Academic literature on the topic 'Nanostructures.;Photolithography.;Plasmons (Physics)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanostructures.;Photolithography.;Plasmons (Physics).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanostructures.;Photolithography.;Plasmons (Physics)"

1

Dan’ko, V. A., I. Z. Indutnyi, V. I. Mynko, P. M. Lytvyn, M. V. Lukaniuk, H. V. Bandarenka, A. L. Dolgyi, and S. V. Redko. "Formation of laterally ordered arrays of noble metal nanocavities for SERS substrates by using interference photolithography." Semiconductor Physics, Quantum Electronics and Optoelectronics 24, no. 1 (March 9, 2021): 48–55. http://dx.doi.org/10.15407/spqeo24.01.048.

Full text
Abstract:
Using laterally ordered arrays of noble metal nanocavities as SERS substrates has been examined theoretically and experimentally. Simulation of the distribution of the electric field at the surface of nanostructures (nanocavities) has been carried out. The simulation results showed that cavities can be formed not only in a metal layer but in semiconductor or dielectric layers and then covered with a layer of a plasmon-supporting metal (silver or gold) 20…100-nm thick. In our work, chalcogenide glass has been used as a relief-forming layer. This paper presents the results of development and optimization of processes providing formation of SERS substrates as two-dimensional arrays of noble metal nanocavities by using interference photolithography based on a two-layer chalcogenide photoresist. Prototypes of SERS substrates were made as substrates with different spatial frequencies (from 1200 to 800 mm -1 ) and depths of nanocavities (from 250 up to 500 nm). It was shown that the use of such nanocavities with the sizes larger than 500 nm enables to efficiently analyze the structure of macromolecules by using surface- enhanced Raman light scattering spectroscopy, since these macromolecules completely overlap with the regions of enhanced electric field inside the nanocavities. Technology of interference lithography based on two-layer chalcogenide photoresists makes it possible to form effective SERS substrates in the form of laterally ordered arrays of nanocavities with specified morphological characteristics (spatial frequency, nanocavity sizes, composition and thickness of a conformal metal coating) for detecting high-molecular compounds.
APA, Harvard, Vancouver, ISO, and other styles
2

Gervasoni, J. L., S. Segui, and N. Arista. "Collective excitations (plasmons) in solids and nanostructures." Radiation Effects and Defects in Solids 162, no. 3-4 (April 2007): 267–75. http://dx.doi.org/10.1080/10420150601134673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Wei, Dibyendu Dey, Omer G. Memis, Alex Katsnelson, and Hooman Mohseni. "Fabrication of Large Area Periodic Nanostructures Using Nanosphere Photolithography." Nanoscale Research Letters 3, no. 10 (September 9, 2008): 351–54. http://dx.doi.org/10.1007/s11671-008-9164-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mkhitaryan, Vahagn, Katia March, Eric Nestor Tseng, Xiaoyan Li, Leonardo Scarabelli, Luis M. Liz-Marzán, Shih-Yun Chen, et al. "Can Copper Nanostructures Sustain High-Quality Plasmons?" Nano Letters 21, no. 6 (March 2, 2021): 2444–52. http://dx.doi.org/10.1021/acs.nanolett.0c04667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Xiaoguang, Di Xiao, and Zhenyu Zhang. "Landau damping of quantum plasmons in metal nanostructures." New Journal of Physics 15, no. 2 (February 6, 2013): 023011. http://dx.doi.org/10.1088/1367-2630/15/2/023011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yuan, Guanghui, Pei Wang, Yonghua Lu, Yong Cao, Douguo Zhang, Hai Ming, and Wendong Xu. "A large-area photolithography technique based on surface plasmons leakage modes." Optics Communications 281, no. 9 (May 2008): 2680–84. http://dx.doi.org/10.1016/j.optcom.2007.12.072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vlasko-Vlasov, V., A. Rydh, J. Pearson, and U. Welp. "Spectroscopy of surface plasmons in metal films with nanostructures." Applied Physics Letters 88, no. 17 (April 24, 2006): 173112. http://dx.doi.org/10.1063/1.2199460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Word, R. C., T. Dornan, and R. Könenkamp. "Photoemission from localized surface plasmons in fractal metal nanostructures." Applied Physics Letters 96, no. 25 (June 21, 2010): 251110. http://dx.doi.org/10.1063/1.3457921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shu, Xiao-Qin, Xin-Lu Cheng, Tong Liu, and Hong Zhang. "First-principles study of plasmons in doped graphene nanostructures*." Chinese Physics B 30, no. 9 (September 1, 2021): 097301. http://dx.doi.org/10.1088/1674-1056/abe92d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chang, Wei-Lun, Pei-Hsi Tsao, and Pei-Kuen Wei. "Sub-100 nm photolithography using TE-polarized waves in transparent nanostructures." Optics Letters 32, no. 1 (December 13, 2006): 71. http://dx.doi.org/10.1364/ol.32.000071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nanostructures.;Photolithography.;Plasmons (Physics)"

