The effect of the pore size on their electro active surface and their electrocatalytic activity towards ethanol oxidation were studied. AuPd and AuPt core-shell, and trimetallic AuPdPt porous nanoballs were used for ethanol and glucose oxidation. PtNi porous nanoballs were used for H2 evolution and oxygen reduction reaction. Conjugated polymer nanostructures namely P3HT (poly(3-hexylthiophene)) were synthesized in the oil phase of hexagonal mesophases. These polymer nanostructures are highly active for photocatalysis under UV and visible light. Phenol and rhodamine B were used as model pollutants. These photocatalysts are very stable even after repeated cycling. Addition of scavengers and mechanistic studies show that O2.− is the main radical responsible for degradation of phenol. Most interestingly, the photocatalytic activity of these P3HT nanostructures is highly enhanced when they are supported on a solid surface opening new perspectives in photocatalytic reactors and self-cleaning surfaces. Premiminary results on the synthesis of Pt-PDPB (polydiphenylbutadiyne) nanocomposites are also presented in this thesis
Salou, Laëtitia. "New bioactive surfaces for titanium implants : Research, characterisation and industrial development." Nantes, 2015. https://archive.bu.univ-nantes.fr/pollux/show/show?id=ac38020b-e6ab-4197-a22a-9e712c35762c.
Full textBiocompatible et résistant à la corrosion des fluides biologiques, le titane reste cependant un matériau inerte : il ne favorise pas de manière active l'intégration osseuse autour de l'implant. La modification de surface du titane à l'échelle nanométrique permet de moduler l'expression des gènes favorisant l'adhésion et la différentiation cellulaire par un mécanisme de mécanotransduction. Dans ces travaux de thèse, nous nous sommes donc attachés développer, caractériser et appliquer une surface nanostructurée directement sur des dispositifs médicaux. Dans un premier temps, notre étude s'est concentrée sur la préparation et la caractérisation physicochimique. Après l'obtention de surface reproductible sur petits échantillons, nos recherches se sont axées sur la caractérisation biologique de la surface. Des études invivo réalisées chez le lapin ont permis de montrer une accroche osseuse renforcée et bonne ostéointégration de la surface nanostructurée en comparaison avec des surfaces couramment utilisées sur le marché. L'application de cette nouvelle surface sur pièce plus complexe comme les prothèses de trachée, nous a permis de rendre compte d'un phénomène de délamination de la couche de nanostructure. Nos recherches se sont donc orientées vers la problématique de tenue mécanique de la surface avec la réalisation de nano scratch-test et tribologie. Un sujet dans l'air du temps, puisqu'une nouvelle règlementation européenne concernant l'incorporation de nanomatériaux dans les dispositifs médicaux rentrera en vigueur en 2017. En conclusion, ces travaux nous permettent de proposer une nouvelle surface améliorant l'intégration tissulaire intéressante pour une application médicale
Stanescu, Stefan. "Structure and morphology of NiO / Cu(111) and NiO / FeNi / Cu(111) ultra-thin layers and nanostructures." Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13099.
Full textThe very first stages of the growth of NiO/Cu(111) interface, were characterized on a microscopic scale including chemical, morphological, and structural aspects. Different elaboration procedures were used and we combined in-situ laboratory and synchrotron radiation techniques. Complete exchange coupled NiO/FeNi/Cu(111) bilayer system have also been investigated. The metallic Ni/Cu(111) interface has been studied, evidencing the close relationship between morphology, structure and magnetic properties. The reduced spin magnetic moments were correlated with the Ni-Cu 3d hybridization and with the Cu capping. The in-plane orbital moment anisotropy, related with the Ni tetragonalization, confirms that the easy axis of magnetization is in the plane for all measured thin nickel films. Ultra-thin NiO films, obtained through MBE evaporation of NiO nuggets, were grown at room temperature and at 250ʿC. The resulting system can globally be described in terms of a spontaneous NiO/Ni/Cu(111) layering. Confirming the STM real-space observations, GISAXS experiments and calculations allowed evidencing the self-organized nature of the NiO islands obtained at room temperature. Due to the poor oxidizing efficiency of the molecular oxygen, the NiO films deposited from metallic Ni at 250ʿC, exhibit several differences with respect to those obtained by NiO nuggets evaporation at room temperature. A cluster nucleation/aggregation mechanism was proposed, based on the STM observations. Formation of a-Ni2O3 hexagonal phase, or structural distortion of the NiO(111)( )R30ʿ structure could both explain the LEED and GIXD results. Exchange coupled NiO/FeNi/Cu(111) bilayer was elaborated using both, NiO nuggets and metallic Ni in oxygen partial pressure evaporation. Sharp NiO/FeNi interfaces were obtained, with textured NiO. Structural analysis of the NiO films deposited on FeNi/Cu(111) films evidenced twinned NiO(111), in much better epitaxy than the oxides deposited on the Cu(111) substrate
Agache, Vincent. "Intégration, et caractérisation physique de nanostructures pour les technologies de l'information et de la communication : application au filtrage électromécanique dans la gamme des radiofréquences (0,8-2,4 GHz)." Lille 1, 2003. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2003/50376-2003-171.pdf.
Full textPavlova, Anastasia. "Préparation et études des propriétés des films magnétiques nanostructures pour des applications en dispositifs magnéto-acoustiques et spintroniques." Thesis, Ecole centrale de Lille, 2014. http://www.theses.fr/2014ECLI0010/document.
