Academic literature on the topic 'Nanotubes de carbone individuels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanotubes de carbone individuels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanotubes de carbone individuels"
Vaccarini, Laetitia, Christophe Goze, Raymond Aznar, Valérie Micholet, Catherine Journet, Patrick Bernier, Karine Metenier, François Beguin, Julie Gavillet, and Annick Loiseau. "Purification des nanotubes de carbone monofeuillets." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy 327, no. 9 (September 1999): 925–31. http://dx.doi.org/10.1016/s1287-4620(99)80156-2.
Full textBussy, C., L. Tabet, J. Boczkowski, and S. Lanone. "033 Toxicité respiratoire des nanotubes de carbone." Revue des Maladies Respiratoires 24, no. 9 (November 2007): 1205. http://dx.doi.org/10.1016/s0761-8425(07)74324-3.
Full textSauvajol, J. L., S. Rols, J. Cambedouzou, and R. Almairac. "Systèmes hôtes nanométriques : les nanotubes de carbone." École thématique de la Société Française de la Neutronique 12 (2007): 161–77. http://dx.doi.org/10.1051/sfn:20070013.
Full textGabriel, Jean-Christophe P. "Réseaux 2d aléatoires à nanotubes de carbone." Comptes Rendus Physique 11, no. 5-6 (June 2010): 362–74. http://dx.doi.org/10.1016/j.crhy.2010.07.016.
Full text-SCHNELL, Jean-Philippe. "Nanotubes de carbone : état de l'art et perspectives." Revue de l'Electricité et de l'Electronique -, no. 01 (2004): 24. http://dx.doi.org/10.3845/ree.2004.002.
Full textMeunier, V., and P. Lambin. "Propriétés structurales des jonctions de nanotubes de carbone." Canadian Journal of Physics 77, no. 9 (February 1, 2000): 667–75. http://dx.doi.org/10.1139/p99-004.
Full textMeunier, V., and P. Lambin. "Propriétés structurales des jonctions de nanotubes de carbone." Canadian Journal of Physics 77, no. 9 (1999): 667–75. http://dx.doi.org/10.1139/cjp-77-9-667.
Full textJaffiol, R., A. Débarre, D. Nutarelli, A. Richard, and P. Tchénio. "Imagerie Raman hyper-spectrale de nanotubes de carbone dopés." Journal de Physique IV (Proceedings) 12, no. 5 (June 2002): 285–86. http://dx.doi.org/10.1051/jp4:20020163.
Full textBianco, Alberto. "Les nanotubes de carbone : un nouvel outil contre le cancer." médecine/sciences 25, no. 2 (February 2009): 125–27. http://dx.doi.org/10.1051/medsci/2009252125.
Full textAzrar, A., L. Azrar, and A. A. Aljinaidi. "Nonlinear free vibration of single walled Carbone NanoTubes conveying fluid." MATEC Web of Conferences 11 (2014): 02015. http://dx.doi.org/10.1051/matecconf/20141102015.
Full textDissertations / Theses on the topic "Nanotubes de carbone individuels"
Michel, Thierry. "Propriétés physiques des nanotubes de carbone individuels." Montpellier 2, 2007. http://www.theses.fr/2007MON20215.
Full textGandil, Morgane. "Propriétés magnéto-optiques de nanotubes de carbone individuels suspendus." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0647/document.
Full textThis thesis is dedicated to the experimental study of the intrinsic magneto-optical properties of single-walled carbon nanotubes through time-resolved photoluminescence spectroscopy. Measurements are performed on suspended nanotubes samples at the single-object level using a home-built confocal optical microscope with a large numerical aperture (NA = 0.95) operating at cryogenic temperature (down to 2K) and high magnetic field (up to 7T). The evolution of the photoluminescence spectra and decay signals with increasing magnetic fields shows the influence of the Aharonov-Bohm effect on the two lowest-energy singlet excitons, namely the ground exciton which is optically inactive (dark exciton) and an exciton lying a few millielectron volts higher in energy which is optically active (bright exciton). A model of these results based on rate equations and including the Aharonov-Bohm coupling between these two excitons enables to determine separately the excitons lifetimes and to derive quantitative information on the energy relaxation from the photo-excited higher levels. The energy relaxation following the photo-excitation of the S22 transition leads to a bright state population efficiency four times lower than that of the dark state, but it significantly increases when energy relaxation occurs from the KK’ excitonic levels. Thanks to a good signal to noise ratio, the photoluminescence spectra also reveal the presence of an intrinsic zero-field coupling between the dark and the brightexcitons, as well as an excitonic mobility preserved at liquid helium temperature in suspended nanotubes
Paillet, Matthieu. "Synthèse et propriétés physiques de nanotubes de carbone monofeuillets individuels." Montpellier 2, 2005. http://www.theses.fr/2005MON20023.