1

Hosseini, Alast Fatemeh. "Active plasmonic nanostructures /Fatemeh Hosseini Alast." HKBU Institutional Repository, 2017. http://repository.hkbu.edu.hk/etd_oa/369.

Full text
Abstract:
In principle, the surface plasmon polaritons, at the planar metal/dielectric interface, cannot be excited by incident light. However momentum transfer from incident light to Surface Plasmon Polaritons (SPPs) inside the light line can be achieved by adding a periodic structure at the interface. The lattice wave vector can compensate the difference between incident light and surface wave momentum and satisfy momentum matching requirement. Two methods are commonly used to achieve this goal: first, using prism and second, surface engineering using different array apertures at the metal/dielectric interfaces. In this thesis, the ruled grating pattern at the metal/dielectric interface using conventional photolithography technique was fabricated. The dimension of ruled grating pattern is proportional to expanding/collimating system in the interference set-up. In fact, a large area grating can be utilized for many optoelectronic applications with greater efficiency. In this work, large area grating pattern, 10×10 mm2, on top of the microcavity structure was integrated that permitting cavity mode-SPP coupling. Hence, Rabi-like splitting was observed from the hybrid plasmonic microcavity. The splitting was created from the coupling of cavity mode with the surface plasmon polariton mode; anti-crossing was observed alongside the modal conversional channel on the reflection light measurement. In following, it was experimentally explored the effect of using organic fluorescent molecules inside the hybrid plasmonic microcavity. Accordingly we integrated large area ruled metal grating onto photonic microcavity and assessed the cavity mode-SPP coupling with reflectivity measurement. We got much more grounded modal coupling in presence of florescent molecules within photonic cavity. The anti-crossing was detected with enormous Rabi-like splitting energy at 280 meV in the strong coupling regime. Besides we compared the coupling strength of plasmonic microcavities with various cavity lengths to explore the absorption impact.
APA, Harvard, Vancouver, ISO, and other styles
2

Cothrel, Helen M. "Photolithography for the Investigation of Nanostructures." Ohio University Honors Tutorial College / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1429719171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jain, Prashant K. "Plasmons in assembled metal nanostructures." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/28207.

Full text
Abstract:
Thesis (M. S.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2008.
Committee Chair: El-Sayed, Mostafa A.; Committee Member: Lyon, L. Andrew; Committee Member: Sherrill, C. David; Committee Member: Wang, Zhong Lin; Committee Member: Whetten, Robert L.
APA, Harvard, Vancouver, ISO, and other styles
4

Chekulaev, Dimitri. "Experimental study of ultrafast carrier dynamics and plasmons in nanostructures." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3306/.

Full text
Abstract:
This thesis is devoted to the experimental investigation of ultrafast dynamics in silicon nanostructures and surface plasmonics by means of femtosecond lasers. First part of the research, ultrafast carriers dynamics in silicon nano-structures, is based on the time-resolved pump-probe reectivity method. A change in the density of excited carriers, as a response to the change of the excitation intensity, was extracted from the time-resolved re ectivity of crystalline nanopillars and nano-inclusions. The measurements were performed mainly in the sub-melting uence regime, at nearly normal incidence to the sample surface plane of the pump and probe beams. Both types of nano-structures have shown strong intensity dependent response comparing to bulk crystalline silicon. This enhanced response is attributed to a suppression of the diffusion processes in nanopillars and nonlinear response due to a constructive multilayer interference between the host matrix material, where silicon inclusions have been embedded, and the sublayers. Electron-phonon and recombination characteristic decay-times are extracted. The second part is devoted to sub-nanosecond decay of photoluminescence from siliconnitride amorphous structures. Particular structures have shown two radiative decay peaks. The second radiative peak is addressed to deep subband tail states, originated by the open bonds of the amorphous structure leading to the long radiative transition. The last part describes femtosecond-resolved plasmon-assisted dissociation of diatomic oxygen molecules in ultrahigh vacuum conditions. Asymmetric gold gratings have been utilised to create enhanced local electric elds originated from the optically excited surface plasmon resonances. Charged products of the dissociation process have been analysed by time-of-light linear drift mass spectrograph, while two-dimensional distribution has been achieved deploying Velocity Map Imaging technique. The dissociation process is found intensity dependent with strong non-linear prole. No correlation has been observed with background plasmon-enhanced electron emission.
APA, Harvard, Vancouver, ISO, and other styles
5

