Academic literature on the topic 'Nanostrukturen'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanostrukturen.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanostrukturen"
Fahland, Matthias. "Nanostrukturen entspiegeln Kunststofffolie." JOT Journal für Oberflächentechnik 52, no. 6 (May 31, 2012): 37. http://dx.doi.org/10.1365/s35144-012-0359-8.
Full textStergmeier, Edgar F. "Silizium-Nanostrukturen leuchten." Physik in unserer Zeit 26, no. 1 (1995): 16. http://dx.doi.org/10.1002/piuz.19950260104.
Full textKlenke, Martin. "Nanostrukturen für die Optik." Optik & Photonik 2, no. 3 (October 2007): 47–48. http://dx.doi.org/10.1002/opph.201190270.
Full textGrabert, H., and M. H. Devoret. "Einzelladungsphänomene in metallischen Nanostrukturen." Physik Journal 50, no. 3 (March 1994): 229–34. http://dx.doi.org/10.1002/phbl.19940500308.
Full textVogt, Dominic, and Werner Mader. "VLS-Synthese von ZnIn2S4-Nanostrukturen." Zeitschrift für anorganische und allgemeine Chemie 638, no. 10 (August 2012): 1591. http://dx.doi.org/10.1002/zaac.201204050.
Full textLangner, A., M. Knez, and U. Gösele. "Herstellung von Nanostrukturen mittels Atomlagenabscheidung." Chemie Ingenieur Technik 80, no. 11 (November 2008): 1719–24. http://dx.doi.org/10.1002/cite.200800107.
Full textWillerich, Immanuel, and Franziska Gröhn. "Photoschaltbare Nanostrukturen durch elektrostatische Selbstorganisation." Angewandte Chemie 122, no. 44 (August 26, 2010): 8280–85. http://dx.doi.org/10.1002/ange.201003271.
Full textHartschuh, Achim. "Nanostrukturen erstrahlen in neuem Licht." Nachrichten aus der Chemie 55, no. 5 (May 2007): 495–98. http://dx.doi.org/10.1002/nadc.200747772.
Full textSeeman, Nadrian C. "Nanostrukturen und Topologien von Nucleinsäuren." Angewandte Chemie 110, no. 23 (December 4, 1998): 3408–28. http://dx.doi.org/10.1002/(sici)1521-3757(19981204)110:23<3408::aid-ange3408>3.0.co;2-s.
Full textLangille, Mark R., Michelle L. Personick, and Chad A. Mirkin. "Plasmonische Synthese von metallischen Nanostrukturen." Angewandte Chemie 125, no. 52 (November 26, 2013): 14158–89. http://dx.doi.org/10.1002/ange.201301875.
Full textDissertations / Theses on the topic "Nanostrukturen"
Wibbelhoff, Oliver S. "Ladungsträgerquantisierung in selbstorganisierten Nanostrukturen." [S.l.] : [s.n.], 2006. http://purl.oclc.org/NET/duett-08022006-193041.
Full textKirchner, Christian. "Biologische Integration von Halbleiter-Nanostrukturen." Diss., lmu, 2006. http://nbn-resolving.de/urn:nbn:de:bvb:19-60527.
Full textRein, Michael. "Oligonucleotidyle Bausteine für supramolekulare Nanostrukturen /." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965449939.
Full textHildebrand, Michael. "Selbstorganisierte Nanostrukturen in katalytischen Oberflächenreaktionen." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=958248699.
Full textViernow, Jörg. "Design von Nanostrukturen auf Silizium." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=956309380.
Full textFleischmann, Ragnar. "Nichtlineare Dynamik in Halbleiter-Nanostrukturen /." Göttingen : Max-Planck-Inst. für Strömungsforschung, 1997. http://www.gbv.de/dms/goettingen/24159202X.pdf.
Full textMoormann, Christian. "Herstellung grossflächiger Nanostrukturen mittels Interferenzlithographie." Aachen Shaker, 2007. http://d-nb.info/991819527/04.
Full textFallert, Johannes. "Stimulierte Emission in Zinkoxid-Nanostrukturen." [S.l. : s.n.], 2009. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000010440.
Full textHildebrand, Michael. "Selbstorganisierte Nanostrukturen in katalytischen Oberflächenreaktionen." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 1999. http://dx.doi.org/10.18452/14375.