Full textSalem, Diana. "Synthèse de nanotubes de carbone monofeuillets individuels et composites modèles polymères - nanotubes de carbone : application à l'effet photovoltaïque." Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00719414.
Full textSalem, Diana. "Synthèse de nanotubes de carbone monofeuillets individuels et composites modèles polymères - nanotubes de carbone : application à l’effet photovoltaïque." Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAE001/document.
Full textThe aim of this work is to develop composite materials carbon nanotubes/polymers to take advantage of properties of carbon nanotubes at macroscopic scale. To get such materials, homogeneous functionalization between carbon nanotubes and polymers is required, carbon nanotubes must be individual with the same chemical reactivity, therefore the same diameter. Thus, they must be synthesized by CVD from monodispersed and supported catalyst nanoparticles. In the first part, we developed a new universal method for the synthesis of metal oxide supported nanoparticles. We mainly detailed the synthesis of Fe2O3 nanoparticles with size distribution of 1.1 ± 0.3 nm. In the second part, after studying the thermal stability of these nanoparticles, we used them to catalyze the growth of individual single wall carbon nanotubes by CVD. The caracterisation of the obtained nanotubes by Raman show exceptionally narrow diameter distribution of 1.27 ± 0.15 nm. In the third section, we first studied the dispersion of carbon nanotubes by noncovalent functionalization withhydro-soluble polymer POE with pyrene as end group and revealed depletion phenomena that limit the solubilization of nanotubes. Then we developed composite materials carbon nanotubes/rrP3HT by covalent and noncovalent functionalisation and we studied the efficiency of charge separation in both cases of functionalization
Caillier, Christophe. "Transport électronique dans les nanotubes de carbone individuels sous conditions extrêmes." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00454234.
Full textThan, Xuan Tinh. "Croissance catalytique et étude de nanotubes de carbone multi-feuillets produits en masse et de nanotubes de carbone ultra-long individuels à quelques feuillets." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20110/document.
Full textCatalytic growth and study of mass-produced multi-walled carbon nanotubes and ultralong individual few-walled carbon nanotubesAbstract: This experimental work deals with the growth of multi-walled carbon nanotubes (MWCNTs) and ultralong carbon nanotubes (CNTs) by catalytic chemical vapor deposition (CCVD), and the study of their physical properties. In the first part of the manuscript is described the parameter optimization of the CCVD growth of MWCNTs for a large-scale production at low cost. By using acetylene as a carbon source, Fe(NO3)3.9H2O as a precursor catalyst and CaCO3 as a catalyst support, we report on optimized growth conditions allowing the production of 525 g of MWCNTs per day at an estimated cost of 0.6 $ per gramme. The purification of the as-grown MWCNTs by oxygen or carbon dioxide treatments is also presented. In the second part is presented the synthesis of ultralong individual CNTs. The influence of the growth parameters is investigated and based on the experimental observations, the possible growth mechanisms are discussed. Finally, the last part of the thesis is dedicated to the preparation and to the study of the physical properties of ultralong individual carbon nanotubes. From the know-how developed in the previous part, we prepared well-aligned ultralong CNTs, cross junction of CNTs (on a substrate or suspended) and suspended CNTs over different supports. Electronic and electron transport properties of the individual ultralong CNTs on silicon substrate are then studied by atomic force microscopy, Raman spectroscopy and transport measurements. Finally, the Raman-active phonons of suspended individual CNTs were investigated in combined experiments by transmission electron microscopy, electron diffraction and Raman spectroscopy. Keywords: Multi-walled carbon nanotubes, ultralong carbon nanotubes, catalytic chemical vapor deposition, growth mechanism, lithography, resonant Raman spectroscopy, electronic transport
Marchand, Mickaël. "Synthèse in-situ et caractérisation de nanotubes de carbone individuels sous émission de champ." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00466604.