Bai, Fan. "Investigation of optical properties of one-dimensional nanostructures with engineerable heliciity and surface modification." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/437.

Full text
Abstract:
In this work, the optical properties of two kinds of one-dimensional (1D) nanomaterials, mesoporous silicon nanowires (mpSiNWs) and plasmonic nanospirals (NSs), were studied. These emerging nanomaterials are of great interest because of their fundamental structure-derived properties and potential practical applications. Four aspects of these materials were analyzed in this work. First, although the fabrication mechanism of mpSiNWs has been studied previously via metal-assisted chemical etching, the porosification-induced disturbance to the etching direction, which plays a vital role in controlling the surface crystallinity of mpSiNWs, has not been characterized. In Chapter 2, I discuss the porosification etching mechanism of n-Si(111), which proceeds along the intrinsic back bond etching direction of [111] at room temperature. The porosification substantially weakens the back bonds under the sinking particles, resulting in the deviation of etching from [111]. The preferred direction of etching changes to that with a small angle α, because the direction-switching barrier increases with α and intrinsic back-bond etching is thermodynamically preferential. Second, mpSiNWs typically generate red photoluminescence (PL), but the PL mechanism is still under debate. A laser was used to oxidize the surfaces of mpSiNWs and tune the PL from red to greenish-blue (GB), as described in Chapter 3. The laser oxidation was tuned as a function of laser power, and a complex model of the laser-induced surface modification was proposed to account for the laser-power and post-annealing effect. The laser-induced modification of the PL of mpSiNWs may be useful for data encryption. Third, the fabrication of plasmonic NSs and the study of their optical activities are in their infancy. In Chapter 4, I describe the use of glancing-angle deposition (GLAD) to fabricate silver NSs (AgNSs) with controllable helicity and demonstrate that AgNSs have intrinsic optical responses that originate from their structural helicity. The optical activity of an AgNSs dispersion was characterized by circular dichroism (CD), and systematic engineering of the helicity revealed that their UV and visible optical activities have two different origins. Fourth, physical limits prohibit the sensitive differentiation of enantiomers. In Chapter 5, I describe the grafting of chiral molecules onto AgNSs, which dramatically enhanced the differentiation of L- and D-glutathione (GSH). AgNSs have very strong optical activities that are weakened by GSH adsorption. The severity of the chiroptical weakening effect varies with the absolute configuration of GSH, resulting in enantiomeric differentiation with an anisotropic g-factor of approximately 0.5. This chiral nanoplasmon-induced anisotropy g-factor is superior by 2 to 4 orders of magnitude to those obtained with other methods and about one-fourth of the theoretical value. This proposed method can be adapted to differentiate chiral drugs, which is highly desirable in the pharmaceutical industry for the production of single-enantiomer drugs.
APA, Harvard, Vancouver, ISO, and other styles
6

Canneson, Damien. "Modification de l'émission d'un nanocristal semi-conducteur individuel de CdSe-CdS à l'aide de nanostructures métalliques." Phd thesis, Université de Versailles-Saint Quentin en Yvelines, 2013. http://tel.archives-ouvertes.fr/tel-00911775.