Full textNowadays, structures based on ferromagnetic materials are largely used for different applications: random access magneto-resistive memories, magnetic sensors, and also new electronic components and spintronic devices. The general trend of modern electronic is the reduction of dimensions down to submicronic scales. Therefore, the magnetic nanostructures are of great interest and their methods of fabrication and properties largely studied.The main goal of this work is the preparation and experimental and theoretical research on properties of magnetic nanostructures for applications in magnetoresistive and photonic devices. The Scanning Probe Lithography (SPL) and Electron Beam Lithography (EBL) were used for the nanostructures fabrications. First steps were also achieved in fabrication of phononic cristals sensitive the magnetic field
Vert, Romain. "Elaboration par projection plasma d’un revêtement céramique sur un substrat métallique mince et de faible rugosité : usage d’une sous-couche d’adhérence nanostructuréeCo-encadrée par Erick Meillot et Gilles Mariaux." Limoges, 2011. https://aurore.unilim.fr/theses/nxfile/default/ad42416f-2bf9-4745-8e76-b4c77462f0aa/blobholder:0/2011LIMO4044.pdf.
Full textThe objective of this work is to show the feasibility of manufacturing a thick ceramic coating on a thin metal substrate with a low surface roughness. The system will operate under severe conditions of temperatures (850°C) and mechanical constraints imposed by gas flow at 70 bars. The application lies within the framework of the nuclear reactor Allegro, a gas-cool fast reactor, developped by CEA. The solution suggested is a double-layer deposit made up of a nanostructure layer (approximately 450-μm thick) of the same composition, by conventional plasma spraying. This manuscript presents the methodology of the study and successively deals with the elaboration of the nanostructure layer and that of the double-layer coating. A particular attention was turned to the adhesion of the nanostructured layer, to that of the double-layer coating and to the link between the two layers
Coffin, Hubert. "Etude de l'oxydation de nanocristaux de Si fabriqués par implantation ionique à basse énergie dans des couches minces de SiO2 : application aux mémoires non volatiles à base de nanocristaux." Toulouse 3, 2005. http://www.theses.fr/2005TOU30257.
Full textGherrab, Mehdi. "Étude du carbure de titane nano- et micro-structuré : élaboration et comportement en conditions extrêmes d'irradiation aux ions 40Ar+." Phd thesis, Université Claude Bernard - Lyon I, 2013. http://tel.archives-ouvertes.fr/tel-00958369.
Full textSimões, Mário da Silva Correia. "Développement d'électrocatalyseurs anodiques plurimétalliques nanostructurés pour une application en pile à combustible à membrane alcaline solide (SAMFC)." Poitiers, 2011. http://nuxeo.edel.univ-poitiers.fr/nuxeo/site/esupversions/b019adc2-f6df-4414-a842-7e161cb5227f.
Full textSolid Alkaline Membrane Fuel Cells are feasible alternatives to PEMFCs, allowing a wider choice of catalytic materials and fuels other than hydrogen, like small organic molecules and borohydrides. Several nanocatalysts were synthesized by a colloidal method and their activity and selectivity were studied toward the glycerol and NaBH4 electrooxidation in alkaline medium. Those catalysts are palladium based. Its interaction with Au, Ni and Bi were also evaluated. A Pt/C catalyst was also studied as well as its interaction with bismuth. PdAu/C catalysts presented a higher activity toward the glycerol electrooxidation than monometallic Au/C and Pd/C. This fact is explained by a synergetic effect between both metals that form ordered alloys. A bifunctional mechanism seems more appropriate to explain the increased activity of palladium rich PdNi/C catalysts. PdBi/C and PtBi/C are the most active catalysts for the glycerol oxidation due to adatom and bifunctional effects. The primary alcohol functions of the glycerol molecule are preferentially oxidized on Pd and Pt based catalysts. The production of hydroxypyruvate ion species was evidenced on Au/C catalyst. A mechanism was proposed for the NaBH4 oxidation on palladium, involving hydrolysis, hydrogen and borohydride oxidation steps. Pd0,5Au0,5/C and Pd0,5Ni0,5/C catalyst activities are similar to that of Pd/C. NaBH4 direct oxidation occurs on Pt0,9Bi0,1/C at low potentials without hydrogen evolution. Glycerol oxidation in alkaline fuel cell allows the cogeneration of electricity and high value added chemicals while NaBH4 oxidation allows for high energy and power density systems
Zhang, Feifei. "Fabrication of Aluminium Nanostructure for Visible to Ultraviolet Plasmonics." Thesis, Troyes, 2018. http://www.theses.fr/2018TROY0011.
Full textAluminum (Al) is now widely regarded as one of the most promising metals for pushing the spectral limits of plasmonics towards the ultraviolet range. Additionally, Al is cheap, abundant, non-toxic, and compatible with the complementary metal-oxide-semiconductor technology. In this thesis, we investigate numerically and experimentally the influence of various key parameters on the optical properties of Al nanostructures. Firstly, we study the natural stability of Al nanoparticles, which show about 90-days stability when totally exposed to the ambient air. Secondly, we study the influence of rapid thermal annealing on the plasmonic properties of Al nanostructures. Due to the reduction of the number of grain boundaries inside the metal, an improvement of the plasmonic resonances quality factor is found with annealing at optimal conditions. Thirdly, we unveil the crucial effect of the surface roughness of Al lithographed nanostructures. The surface roughness is found to cause the disappearance of the substrate-induced quadrupolar mode and the weakening of the plasmonic dipolar mode. Finally, we investigate the effect of three kinds of uniform disorder (displacement disorder, size disorder, and rotation disorder) on the plasmonic resonances of Al nanoparticle arrays. The possibility to tune their plasmonic properties in the visible and near ultraviolet range by controlling the disorder is studied