Full textJaffiol, Rodolphe. "Spectroscopie optique de nano-objets individuels." Paris 11, 2003. http://www.theses.fr/2003PA112223.
Full textSingle nanoobjects were studied by hyperspectral optical imaging, which associates a scanning confocal microscope with an optical spectroscopy unit. We choose to perform fluorescence spectroscopy and Raman spectroscopy. At room temperature, such spectroscopic approach has proven to be well adapted to study two different nanoobjects, as single molecules and carbon nanotubes. Our Raman imaging set-up is an efficient tool to localize different chemical species in a sample. Thus, we recorded the first Raman spectra of new carbon species, single wall carbon nanotubes which encapsulated several perylene molecules or dimetallofullernes (peapods). For peapods, we demonstrate from Raman spectre a charge transfer process between the nanotubes and the metallofullerenes, and in many cases their polymerization inside the tubes. Metallic nanostructured surfaces are usually required in this kind of experiments. In fact, we observed an enhancement of the Raman scattering with these surfaces, high enough to record the Raman scattering from a single nanoobject in few seconds. Also, they improve the spatial selection of the confocal microscope, that permit the selection of single nanoobjects. In this way, we studied single molecules and single carbone nanotubes. Then, I bring out some characteristics of the enhancement process. In particular, this enhancement is only efficient at the vicinity of the nanostructure. The surface morphology of the nanostructure must also exhibit some protrusions, or interstices
Berciaud, Stéphane. "Détection photothermique et spectroscopie d'absoption de nano-objets individuels: nanoparticules métalliques, nanocristaux semiconducteurs, et nanotubes de carbone." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00123471.
Full textHétérodyne (PHI). Cette nouvelle méthode optique en champ lointain permet de détecter une
grande variété de nano-objets individuels absorbants (nanoparticules métalliques jusqu'à 1.4 nm
de diamètre, nanocristaux semiconducteurs, nanotubes de carbone métalliques et semiconducteurs,.
. .), sur un fond « noir », avec un très bon rapport signal à bruit. Le signal photothermique
a été caractérisé expérimentalement sur des nanoparticules d'or individuelles. Les mesures obtenues
sont comparées à des calculs analytiques issus d'un modèle électrodynamique. Etant donné
que ce signal est directement proportionnel à la puissance absorbée, la méthode PHI ouvre la
voie à des expériences de spectroscopie d'absorption à l'échelle du nano-objet individuel. Dans
un premier temps, nous avons sondé la résonance plasmon de surface de nanoparticules d'or
individuelles de 5 à 33 nm de diamètre. Cette étude a abouti à l'observation d'effets de taille
intrinsèques, analysés dans le cadre de la théorie de Mie. Nous avons ensuite mesuré les spectres
d'absorption de nanocristaux individuels de CdSe en régime multiexcitonique. Pour un même
nanocristal, la comparaison des spectres d'absorption photothermique et d'émission permet de
discuter l'origine physique du signal photothermique. Enfin, nous avons caractérisé la structure
de nanotubes de carbone semiconducteurs et métalliques individuels en analysant leurs spectres
d'absorption autour de leurs premières résonances optiques.
Books on the topic "Nanotubes de carbone individuels"
Physical Properties of Carbon Nanotubes. World Scientific Publishing Company, 1998.
Find full textGrove-Rasmussen, K. Hybrid Superconducting Devices Based on Quantum Wires. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.16.
Full textBook chapters on the topic "Nanotubes de carbone individuels"
Lutz, Matthias U., Kamil Lipert, Yulia Krupskaya, Stefan Bahr, Anja Wolter, Ahmed A. El-Gendy, Silke Hampel, et al. "Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors." In Carbon Nanotubes for Biomedical Applications, 97–124. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14802-6_6.
Full textJungen, Alain. "Nano-spectroscopy of Individual Carbon Nanotubes and Isolated Graphene Sheets." In Confocal Raman Microscopy, 91–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12522-5_5.
Full textJungen, Alain. "Nano-spectroscopy of Individual Carbon Nanotubes and Isolated Graphene Sheets." In Confocal Raman Microscopy, 157–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75380-5_7.