Full text
Abstract:
Les nanocristaux semi-conducteurs sont des objets de dimensions nanométriques aux niveaux d'énergie quantifiés. Grâce à leurs propriétés de fluorescence, ils trouvent des applications dans des domaines aussi variés que la biologie, l'opto-électronique ou l'optique quantique. Pour toutes ces applications, un contrôle de leurs propriétés d'émission est primordial. Dans ce cadre, après une étude fine de leurs propriétés d'émission à température cryogénique, nous nous sommes intéressés à leur couplage avec les plasmons de couches d'or désordonnées. Nous montrons alors la possibilité de supprimer efficacement les fluctuations d'intensité d'émission, d'accélérer drastiquement l'émission de photons et de créer des cascades bi-excitoniques.
APA, Harvard, Vancouver, ISO, and other styles
7

Chehadi, Zeinab. "Nanostructures hybrides Au/Semi-conducteur : investigation des effets plasmoniques en catalyse sous lumière visible." Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0016/document.

Full text
Abstract:
Grâce à ses propriétés optiques originales, une NanoParticule d’Or (NPO) excitée peut se comporter comme une nano-source de lumière, de chaleur et d’électrons chauds. Ces propriétés plasmoniques remarquables sont exploitées dans de nombreuses transformations chimiques. Dans ce contexte, la photocatalyse plasmonique basée sur le transfert d’électrons entre une NPO et un semi-conducteur a été proposée. Cependant, peu d’études sont centrées sur l’influence du plasmon et la contribution respective de ses effets locaux (thermiques et électroniques) sur ce transfert utilisé en photocatalyse. Ici, nous abordons ces problématiques à travers 3 réactions catalytiques. Premièrement, nous montrons la faisabilité de l'oxydation efficace et sélective de glycérol sans aucune source externe de chaleur grâce à l’effet thermoplasmonique local de la NPO. Nous étudions ensuite la dégradation de bisphénol-A sur différents supports catalytiques. Nos résultats montrent que la NPO joue un rôle primordial à travers le transfert d’électrons mais aussi en tant que nano-source de chaleur permettant d’accélérer la cinétique et d’éliminer ainsi totalement et rapidement ce perturbateur endocrinien. Enfin, nous avons développé un montage optique pour étudier la dégradation de polluants à l'échelle nanométrique. Pour cela, nous avons réalisé un système hybride à base de NPOs couplées à un nanofilm de TiO2 par structuration laser. Nos travaux montrent que l’activité catalytique est corrélée aux dimensions structurales des NPOs. Ces résultats ouvrent la voie vers l'exploitation de nombreux processus industriels sous lumière solaire
The excitation of Localized Surface Plasmon Resonance (LSPR) of Gold NanoParticles (GNPs) can give many physical effects such as near-field enhancement, heat generation and hot electron injection, which have been investigated in many chemical transformations. In that context, the plasmonic photocatalysis based on electron transfer from GNP to a semi-conductor has been proposed. However, few studies are focused on the influence of LSPR features and the respective contribution of its local effects (thermal and electronic) on the photocatalytic activity. These issues are addressed herein through 3 catalytic reactions. First, the efficient and selective oxidation of glycerol in the presence of supported GNPs is demonstrated under laser irradiation and without any external source of heat, thanks to the local heat generation and hot electron transfer. The respective contributions of these effects is further investigated in plasmonic photocatalysis by following the degradation of Bisphenol-A. Our results show that GNP plays a major role through hot electron transfer but also as a nano-source of heat that accelerates the reaction and leads to a fast and total elimination of this endocrine disruptor. Finally, an optical set-up is developed for studying the plasmonic photocatalysis at the nanoscale. For this, a hybrid system of GNPs coupled to a TiO2 nanofilm is realized by laser nanostructuring. Our investigations show that photocatalytic activity is correlated to the LSPR (size and shape of GNPs, hot spots). These results open the way for exploiting valuable and industrial reactions under solar light
APA, Harvard, Vancouver, ISO, and other styles
8

Mallek-Zouari, Ikbel. "Propriétés quantiques de la fluorescence de nanocristaux CdSe/CdS déposés sur des nanostructures métalliques." Phd thesis, Université de Versailles-Saint Quentin en Yvelines, 2011. http://tel.archives-ouvertes.fr/tel-00606995.