Full textNanoscale pattern formation in reactive adsorbates on single crystal surfaces is investigated theoretically. Because on such small scales fluctuations become important, a mesoscopic theory for the adsorbate coverage is developed, which aims at providing a link between microscopic lattice models and reaction-diffusion equations. It describes the dynamics for the locally averaged adsorbate coverages in a continuum model taking into account internal fluctuations. This approach is applied to several systems, where patterns on scales smaller than the characteristic diffusion length, which typically lies in the micrometer range, can be formed. As has been observed e.g. in recent experiments with fast scanning tunneling microscopy, a variety of nanoscale patterns can result from the presence of attractive adsorbate-adsorbate interactions. Here, at first a single species of such an adsorbate is considered. In the absence of nonequilibrium reactions, strong enough attractive lateral interactions can induce a first-order phase transition in the adsorbate coverage. The mesoscopic evolution equation is applied to model the kinetics of this phase transition. If additionally a nonequilibrium reaction is present, stationary spatially periodic microstructures may arise as a result of the competition of the attractive lateral interactions and the reactions. The conditions for their appearance and their properties are investigated in detail, e.g. alternating lateral interactions are discussed and the influence of global coupling through the gas phase is analyzed. Furthermore, it is shown that they are not destroyed by relatively strong internal fluctuations. In the next step, a hypothetical model for two different reactive adsorbate species is investigated, where a similar mechanism leads to the formation of nanoscale traveling and standing waves. In the presence of relatively strong internal fluctuations these waves break up and a complex dynamics of interacting wave fragments is observed. In the last example, it is shown in the analysis of a simple model that self-organized nonequilibrium microreactors with submicrometer sizes may spontaneously develop in a single reactive adsorbate species without attractive lateral interactions. They represent localized structures resulting from the interplay between reaction, diffusion and an adsorbate-induced structural transformation of the surface.
Haft, Marcel. "Synthese intermetallischer Nanostrukturen in Kohlenstoffnanoröhren." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-222909.
Full textBooks on the topic "Nanostrukturen"
Strunk, Christoph. Moderne Thermodynamik: Von einfachen Systemen zu nanostrukturen. Berlin: De Gruyter, 2015.
Find full textKronholz, Stephan. Integration von Nanostrukturen durch alternative Methoden: Mizellen-Deposition, Template-Wachstum und Nanogaps. Jülich: Forschungszentrum Jülich GmbH, Zentralbibliothek, 2007.
Find full textSchimmel, Thomas, Rudi Beer, and Matthias Barczewski. Nanotechnology: Physics, chemistry, and biology of functional nanostructures : results of the first research programme Kompetenznetz "Funktionelle Nanostrukturen" (competence network on functional nanostructures). Edited by Kompetenznetz Funktionelle Nanostrukturen and Landesstiftung Baden-Württemberg gGmbH. Stuttgart: Landesstiftung Baden-Württemberg, 2008.
Find full textPotekaev, A. I. Estestvennye dlinnoperiodicheskie nanostruktury. Tomsk: Izdatelʹstvo nauchno-tekhnicheskoĭ literatury, 2002.
Find full textI, Gusev A. Nanomaterialy, nanostruktury, nanotekhnologii. Moskva: Fizmatlit, 2005.
Find full textDuber, Stanisław. Nanostruktura i mikrotekstura antracytów. Katowice: Wydawn. Uniwersytetu Śląskiego, 2011.
Find full textZakharova, G. S. Nanotrubki i rodstvennye nanostruktury oksidov metallov. Ekaterinburg: Uralʹskoe otdelenie RAN, 2005.
Find full textTkachev, Alekseĭ Grigor'evich. Apparatura i metody sinteza tverdotelʹnykh nanostruktur: Monografii︠a︡. Moskva: Mashinostroenie-1, 2007.
Find full textSuzdalev, Igorʹ Petrovich. Nanotekhnologii͡a: Fiziko-khimii͡a nanoklasterov, nanostruktur i nanomaterialov. Moskva: KomKniga, 2006.
Find full textBook chapters on the topic "Nanostrukturen"
Fleischer, Monika. "Plasmonische Nanostrukturen." In Vielfältige Physik, 163–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58035-6_15.
Full textRubahn, Horst-Günter. "Charakterisierung von Nanostrukturen." In Nanophysik und Nanotechnologie, 52–118. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-663-10872-6_4.
Full textSchneider, Christian. "Herstellung von Nanostrukturen." In essentials, 15–20. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-14311-4_3.
Full textRubahn, Horst-Günter. "Charakterisierung von Nanostrukturen." In Nanophysik und Nanotechnologie, 40–92. Wiesbaden: Vieweg+Teubner Verlag, 2004. http://dx.doi.org/10.1007/978-3-322-80133-3_5.
Full textWoggon, Ulrike. "Nichtlineare Optik an Nanostrukturen." In Vielfältige Physik, 207–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58035-6_19.
Full textRubahn, Horst-Günter. "Erzeugung und Manipulation von Nanostrukturen." In Nanophysik und Nanotechnologie, 23–51. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-663-10872-6_3.
Full textHuebener, Rudolf. "Nanostrukturen: Übergitter, Quantendrähte und Quantenpunkte." In Leiter, Halbleiter, Supraleiter, 185–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53281-2_11.
Full textRubahn, Horst-Günter. "Erzeugung und Manipulation von Nanostrukturen." In Nanophysik und Nanotechnologie, 18–39. Wiesbaden: Vieweg+Teubner Verlag, 2004. http://dx.doi.org/10.1007/978-3-322-80133-3_4.
Full textHuebener, Rudolf. "Nanostrukturen: Übergitter, Quantendrähte und Quantenpunkte." In Leiter, Halbleiter, Supraleiter - Eine Einführung in die Festkörperphysik, 163–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34879-2_11.
Full textHuebener, Rudolf P. "Nanostrukturen: Übergitter, Quantendrähte und Quantenpunkte." In Leiter, Halbleiter, Supraleiter, 187–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-62078-6_11.