Full textStaii, C., M. Radosavljevic, and A. T. Johnson. "Scanning Probe Microscopy of Individual Carbon Nanotube Quantum Devices." In Scanning Probe Microscopy, 423–39. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-28668-6_15.
Full textBarber, Asa H., H. Daniel Wagner, and Sidney R. Cohen. "Investigating Individual Carbon Nanotube/Polymer Interfaces with Scanning Probe Microscopy." In Applied Scanning Probe Methods VI, 287–323. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-37319-3_10.
Full textJang, Hoon Sik, Sung Hwan Kwon, Am Kee Kim, and Seung Hoon Nahm. "Tensile Test of Individual Multi Walled Carbon Nanotube Using Nano-Manipulator inside Scanning Electron Microscope." In Experimental Mechanics in Nano and Biotechnology, 329–32. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-415-4.329.
Full textLiu, Kaihui, Zhiwen Shi, and Feng Wang. "Optical Spectroscopy of Individual Carbon Nanotubes." In Handbook of Carbon Nanomaterials, 105–21. World Scientific, 2019. http://dx.doi.org/10.1142/9789813235465_0003.
Full textWalden-Newman, W., and S. Strauf. "Quantum light sources based on individual carbon nanotubes." In Carbon Nanotubes and Graphene for Photonic Applications, 346–85. Elsevier, 2013. http://dx.doi.org/10.1533/9780857098627.3.346.
Full textKo, Wen-Yin, Jun-Wei Su, and Kuan-Jiuh Li. "Sonophysically Exfoliated Individual Multi-Walled Carbon Nanotubes in Water Solution and Their Straightforward Route to Flexible Transparent Conductive Films." In Carbon Nanotubes Applications on Electron Devices. InTech, 2011. http://dx.doi.org/10.5772/16526.
Full text"Nano World." In Advances in Multimedia and Interactive Technologies, 218–47. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4627-8.ch011.
Full textConference papers on the topic "Nanotubes de carbone individuels"
Nihey, F. "Electrical contact with titanium carbide to an individual single-walled carbon nanotube." In NANONETWORK MATERIALS: Fullerenes, Nanotubes, and Related Systems. AIP, 2001. http://dx.doi.org/10.1063/1.1420073.
Full textEberhardt, Oliver, and Thomas Wallmersperger. "Molecular mechanics methods for individual carbon nanotubes and nanotube assemblies." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Nakhiah C. Goulbourne. SPIE, 2015. http://dx.doi.org/10.1117/12.2084209.
Full textHuang, Xue Ming Henry, Robert Caldwell, Bhupesh Chandra, Seong Chan Jun, Mingyuan Huang, and James Hone. "Controlled Manipulation of Carbon Nanotubes for Nanodevices, Arrays, and Films." In ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87033.
Full textEl-Aguizy, T., and Sang-Gook Kim. "Large-Scale Assembly of Carbon Nanotubes." In ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46021.
Full textKizuka, Tokushi. "Processing of individual carbon nanotubes—cutting and joining." In NANONETWORK MATERIALS: Fullerenes, Nanotubes, and Related Systems. AIP, 2001. http://dx.doi.org/10.1063/1.1420110.
Full textWaters, Julie F., Laura Riester, Maryam Jouzi, Pradeep R. Guduru, and J. M. Xu. "Mechanics of Multi-Walled Carbon Nanotubes Under Uniaxial Compression." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62060.
Full textBenoit, J. M. "Actuators of Individual Carbon Nanotubes." In STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XVI International Winterschool on Electronic Properties of Novel Materials. AIP, 2002. http://dx.doi.org/10.1063/1.1514189.
Full textBao, Hua, Xiulin Ruan, and Timothy S. Fisher. "Analysis of Visible Radiative Properties of Vertically Aligned Multi-Walled Carbon Nanotubes." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22482.
Full textPettes, Michael T., and Li Shi. "Thermal Conductance of Individual Single-Wall Carbon Nanotubes." In ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/enic2008-53028.
Full textHeinz, Tony F. "Optical Spectroscopy of Individual Carbon Nanotubes." In Laser Science. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/ls.2007.ltud2.
Full textReports on the topic "Nanotubes de carbone individuels"
Krauss, Todd. Directing Photogenerated Charges Along Individual Carbon Nanotubes. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1706703.
Full text