Full text
Abstract:
Nous présentons les principales propriétés quantiques de fluorescence de nanocristaux de CdSe/CdS individuels à température ambiante. Nous montrons la quasi-suppression de scintillement et l'allongement des durées de vie radiative de ces nanocristaux à la coquille épaisse et de leur rendement quantique. Nous prouvons expérimentalement, par microscopie confocale en champ lointain, que l'interaction d'un nanocristal avec des nanostructures métalliques, réduit sa durée de vie radiative et modifie les efficacités des processus radiatifs et non-radiatifs. Nous montrons que, le couplage dépend bien de la position du nanocristal et que pour certains nanocristaux une large fraction des plasmons est diffractée par la structure spatiale de la couche. Nous obtenons des facteurs de Purcell très importants. Enfin, nous expliquons la relation entre les états d'émission et la compétition entre processus Auger et radiatifs.
APA, Harvard, Vancouver, ISO, and other styles
9

Jia, Kun. "Optical detection of (bio)molecules." Thesis, Troyes, 2013. http://www.theses.fr/2013TROY0032/document.

Full text
Abstract:
Les biocapteurs optiques ont connu une évolution sans précédent au cours des dernières années, principalement en raison de la forte interaction entre la biotechnologie, l’optique et la chimie des matériaux. Dans cette thèse, deux différentes plates-formes de biocapteurs optiques ont été conçues pour la détection sensible et spécifique des biomolécules. Plus précisément, le premier système de détection optique est construit sur la base de la bioluminescence de cellules bactériennes d'Escherichia coli génétiquement modifiées. L’émission de lumière induite par cette interaction peut donc être utilisée pour la détection des substances toxiques. Le second système utilise des nanoparticules de métaux précieux (or et argent) aux propriétés plasmoniques accordables qui permettent de sonder les interactions des biomolécules spécifiques à l'interface nano-bio par la résonance plasmonique de surface (LSPR). Ces nanoparticules ont été obtenues par traitement thermique à haute température d’un film métallique déposé sur du verre à l’aide d’une grille de TEM ou déposé sur une couche de bactéries fixée sur le verre. Après une optimisation appropriée des nanostructures métalliques en termes de morphologie et de fonctionnalisation, une sensibilité élevée et une grande spécificité peuvent être simultanément obtenues avec ces immunocapteurs plasmonique. Ces deux plateformes ont été utilisées pour détecter des pesticides comme le carbofuran et l’atrazine
Optical biosensors have witnessed unprecedented developments over recent years, mainly due to the lively interplay between biotechnology, optical physics and materials chemistry. In this thesis, two different optical biosensing platforms have been designed for sensitive and specific detection of (bio)molecules. Specifically, the first optical detection system is constructed on the basis of bioluminescence derived from engineered Escherichia coli bacterial cells. Upon stressed by the toxic compounds, the bacterial cells produce light via a range of complex biochemical reactions in vivo and the resulted bioluminescent evolution thus can be used for toxicant detection. The bacterial bioluminescent assays are able to provide competitive sensitivity, while they are limited in the specificity. Therefore, the second optical detection platform is built on the localized surface plasmon resonance (LSPR) immunosensors. In this optical biosensor, the noble metal (gold and silver) nanoparticles with tunable plasmonic properties are used as transducer for probing the specific biomolecules interactions occurred in the nano-bio interface. These nanoparticles were obtained after a high temperature thermal treatment of an initially thin-metallic film deposited on a glass substrate through a TEM grid or on a bacteria layer fixed on the glass. After appropriate optimization on metal nanostructures morphology and surface biomodification, the applicable sensitivity and specificity can be both guaranteed in this LSPR immunosensor
APA, Harvard, Vancouver, ISO, and other styles
10

Bounhalli, Mourad. "Dynamique de la formation de nanostructures périodiques par impulsions laser ultrabrèves sur une surface métallique." Phd thesis, Université Jean Monnet - Saint-Etienne, 2011. http://tel.archives-ouvertes.fr/tel-00704856.