Full textConference papers on the topic "Nanostrukturen"
Hoffmann, M., H. Bartsch, M. Fischer, S. Hampl, C. Kremin, S. Leopold, J. Müller, T. Polster, and M. Stubenrauch. "Mikro-Nano-Integration in der Sensorik - Nanostrukturen als neue Option." In 10. Dresdner Sensor-Symposium 2011. Forschungsgesellschaft für Messtechnik, Sensorik und Medizintechnik e.V. Dresden, 2011. http://dx.doi.org/10.5162/10dss2011/8.1.
Full textCialla-May, D., K. Weber, and J. Popp. "P5.6 - Anwendung SERS-aktiver Nanostrukturen in der Medikamentenüberwachung und Lebensmittelanalytik." In 12. Dresdner Sensor-Symposium 2015. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2015. http://dx.doi.org/10.5162/12dss2015/p5.6.
Full text"GEMOSTATIChESKAYa AKTIVNOST'' MIKRO-MEZOPORISTYKh NANOSTRUKTUR Fe2O3." In Fizicheskaya mezomekhanika. Materialy s mnogourovnevoy ierarkhicheski organizovannoy strukturoy i intellektual'nye proizvodstvennye tekhnologii. Tomsk State University, 2020. http://dx.doi.org/10.17223/9785946219242/265.
Full text"PORISTYE NANOSTRUKTURY GEMATITA V KAChESTVE NOSITELEY LEKARSTVENNYKh PREPARATOV DLYa BIODEGRADIRUEMYKh IMPLANTATOV." In Fizicheskaya mezomekhanika. Materialy s mnogourovnevoy ierarkhicheski organizovannoy strukturoy i intellektual'nye proizvodstvennye tekhnologii. Tomsk State University, 2020. http://dx.doi.org/10.17223/9785946219242/235.
Full text"ISSLEDOVANIE GAZOChUVSTVITEL''NYKh SVOYSTV NANOSTRUKTUR MUNT/ZnO I MUNT/ZnO/In2O3." In Fizicheskaya mezomekhanika. Materialy s mnogourovnevoy ierarkhicheski organizovannoy strukturoy i intellektual'nye proizvodstvennye tekhnologii. Tomsk State University, 2020. http://dx.doi.org/10.17223/9785946219242/289.
Full text"Osobennosti formirovaniya nanostruktur ALOOH-Ag pri okislenii vodoy bikomponentnykh nanochastits Al/Ag." In Perspektivnye materialy s ierarkhicheskoy strukturoy dlya novykh tekhnologiy i nadezhnykh konstruktsiy, Khimiya nefti i gaza. Tomsk State University, 2018. http://dx.doi.org/10.17223/9785946217408/164.
Full text"MEKhANIZM OBRAZOVANIYa NANOSTRUKTUR V POVERKhNOSTNYKh SLOYaKh BINARNYKh SPLAVOV PRI ELEKTRONNO-PUChKOVOY OBRABOTKE." In Fizicheskaya mezomekhanika. Materialy s mnogourovnevoy ierarkhicheski organizovannoy strukturoy i intellektual'nye proizvodstvennye tekhnologii. Tomsk State University, 2020. http://dx.doi.org/10.17223/9785946219242/109.
Full textLozkomoev, A. "OSOBENNOSTI ADSORBCII NANOChASTIC NA POVERHNOSTI IERARHIChESKI ORGANIZOVANNYH NANOSTRUKTUR ALOOH V DINAMIChESKIH USLOVIJaH." In International Workshop "Multiscale Biomechanics and Tribology of Inorganic and Organic Systems" ; Mezhdunarodnaja konferencija "Perspektivnye materialy s ierarhicheskoj strukturoj dlja novyh tehnologij i nadezhnyh konstrukcij" ; VIII Vserossijskaja nauchno-prakticheskaja konferencija s mezhdunarodnym uchastiem, posvjashhennaja 50-letiju osnovanija Instituta himii nefti "Dobycha, podgotovka, transport nefti i gaza". Tomsk State University, 2019. http://dx.doi.org/10.17223/9785946218412/164.
Full text"IERARKhIChESKI – ORGANIZOVANNYE NANOSTRUKTURY MgO/Mg2 Al(OH)7 DLYa ISPOL''ZOVANIYa PROTIVOOPUKhOLEVOY TERAPII." In Fizicheskaya mezomekhanika. Materialy s mnogourovnevoy ierarkhicheski organizovannoy strukturoy i intellektual'nye proizvodstvennye tekhnologii. Tomsk State University, 2020. http://dx.doi.org/10.17223/9785946219242/232.
Full text"Vliyanie termicheskoy obrabotki ierarkhicheskikh mikro/nanostruktur AlOOH na ikh strukturnye i sorbtsionnye svoystva." In Perspektivnye materialy s ierarkhicheskoy strukturoy dlya novykh tekhnologiy i nadezhnykh konstruktsiy, Khimiya nefti i gaza. Tomsk State University, 2018. http://dx.doi.org/10.17223/9785946217408/189.
Full text