Full text
Abstract:
La surface d'un matériau exposé à une irradiation laser à une fluence proche de son seuil d'ablation laisse apparaître des structures périodiques LIPSS (Laser Induced Periodic Surface Structure) d'orientation dépendant de la polarisation de faisceau incident et dont la période est de l'ordre de la longueur d'onde. Les causes de ce phénomène qui suscite l'attention des chercheurs depuis plus d'une trentaine d'années sont maintenant bien connues. Cependant, son étude dans le cadre de l'utilisation récente de lasers à impulsions ultra-brèves fait surgir de nouvelles interrogations et relance l'intérêt pour le sujet. Ce travail est consacré à l'étude dynamique de la formation des nanostructures sur une surface métallique suite à une interaction laser femtoseconde. Nous nous intéressons aux mécanismes responsables de la formation de ces structures et nous proposons des explications permettant de comprendre leur origine. Dans le premier chapitre on présente une étude de l'état de l'art sur la formation des LIPSS, on y aborde les paramètres influant sur la formation de ces structures ainsi que les différents modèles explicatifs élaborés par les chercheurs. Ce chapitre traite également de l'interaction laser matière et de ses différents processus. Le deuxième chapitre met l'accent sur les dispositifs expérimentaux réalisés dans ce cadre. Le troisième chapitre présente, quant à lui une étude expérimentale permettant de rendre compte du rôle de l'excitation du plasmon de surface dans la formation de LIPSS. Dans le quatrième chapitre on analyse les résultats relatifs à l'influence du couplage électron phonon sur la formation des LIPSS. Enfin, le cinquième et dernier chapitre met en évidence le rôle de la relaxation électron-phonon sur la formation des LIPSS à l'aide d'une expérience pompe-sonde.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Nanostructures.;Photolithography.;Plasmons (Physics)"

1

Sönnichsen, Carsten. Plasmons in metal nanostructures. Göttingen: Cuvillier, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stockman, Mark I. Plasmonics: Metallic nanostructures and their optical properties IX : 21-25 August 2011, San Diego, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stockman, Mark I. Plasmonics: Metallic nanostructures and their optical properties VI : 10-14 August 2008, San Diego, California, USA. Edited by Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stockman, Mark I. Plasmonics: Metallic nanostructures and their optical properties VII : 2-6 August 2009, San Diego, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

V, Klimov V. Nanoplazmonika. Moskva: Fizmatlit, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1957-, Shalaev Vladimir M., and Kawata Satoshi 1966-, eds. Nanophotonics with surface plasmons. Amsterdam: Elsevier, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stockman, Mark I. Plasmonics: Metallic Nanostructures and Their Optical Properties 4 (Proceedings of SPIE). Society of Photo Optical, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Editor), Vladimir M. Shalaev, and Satoshi Kawata (Editor), eds. Nanophotonics with Surface Plasmons (Advances in Nano-Optics and Nano-Photonics). Elsevier Science, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Plasmonics: Metallic Nanostructures and Their Optical Properties V - 26-29 August 2007, San Diego, California, USA. SPIE, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Plasmonics: Metallic nanostructures and their optical properties : 3-5 August 2003, San Diego, California, USA. Bellingham, WA: SPIE, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Nanostructures.;Photolithography.;Plasmons (Physics)"

1

Khoroshko, L. S., T. I. Orekhovskaya, and M. V. Meledina. "SOL-GEL COATINGS FOR PHOTOLITHOGRAPHY ON NANOPOROUS ANODIC ALUMINA AND ALUMINUM." In Physics, Chemistry and Application of Nanostructures, 398–401. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813224537_0092.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanostructures.;Photolithography.;Plasmons (Physics)"

1

Sharapov, Andrey, Evgeniy Shamin, Ilya Skuratov, and Evgeniy Gornev. "SOFTWARE COMPLEX FOR PHOTOLITHOGRAPHY OPTIMIZATION FOR MINIMIZATION OF SIDEWALL ROUGHNESS EFFECTS IN NANOSTRUCTURES. GROUNDS AND PROBLEM STATEMENT." In International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1654.silicon-2020/375-377.

Full text
Abstract:
Sidewall roughness is an effect occurred during micro- and nanoelectronics’ structure formation using photolithography. In this work we describe the basic model of roughness emergence on nanostructures’ sidewalls, and determine the approach of photolithography parameters optimization in order to minimize the roughness. the standard route of test structures formation is considered. We develop a software complex based on this approach.
APA, Harvard, Vancouver, ISO, and other styles
2

Tikhonova, Elena, and Evgeny Gornev. "IMPROVEMENT OF SELF-ALIGNED DOUBLE PATTERNING USING SPIN-ON-CARBON MATERIAL." In International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1592.silicon-2020/176-179.

Full text
Abstract:
In this paper the advantages of using self-aligned double patterning in conjunction with extreme ultraviolet photolithography were analyzed, and a promising spin-on-carbon material used as the layer for the original pattern of the structure to be formed was identified. In addition, a method to treat and protect the shape of the initial profile of regular structure lines by using a direct current superposition on a capacitively-coupled plasma chamber was presented.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography